/[pcre]/code/trunk/sljit/sljitNativeMIPS_common.c
ViewVC logotype

Contents of /code/trunk/sljit/sljitNativeMIPS_common.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 705 - (hide annotations) (download)
Thu Sep 22 10:44:35 2011 UTC (3 years, 2 months ago) by zherczeg
File MIME type: text/plain
File size: 54992 byte(s)
JIT compiler fix for MIPS position independent calls
1 ph10 662 /*
2     * Stack-less Just-In-Time compiler
3     *
4     * Copyright 2009-2010 Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
5     *
6     * Redistribution and use in source and binary forms, with or without modification, are
7     * permitted provided that the following conditions are met:
8     *
9     * 1. Redistributions of source code must retain the above copyright notice, this list of
10     * conditions and the following disclaimer.
11     *
12     * 2. Redistributions in binary form must reproduce the above copyright notice, this list
13     * of conditions and the following disclaimer in the documentation and/or other materials
14     * provided with the distribution.
15     *
16     * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
17     * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18     * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
19     * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20     * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
21     * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
22     * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23     * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
24     * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25     */
26    
27     SLJIT_CONST char* sljit_get_platform_name()
28     {
29     #if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
30     return "mips-32";
31     #else
32     #error "mips-64 is not yet supported"
33     #endif
34     }
35    
36     /* Length of an instruction word
37     Both for mips-32 and mips-64 */
38     typedef sljit_ui sljit_ins;
39    
40     #define TMP_REG1 (SLJIT_NO_REGISTERS + 1)
41     #define TMP_REG2 (SLJIT_NO_REGISTERS + 2)
42     #define TMP_REG3 (SLJIT_NO_REGISTERS + 3)
43     #define REAL_STACK_PTR (SLJIT_NO_REGISTERS + 4)
44    
45     /* TMP_EREG1 is used mainly for literal encoding on 64 bit. */
46     #define TMP_EREG1 24
47     #define TMP_EREG2 25
48    
49     /* Flags are keept in volatile registers. */
50     #define EQUAL_FLAG 7
51     /* And carry flag as well. */
52     #define ULESS_FLAG 11
53     #define UGREATER_FLAG 12
54     #define LESS_FLAG 13
55     #define GREATER_FLAG 14
56     #define OVERFLOW_FLAG 15
57    
58     #define UNORD_BIT 1
59     #define EQUAL_BIT 2
60     #define LESS_BIT 3
61     #define GREATER_BIT 4
62    
63     #define TMP_FREG1 (SLJIT_FLOAT_REG4 + 1)
64     #define TMP_FREG2 (SLJIT_FLOAT_REG4 + 2)
65    
66     /* --------------------------------------------------------------------- */
67     /* Instrucion forms */
68     /* --------------------------------------------------------------------- */
69    
70     #define S(s) (reg_map[s] << 21)
71     #define T(t) (reg_map[t] << 16)
72     #define D(d) (reg_map[d] << 11)
73     /* Absolute registers. */
74     #define SA(s) ((s) << 21)
75     #define TA(t) ((t) << 16)
76     #define DA(d) ((d) << 11)
77     #define FT(t) ((t) << (16 + 1))
78     #define FS(s) ((s) << (11 + 1))
79     #define FD(d) ((d) << (6 + 1))
80     #define IMM(imm) ((imm) & 0xffff)
81     #define SH_IMM(imm) ((imm & 0x1f) << 6)
82    
83     #define DR(dr) (reg_map[dr])
84     #define HI(opcode) ((opcode) << 26)
85     #define LO(opcode) (opcode)
86     #define FMT_D (17 << 21)
87    
88     #define ABS_D (HI(17) | FMT_D | LO(5))
89     #define ADD_D (HI(17) | FMT_D | LO(0))
90     #define ADDU (HI(0) | LO(33))
91     #define ADDIU (HI(9))
92     #define AND (HI(0) | LO(36))
93     #define ANDI (HI(12))
94     #define B (HI(4))
95     #define BAL (HI(1) | (17 << 16))
96     #define BC1F (HI(17) | (8 << 21))
97     #define BC1T (HI(17) | (8 << 21) | (1 << 16))
98     #define BEQ (HI(4))
99     #define BGEZ (HI(1) | (1 << 16))
100     #define BGTZ (HI(7))
101     #define BLEZ (HI(6))
102     #define BLTZ (HI(1) | (0 << 16))
103     #define BNE (HI(5))
104     #define BREAK (HI(0) | LO(13))
105     #define C_UN_D (HI(17) | FMT_D | LO(49))
106     #define C_UEQ_D (HI(17) | FMT_D | LO(51))
107     #define C_ULT_D (HI(17) | FMT_D | LO(53))
108     #define CLZ (HI(28) | LO(32))
109     #define DIV_D (HI(17) | FMT_D | LO(3))
110     #define EXT (HI(31) | LO(0))
111     #define J (HI(2))
112     #define JAL (HI(3))
113     #define JALR (HI(0) | LO(9))
114     #define JR (HI(0) | LO(8))
115     #define LD (HI(55))
116     #define LDC1 (HI(53))
117     #define LUI (HI(15))
118     #define LW (HI(35))
119     #define NEG_D (HI(17) | FMT_D | LO(7))
120     #define MFHI (HI(0) | LO(16))
121     #define MFLO (HI(0) | LO(18))
122     #define MOV_D (HI(17) | FMT_D | LO(6))
123     #define CFC1 (HI(17) | (2 << 21))
124     #define MOVN (HI(0) | LO(11))
125     #define MOVZ (HI(0) | LO(10))
126     #define MUL (HI(28) | LO(2))
127     #define MUL_D (HI(17) | FMT_D | LO(2))
128     #define MULT (HI(0) | LO(24))
129     #define NOP (HI(0) | LO(0))
130     #define NOR (HI(0) | LO(39))
131     #define OR (HI(0) | LO(37))
132     #define ORI (HI(13))
133     #define SD (HI(63))
134     #define SDC1 (HI(61))
135     #define SEB (HI(31) | (16 << 6) | LO(32))
136     #define SEH (HI(31) | (24 << 6) | LO(32))
137     #define SLT (HI(0) | LO(42))
138     #define SLTI (HI(10))
139     #define SLTIU (HI(11))
140     #define SLTU (HI(0) | LO(43))
141     #define SLL (HI(0) | LO(0))
142     #define SLLV (HI(0) | LO(4))
143     #define SRL (HI(0) | LO(2))
144     #define SRLV (HI(0) | LO(6))
145     #define SRA (HI(0) | LO(3))
146     #define SRAV (HI(0) | LO(7))
147     #define SUB_D (HI(17) | FMT_D | LO(1))
148     #define SUBU (HI(0) | LO(35))
149     #define SW (HI(43))
150     #define XOR (HI(0) | LO(38))
151     #define XORI (HI(14))
152    
153     #if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
154     #define ADDU_W ADDU
155     #define ADDIU_W ADDIU
156     #define EXT_W EXT
157     #define SLL_W SLL
158     #define SUBU_W SUBU
159     #else
160     #define ADDU_W DADDU
161     #define ADDIU_W DADDIU
162     #define EXT_W DEXT
163     #define SLL_W DSLL
164     #define SUBU_W DSUBU
165     #endif
166    
167     #define SIMM_MAX (0x7fff)
168     #define SIMM_MIN (-0x8000)
169     #define UIMM_MAX (0xffff)
170    
171     static SLJIT_CONST sljit_ub reg_map[SLJIT_NO_REGISTERS + 6] = {
172     0, 2, 5, 6, 3, 4, 17, 18, 19, 20, 21, 16, 8, 9, 10, 29
173     };
174    
175     /* dest_reg is the absolute name of the register
176     Useful for reordering instructions in the delay slot. */
177     static int push_inst(struct sljit_compiler *compiler, sljit_ins ins, int delay_slot)
178     {
179     sljit_ins *ptr = (sljit_ins*)ensure_buf(compiler, sizeof(sljit_ins));
180     FAIL_IF(!ptr);
181     *ptr = ins;
182     compiler->size++;
183     compiler->delay_slot = delay_slot;
184     return SLJIT_SUCCESS;
185     }
186    
187     static SLJIT_INLINE sljit_ins invert_branch(int flags)
188     {
189     return (flags & IS_BIT26_COND) ? (1 << 26) : (1 << 16);
190     }
191    
192     static SLJIT_INLINE sljit_ins* optimize_jump(struct sljit_jump *jump, sljit_ins *code_ptr, sljit_ins *code)
193     {
194     sljit_w diff;
195     sljit_uw target_addr;
196     sljit_ins *inst;
197     sljit_ins saved_inst;
198    
199     if (jump->flags & SLJIT_REWRITABLE_JUMP)
200     return code_ptr;
201    
202     if (jump->flags & JUMP_ADDR)
203     target_addr = jump->u.target;
204     else {
205     SLJIT_ASSERT(jump->flags & JUMP_LABEL);
206     target_addr = (sljit_uw)(code + jump->u.label->size);
207     }
208     inst = (sljit_ins*)jump->addr;
209     if (jump->flags & IS_COND)
210     inst--;
211    
212     /* B instructions. */
213     if (jump->flags & IS_MOVABLE) {
214     diff = ((sljit_w)target_addr - (sljit_w)(inst)) >> 2;
215     if (diff <= SIMM_MAX && diff >= SIMM_MIN) {
216     jump->flags |= PATCH_B;
217    
218     if (!(jump->flags & IS_COND)) {
219     inst[0] = inst[-1];
220     inst[-1] = (jump->flags & IS_JAL) ? BAL : B;
221     jump->addr -= sizeof(sljit_ins);
222     return inst;
223     }
224     saved_inst = inst[0];
225     inst[0] = inst[-1];
226     inst[-1] = saved_inst ^ invert_branch(jump->flags);
227     jump->addr -= 2 * sizeof(sljit_ins);
228     return inst;
229     }
230     }
231    
232     diff = ((sljit_w)target_addr - (sljit_w)(inst + 1)) >> 2;
233     if (diff <= SIMM_MAX && diff >= SIMM_MIN) {
234     jump->flags |= PATCH_B;
235    
236     if (!(jump->flags & IS_COND)) {
237     inst[0] = (jump->flags & IS_JAL) ? BAL : B;
238     inst[1] = NOP;
239     return inst + 1;
240     }
241     inst[0] = inst[0] ^ invert_branch(jump->flags);
242     inst[1] = NOP;
243     jump->addr -= sizeof(sljit_ins);
244     return inst + 1;
245     }
246    
247     if (jump->flags & IS_COND) {
248     if ((target_addr & ~0xfffffff) == ((jump->addr + 3 * sizeof(sljit_ins)) & ~0xfffffff)) {
249     jump->flags |= PATCH_J;
250     inst[0] = (inst[0] & 0xffff0000) | 3;
251     inst[1] = NOP;
252     inst[2] = J;
253     inst[3] = NOP;
254     jump->addr += sizeof(sljit_ins);
255     return inst + 3;
256     }
257     return code_ptr;
258     }
259    
260     /* J instuctions. */
261     if (jump->flags & IS_MOVABLE) {
262     if ((target_addr & ~0xfffffff) == (jump->addr & ~0xfffffff)) {
263     jump->flags |= PATCH_J;
264     inst[0] = inst[-1];
265     inst[-1] = (jump->flags & IS_JAL) ? JAL : J;
266     jump->addr -= sizeof(sljit_ins);
267     return inst;
268     }
269     }
270    
271     if ((target_addr & ~0xfffffff) == ((jump->addr + sizeof(sljit_ins)) & ~0xfffffff)) {
272     jump->flags |= PATCH_J;
273     inst[0] = (jump->flags & IS_JAL) ? JAL : J;
274     inst[1] = NOP;
275     return inst + 1;
276     }
277    
278     return code_ptr;
279     }
280    
281     #ifdef __GNUC__
282     static __attribute__ ((noinline)) void sljit_cache_flush(void* code, void* code_ptr)
283     {
284     SLJIT_CACHE_FLUSH(code, code_ptr);
285     }
286     #endif
287    
288     void* sljit_generate_code(struct sljit_compiler *compiler)
289     {
290     struct sljit_memory_fragment *buf;
291     sljit_ins *code;
292     sljit_ins *code_ptr;
293     sljit_ins *buf_ptr;
294     sljit_ins *buf_end;
295     sljit_uw word_count;
296     sljit_uw addr;
297    
298     struct sljit_label *label;
299     struct sljit_jump *jump;
300     struct sljit_const *const_;
301    
302     CHECK_ERROR_PTR();
303     check_sljit_generate_code(compiler);
304     reverse_buf(compiler);
305    
306     code = (sljit_ins*)SLJIT_MALLOC_EXEC(compiler->size * sizeof(sljit_ins));
307     PTR_FAIL_WITH_EXEC_IF(code);
308     buf = compiler->buf;
309    
310     code_ptr = code;
311     word_count = 0;
312     label = compiler->labels;
313     jump = compiler->jumps;
314     const_ = compiler->consts;
315     do {
316     buf_ptr = (sljit_ins*)buf->memory;
317     buf_end = buf_ptr + (buf->used_size >> 2);
318     do {
319     *code_ptr = *buf_ptr++;
320     SLJIT_ASSERT(!label || label->size >= word_count);
321     SLJIT_ASSERT(!jump || jump->addr >= word_count);
322     SLJIT_ASSERT(!const_ || const_->addr >= word_count);
323     /* These structures are ordered by their address. */
324     if (label && label->size == word_count) {
325     /* Just recording the address. */
326     label->addr = (sljit_uw)code_ptr;
327     label->size = code_ptr - code;
328     label = label->next;
329     }
330     if (jump && jump->addr == word_count) {
331     #if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
332     jump->addr = (sljit_uw)(code_ptr - 3);
333     #else
334     jump->addr = (sljit_uw)(code_ptr - 6);
335     #endif
336     code_ptr = optimize_jump(jump, code_ptr, code);
337     jump = jump->next;
338     }
339     if (const_ && const_->addr == word_count) {
340     /* Just recording the address. */
341     const_->addr = (sljit_uw)code_ptr;
342     const_ = const_->next;
343     }
344     code_ptr ++;
345     word_count ++;
346     } while (buf_ptr < buf_end);
347    
348     buf = buf->next;
349     } while (buf);
350    
351     if (label && label->size == word_count) {
352     label->addr = (sljit_uw)code_ptr;
353     label->size = code_ptr - code;
354     label = label->next;
355     }
356    
357     SLJIT_ASSERT(!label);
358     SLJIT_ASSERT(!jump);
359     SLJIT_ASSERT(!const_);
360     SLJIT_ASSERT(code_ptr - code <= (int)compiler->size);
361    
362     jump = compiler->jumps;
363     while (jump) {
364     do {
365     addr = (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target;
366     buf_ptr = (sljit_ins*)jump->addr;
367    
368     if (jump->flags & PATCH_B) {
369     addr = (sljit_w)(addr - (jump->addr + sizeof(sljit_ins))) >> 2;
370     SLJIT_ASSERT((sljit_w)addr <= SIMM_MAX && (sljit_w)addr >= SIMM_MIN);
371     buf_ptr[0] = (buf_ptr[0] & 0xffff0000) | (addr & 0xffff);
372     break;
373     }
374     if (jump->flags & PATCH_J) {
375     SLJIT_ASSERT((addr & ~0xfffffff) == ((jump->addr + sizeof(sljit_ins)) & ~0xfffffff));
376 zherczeg 703 buf_ptr[0] |= (addr >> 2) & 0x03ffffff;
377 ph10 662 break;
378     }
379    
380     /* Set the fields of immediate loads. */
381     #if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
382     buf_ptr[0] = (buf_ptr[0] & 0xffff0000) | ((addr >> 16) & 0xffff);
383     buf_ptr[1] = (buf_ptr[1] & 0xffff0000) | (addr & 0xffff);
384     #else
385     buf_ptr[0] = (buf_ptr[0] & 0xffff0000) | ((addr >> 48) & 0xffff);
386     buf_ptr[1] = (buf_ptr[1] & 0xffff0000) | ((addr >> 32) & 0xffff);
387     buf_ptr[3] = (buf_ptr[3] & 0xffff0000) | ((addr >> 16) & 0xffff);
388     buf_ptr[4] = (buf_ptr[4] & 0xffff0000) | (addr & 0xffff);
389     #endif
390     } while (0);
391     jump = jump->next;
392     }
393    
394     compiler->error = SLJIT_ERR_COMPILED;
395     #ifndef __GNUC__
396     SLJIT_CACHE_FLUSH(code, code_ptr);
397     #else
398     /* GCC workaround for invalid code generation with -O2. */
399     sljit_cache_flush(code, code_ptr);
400     #endif
401     return code;
402     }
403    
404     /* Creates an index in data_transfer_insts array. */
405     #define WORD_DATA 0x00
406     #define BYTE_DATA 0x01
407     #define HALF_DATA 0x02
408     #define INT_DATA 0x03
409     #define SIGNED_DATA 0x04
410     #define LOAD_DATA 0x08
411    
412     #define MEM_MASK 0x0f
413    
414     #define WRITE_BACK 0x00010
415     #define ARG_TEST 0x00020
416     #define CUMULATIVE_OP 0x00040
417     #define LOGICAL_OP 0x00080
418     #define IMM_OP 0x00100
419     #define SRC2_IMM 0x00200
420    
421     #define UNUSED_DEST 0x00400
422     #define REG_DEST 0x00800
423     #define REG1_SOURCE 0x01000
424     #define REG2_SOURCE 0x02000
425     #define SLOW_SRC1 0x04000
426     #define SLOW_SRC2 0x08000
427     #define SLOW_DEST 0x10000
428    
429     /* Only these flags are set. UNUSED_DEST is not set when no flags should be set. */
430     #define CHECK_FLAGS(list) \
431     (!(flags & UNUSED_DEST) || (op & GET_FLAGS(~(list))))
432    
433     #if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
434     #include "sljitNativeMIPS_32.c"
435     #else
436     #include "sljitNativeMIPS_64.c"
437     #endif
438    
439     #if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
440     #define STACK_STORE SW
441     #define STACK_LOAD LW
442     #else
443     #define STACK_STORE SD
444     #define STACK_LOAD LD
445     #endif
446    
447     static int emit_op(struct sljit_compiler *compiler, int op, int inp_flags,
448     int dst, sljit_w dstw,
449     int src1, sljit_w src1w,
450     int src2, sljit_w src2w);
451    
452     int sljit_emit_enter(struct sljit_compiler *compiler, int args, int temporaries, int generals, int local_size)
453     {
454     sljit_ins base;
455    
456     CHECK_ERROR();
457     check_sljit_emit_enter(compiler, args, temporaries, generals, local_size);
458    
459     compiler->temporaries = temporaries;
460     compiler->generals = generals;
461    
462     compiler->has_locals = local_size > 0;
463     local_size += (generals + 2 + 4) * sizeof(sljit_w);
464     local_size = (local_size + 15) & ~0xf;
465     compiler->local_size = local_size;
466    
467     if (local_size <= SIMM_MAX) {
468     /* Frequent case. */
469     FAIL_IF(push_inst(compiler, ADDIU_W | S(REAL_STACK_PTR) | T(REAL_STACK_PTR) | IMM(-local_size), DR(REAL_STACK_PTR)));
470     base = S(REAL_STACK_PTR);
471     }
472     else {
473     FAIL_IF(load_immediate(compiler, DR(TMP_REG1), local_size));
474     FAIL_IF(push_inst(compiler, ADDU_W | S(REAL_STACK_PTR) | TA(0) | D(TMP_REG2), DR(TMP_REG2)));
475     FAIL_IF(push_inst(compiler, SUBU_W | S(REAL_STACK_PTR) | T(TMP_REG1) | D(REAL_STACK_PTR), DR(REAL_STACK_PTR)));
476     base = S(TMP_REG2);
477     local_size = 0;
478     }
479    
480     FAIL_IF(push_inst(compiler, STACK_STORE | base | TA(31) | IMM(local_size - 1 * (int)sizeof(sljit_w)), MOVABLE_INS));
481     if (compiler->has_locals)
482     FAIL_IF(push_inst(compiler, STACK_STORE | base | T(SLJIT_LOCALS_REG) | IMM(local_size - 2 * (int)sizeof(sljit_w)), MOVABLE_INS));
483     if (generals >= 1)
484     FAIL_IF(push_inst(compiler, STACK_STORE | base | T(SLJIT_GENERAL_REG1) | IMM(local_size - 3 * (int)sizeof(sljit_w)), MOVABLE_INS));
485     if (generals >= 2)
486     FAIL_IF(push_inst(compiler, STACK_STORE | base | T(SLJIT_GENERAL_REG2) | IMM(local_size - 4 * (int)sizeof(sljit_w)), MOVABLE_INS));
487     if (generals >= 3)
488     FAIL_IF(push_inst(compiler, STACK_STORE | base | T(SLJIT_GENERAL_REG3) | IMM(local_size - 5 * (int)sizeof(sljit_w)), MOVABLE_INS));
489     if (generals >= 4)
490     FAIL_IF(push_inst(compiler, STACK_STORE | base | T(SLJIT_GENERAL_EREG1) | IMM(local_size - 6 * (int)sizeof(sljit_w)), MOVABLE_INS));
491     if (generals >= 5)
492     FAIL_IF(push_inst(compiler, STACK_STORE | base | T(SLJIT_GENERAL_EREG2) | IMM(local_size - 7 * (int)sizeof(sljit_w)), MOVABLE_INS));
493    
494     if (compiler->has_locals)
495     FAIL_IF(push_inst(compiler, ADDIU_W | S(REAL_STACK_PTR) | T(SLJIT_LOCALS_REG) | IMM(4 * sizeof(sljit_w)), DR(SLJIT_LOCALS_REG)));
496    
497     if (args >= 1)
498     FAIL_IF(push_inst(compiler, ADDU_W | SA(4) | TA(0) | D(SLJIT_GENERAL_REG1), DR(SLJIT_GENERAL_REG1)));
499     if (args >= 2)
500     FAIL_IF(push_inst(compiler, ADDU_W | SA(5) | TA(0) | D(SLJIT_GENERAL_REG2), DR(SLJIT_GENERAL_REG2)));
501     if (args >= 3)
502     FAIL_IF(push_inst(compiler, ADDU_W | SA(6) | TA(0) | D(SLJIT_GENERAL_REG3), DR(SLJIT_GENERAL_REG3)));
503    
504     return SLJIT_SUCCESS;
505     }
506    
507     void sljit_fake_enter(struct sljit_compiler *compiler, int args, int temporaries, int generals, int local_size)
508     {
509     CHECK_ERROR_VOID();
510     check_sljit_fake_enter(compiler, args, temporaries, generals, local_size);
511    
512     compiler->temporaries = temporaries;
513     compiler->generals = generals;
514    
515     compiler->has_locals = local_size > 0;
516     local_size += (generals + 2 + 4) * sizeof(sljit_w);
517     compiler->local_size = (local_size + 15) & ~0xf;
518     }
519    
520     int sljit_emit_return(struct sljit_compiler *compiler, int src, sljit_w srcw)
521     {
522     int local_size;
523     sljit_ins base;
524    
525     CHECK_ERROR();
526     check_sljit_emit_return(compiler, src, srcw);
527    
528     local_size = compiler->local_size;
529    
530     if (src != SLJIT_UNUSED && src != SLJIT_RETURN_REG)
531     FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, SLJIT_RETURN_REG, 0, TMP_REG1, 0, src, srcw));
532    
533     if (local_size <= SIMM_MAX)
534     base = S(REAL_STACK_PTR);
535     else {
536     FAIL_IF(load_immediate(compiler, DR(TMP_REG1), local_size));
537     FAIL_IF(push_inst(compiler, ADDU_W | S(REAL_STACK_PTR) | T(TMP_REG1) | D(TMP_REG1), DR(TMP_REG1)));
538     base = S(TMP_REG1);
539     local_size = 0;
540     }
541    
542     FAIL_IF(push_inst(compiler, STACK_LOAD | base | TA(31) | IMM(local_size - 1 * (int)sizeof(sljit_w)), 31));
543     if (compiler->generals >= 5)
544     FAIL_IF(push_inst(compiler, STACK_LOAD | base | T(SLJIT_GENERAL_EREG2) | IMM(local_size - 7 * (int)sizeof(sljit_w)), DR(SLJIT_GENERAL_EREG2)));
545     if (compiler->generals >= 4)
546     FAIL_IF(push_inst(compiler, STACK_LOAD | base | T(SLJIT_GENERAL_EREG1) | IMM(local_size - 6 * (int)sizeof(sljit_w)), DR(SLJIT_GENERAL_EREG1)));
547     if (compiler->generals >= 3)
548     FAIL_IF(push_inst(compiler, STACK_LOAD | base | T(SLJIT_GENERAL_REG3) | IMM(local_size - 5 * (int)sizeof(sljit_w)), DR(SLJIT_GENERAL_REG3)));
549     if (compiler->generals >= 2)
550     FAIL_IF(push_inst(compiler, STACK_LOAD | base | T(SLJIT_GENERAL_REG2) | IMM(local_size - 4 * (int)sizeof(sljit_w)), DR(SLJIT_GENERAL_REG2)));
551     if (compiler->generals >= 1)
552     FAIL_IF(push_inst(compiler, STACK_LOAD | base | T(SLJIT_GENERAL_REG1) | IMM(local_size - 3 * (int)sizeof(sljit_w)), DR(SLJIT_GENERAL_REG1)));
553     if (compiler->has_locals)
554     FAIL_IF(push_inst(compiler, STACK_LOAD | base | T(SLJIT_LOCALS_REG) | IMM(local_size - 2 * (int)sizeof(sljit_w)), DR(SLJIT_LOCALS_REG)));
555    
556     FAIL_IF(push_inst(compiler, JR | SA(31), UNMOVABLE_INS));
557     if (compiler->local_size <= SIMM_MAX)
558     return push_inst(compiler, ADDIU_W | S(REAL_STACK_PTR) | T(REAL_STACK_PTR) | IMM(compiler->local_size), UNMOVABLE_INS);
559     else
560     return push_inst(compiler, ADDU_W | S(TMP_REG1) | TA(0) | D(REAL_STACK_PTR), UNMOVABLE_INS);
561     }
562    
563     #undef STACK_STORE
564     #undef STACK_LOAD
565    
566     /* --------------------------------------------------------------------- */
567     /* Operators */
568     /* --------------------------------------------------------------------- */
569    
570     #if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
571     #define ARCH_DEPEND(a, b) a
572     #else
573     #define ARCH_DEPEND(a, b) b
574     #endif
575    
576     static SLJIT_CONST sljit_ins data_transfer_insts[16] = {
577     /* s u w */ ARCH_DEPEND(HI(43) /* sw */, HI(63) /* sd */),
578     /* s u b */ HI(40) /* sb */,
579     /* s u h */ HI(41) /* sh*/,
580     /* s u i */ HI(43) /* sw */,
581    
582     /* s s w */ ARCH_DEPEND(HI(43) /* sw */, HI(63) /* sd */),
583     /* s s b */ HI(40) /* sb */,
584     /* s s h */ HI(41) /* sh*/,
585     /* s s i */ HI(43) /* sw */,
586    
587     /* l u w */ ARCH_DEPEND(HI(35) /* lw */, HI(55) /* ld */),
588     /* l u b */ HI(36) /* lbu */,
589     /* l u h */ HI(37) /* lhu */,
590     /* l u i */ ARCH_DEPEND(HI(35) /* lw */, HI(39) /* lwu */),
591    
592     /* l s w */ ARCH_DEPEND(HI(35) /* lw */, HI(55) /* ld */),
593     /* l s b */ HI(32) /* lb */,
594     /* l s h */ HI(33) /* lh */,
595     /* l s i */ HI(35) /* lw */,
596     };
597    
598     /* reg_ar is an absoulute register! */
599    
600     /* Can perform an operation using at most 1 instruction. */
601     static int getput_arg_fast(struct sljit_compiler *compiler, int flags, int reg_ar, int arg, sljit_w argw)
602     {
603     SLJIT_ASSERT(arg & SLJIT_MEM);
604    
605     if (!(flags & WRITE_BACK) && !(arg & 0xf0) && argw <= SIMM_MAX && argw >= SIMM_MIN) {
606     /* Works for both absoulte and relative addresses. */
607     if (SLJIT_UNLIKELY(flags & ARG_TEST))
608     return 1;
609     FAIL_IF(push_inst(compiler, data_transfer_insts[flags & MEM_MASK] | S(arg & 0xf) | TA(reg_ar) | IMM(argw), (flags & LOAD_DATA) ? reg_ar : MOVABLE_INS));
610     return -1;
611     }
612     return (flags & ARG_TEST) ? SLJIT_SUCCESS : 0;
613     }
614    
615     /* See getput_arg below.
616     Note: can_cache is called only for binary operators. Those
617     operators always uses word arguments without write back. */
618     static int can_cache(int arg, sljit_w argw, int next_arg, sljit_w next_argw)
619     {
620     if (!(next_arg & SLJIT_MEM))
621     return 0;
622    
623     /* Simple operation except for updates. */
624     if (arg & 0xf0) {
625     argw &= 0x3;
626     next_argw &= 0x3;
627     if (argw && argw == next_argw && (arg == next_arg || (arg & 0xf0) == (next_arg & 0xf0)))
628     return 1;
629     return 0;
630     }
631    
632     if (arg == next_arg) {
633     if (((sljit_uw)(next_argw - argw) <= SIMM_MAX && (sljit_uw)(next_argw - argw) >= SIMM_MIN))
634     return 1;
635     return 0;
636     }
637    
638     return 0;
639     }
640    
641     /* Emit the necessary instructions. See can_cache above. */
642     static int getput_arg(struct sljit_compiler *compiler, int flags, int reg_ar, int arg, sljit_w argw, int next_arg, sljit_w next_argw)
643     {
644     int tmp_ar;
645     int base;
646    
647     SLJIT_ASSERT(arg & SLJIT_MEM);
648     if (!(next_arg & SLJIT_MEM)) {
649     next_arg = 0;
650     next_argw = 0;
651     }
652    
653     tmp_ar = (flags & LOAD_DATA) ? reg_ar : DR(TMP_REG3);
654     base = arg & 0xf;
655    
656     if (SLJIT_UNLIKELY(arg & 0xf0)) {
657     argw &= 0x3;
658     if ((flags & WRITE_BACK) && reg_ar == DR(base)) {
659     SLJIT_ASSERT(!(flags & LOAD_DATA) && DR(TMP_REG1) != reg_ar);
660     FAIL_IF(push_inst(compiler, ADDU_W | SA(reg_ar) | TA(0) | D(TMP_REG1), DR(TMP_REG1)));
661     reg_ar = DR(TMP_REG1);
662     }
663    
664     /* Using the cache. */
665     if (argw == compiler->cache_argw) {
666     if (!(flags & WRITE_BACK)) {
667     if (arg == compiler->cache_arg)
668     return push_inst(compiler, data_transfer_insts[flags & MEM_MASK] | S(TMP_REG3) | TA(reg_ar), (flags & LOAD_DATA) ? reg_ar : MOVABLE_INS);
669     if ((SLJIT_MEM | (arg & 0xf0)) == compiler->cache_arg) {
670     if (arg == next_arg && argw == (next_argw & 0x3)) {
671     compiler->cache_arg = arg;
672     compiler->cache_argw = argw;
673     FAIL_IF(push_inst(compiler, ADDU_W | S(base) | T(TMP_REG3) | D(TMP_REG3), DR(TMP_REG3)));
674     return push_inst(compiler, data_transfer_insts[flags & MEM_MASK] | S(TMP_REG3) | TA(reg_ar), (flags & LOAD_DATA) ? reg_ar : MOVABLE_INS);
675     }
676     FAIL_IF(push_inst(compiler, ADDU_W | S(base) | T(TMP_REG3) | DA(tmp_ar), tmp_ar));
677     return push_inst(compiler, data_transfer_insts[flags & MEM_MASK] | SA(tmp_ar) | TA(reg_ar), (flags & LOAD_DATA) ? reg_ar : MOVABLE_INS);
678     }
679     }
680     else {
681     if ((SLJIT_MEM | (arg & 0xf0)) == compiler->cache_arg) {
682     FAIL_IF(push_inst(compiler, ADDU_W | S(base) | T(TMP_REG3) | D(base), DR(base)));
683     return push_inst(compiler, data_transfer_insts[flags & MEM_MASK] | S(base) | TA(reg_ar), (flags & LOAD_DATA) ? reg_ar : MOVABLE_INS);
684     }
685     }
686     }
687    
688     if (SLJIT_UNLIKELY(argw)) {
689     compiler->cache_arg = SLJIT_MEM | (arg & 0xf0);
690     compiler->cache_argw = argw;
691     FAIL_IF(push_inst(compiler, SLL_W | T((arg >> 4) & 0xf) | D(TMP_REG3) | SH_IMM(argw), DR(TMP_REG3)));
692     }
693    
694     if (!(flags & WRITE_BACK)) {
695     if (arg == next_arg && argw == (next_argw & 0x3)) {
696     compiler->cache_arg = arg;
697     compiler->cache_argw = argw;
698     FAIL_IF(push_inst(compiler, ADDU_W | S(base) | T(!argw ? ((arg >> 4) & 0xf) : TMP_REG3) | D(TMP_REG3), DR(TMP_REG3)));
699     tmp_ar = DR(TMP_REG3);
700     }
701     else
702     FAIL_IF(push_inst(compiler, ADDU_W | S(base) | T(!argw ? ((arg >> 4) & 0xf) : TMP_REG3) | DA(tmp_ar), tmp_ar));
703     return push_inst(compiler, data_transfer_insts[flags & MEM_MASK] | SA(tmp_ar) | TA(reg_ar), (flags & LOAD_DATA) ? reg_ar : MOVABLE_INS);
704     }
705     FAIL_IF(push_inst(compiler, ADDU_W | S(base) | T(!argw ? ((arg >> 4) & 0xf) : TMP_REG3) | D(base), DR(base)));
706     return push_inst(compiler, data_transfer_insts[flags & MEM_MASK] | S(base) | TA(reg_ar), (flags & LOAD_DATA) ? reg_ar : MOVABLE_INS);
707     }
708    
709     if (SLJIT_UNLIKELY(flags & WRITE_BACK) && base) {
710     /* Update only applies if a base register exists. */
711     if (reg_ar == DR(base)) {
712     SLJIT_ASSERT(!(flags & LOAD_DATA) && DR(TMP_REG1) != reg_ar);
713     if (argw <= SIMM_MAX && argw >= SIMM_MIN) {
714     FAIL_IF(push_inst(compiler, data_transfer_insts[flags & MEM_MASK] | S(base) | TA(reg_ar) | IMM(argw), MOVABLE_INS));
715     if (argw)
716     return push_inst(compiler, ADDIU_W | S(base) | T(base) | IMM(argw), DR(base));
717     return SLJIT_SUCCESS;
718     }
719     FAIL_IF(push_inst(compiler, ADDU_W | SA(reg_ar) | TA(0) | D(TMP_REG1), DR(TMP_REG1)));
720     reg_ar = DR(TMP_REG1);
721     }
722    
723     if (argw <= SIMM_MAX && argw >= SIMM_MIN) {
724     if (argw)
725     FAIL_IF(push_inst(compiler, ADDIU_W | S(base) | T(base) | IMM(argw), DR(base)));
726     }
727     else {
728     if (compiler->cache_arg == SLJIT_MEM && argw - compiler->cache_argw <= SIMM_MAX && argw - compiler->cache_argw >= SIMM_MIN) {
729     if (argw != compiler->cache_argw) {
730     FAIL_IF(push_inst(compiler, ADDIU_W | S(TMP_REG3) | T(TMP_REG3) | IMM(argw - compiler->cache_argw), DR(TMP_REG3)));
731     compiler->cache_argw = argw;
732     }
733     FAIL_IF(push_inst(compiler, ADDU_W | S(base) | T(TMP_REG3) | D(base), DR(base)));
734     }
735     else {
736     compiler->cache_arg = SLJIT_MEM;
737     compiler->cache_argw = argw;
738     FAIL_IF(load_immediate(compiler, DR(TMP_REG3), argw));
739     FAIL_IF(push_inst(compiler, ADDU_W | S(base) | T(TMP_REG3) | D(base), DR(base)));
740     }
741     }
742     return push_inst(compiler, data_transfer_insts[flags & MEM_MASK] | S(base) | TA(reg_ar), (flags & LOAD_DATA) ? reg_ar : MOVABLE_INS);
743     }
744    
745     if (compiler->cache_arg == arg && argw - compiler->cache_argw <= SIMM_MAX && argw - compiler->cache_argw >= SIMM_MIN) {
746     if (argw != compiler->cache_argw) {
747     FAIL_IF(push_inst(compiler, ADDIU_W | S(TMP_REG3) | T(TMP_REG3) | IMM(argw - compiler->cache_argw), DR(TMP_REG3)));
748     compiler->cache_argw = argw;
749     }
750     return push_inst(compiler, data_transfer_insts[flags & MEM_MASK] | S(TMP_REG3) | TA(reg_ar), (flags & LOAD_DATA) ? reg_ar : MOVABLE_INS);
751     }
752    
753     if (compiler->cache_arg == SLJIT_MEM && argw - compiler->cache_argw <= SIMM_MAX && argw - compiler->cache_argw >= SIMM_MIN) {
754     if (argw != compiler->cache_argw)
755     FAIL_IF(push_inst(compiler, ADDIU_W | S(TMP_REG3) | T(TMP_REG3) | IMM(argw - compiler->cache_argw), DR(TMP_REG3)));
756     }
757     else {
758     compiler->cache_arg = SLJIT_MEM;
759     FAIL_IF(load_immediate(compiler, DR(TMP_REG3), argw));
760     }
761     compiler->cache_argw = argw;
762    
763     if (!base)
764     return push_inst(compiler, data_transfer_insts[flags & MEM_MASK] | S(TMP_REG3) | TA(reg_ar), (flags & LOAD_DATA) ? reg_ar : MOVABLE_INS);
765    
766     if (arg == next_arg && next_argw - argw <= SIMM_MAX && next_argw - argw >= SIMM_MIN) {
767     compiler->cache_arg = arg;
768     FAIL_IF(push_inst(compiler, ADDU_W | S(TMP_REG3) | T(base) | D(TMP_REG3), DR(TMP_REG3)));
769     return push_inst(compiler, data_transfer_insts[flags & MEM_MASK] | S(TMP_REG3) | TA(reg_ar), (flags & LOAD_DATA) ? reg_ar : MOVABLE_INS);
770     }
771    
772     FAIL_IF(push_inst(compiler, ADDU_W | S(TMP_REG3) | T(base) | DA(tmp_ar), tmp_ar));
773     return push_inst(compiler, data_transfer_insts[flags & MEM_MASK] | SA(tmp_ar) | TA(reg_ar), (flags & LOAD_DATA) ? reg_ar : MOVABLE_INS);
774     }
775    
776     static SLJIT_INLINE int emit_op_mem(struct sljit_compiler *compiler, int flags, int reg_ar, int arg, sljit_w argw)
777     {
778     if (getput_arg_fast(compiler, flags, reg_ar, arg, argw))
779     return compiler->error;
780     compiler->cache_arg = 0;
781     compiler->cache_argw = 0;
782     return getput_arg(compiler, flags, reg_ar, arg, argw, 0, 0);
783     }
784    
785     static int emit_op(struct sljit_compiler *compiler, int op, int flags,
786     int dst, sljit_w dstw,
787     int src1, sljit_w src1w,
788     int src2, sljit_w src2w)
789     {
790     /* arg1 goes to TMP_REG1 or src reg
791     arg2 goes to TMP_REG2, imm or src reg
792     TMP_REG3 can be used for caching
793     result goes to TMP_REG2, so put result can use TMP_REG1 and TMP_REG3. */
794     int dst_r = TMP_REG2;
795     int src1_r;
796     sljit_w src2_r = 0;
797     int sugg_src2_r = TMP_REG2;
798    
799     compiler->cache_arg = 0;
800     compiler->cache_argw = 0;
801    
802     if (dst >= SLJIT_TEMPORARY_REG1 && dst <= TMP_REG3) {
803     dst_r = dst;
804     flags |= REG_DEST;
805     if (GET_OPCODE(op) >= SLJIT_MOV && GET_OPCODE(op) <= SLJIT_MOVU_SI)
806     sugg_src2_r = dst_r;
807     }
808     else if (dst == SLJIT_UNUSED) {
809     if (op >= SLJIT_MOV && op <= SLJIT_MOVU_SI && !(src2 & SLJIT_MEM))
810     return SLJIT_SUCCESS;
811     if (GET_FLAGS(op))
812     flags |= UNUSED_DEST;
813     }
814     else if ((dst & SLJIT_MEM) && !getput_arg_fast(compiler, flags | ARG_TEST, DR(TMP_REG1), dst, dstw))
815     flags |= SLOW_DEST;
816    
817     if (flags & IMM_OP) {
818     if ((src2 & SLJIT_IMM) && src2w) {
819     if ((!(flags & LOGICAL_OP) && (src2w <= SIMM_MAX && src2w >= SIMM_MIN))
820     || ((flags & LOGICAL_OP) && !(src2w & ~UIMM_MAX))) {
821     flags |= SRC2_IMM;
822     src2_r = src2w;
823     }
824     }
825     if ((src1 & SLJIT_IMM) && src1w && (flags & CUMULATIVE_OP) && !(flags & SRC2_IMM)) {
826     if ((!(flags & LOGICAL_OP) && (src1w <= SIMM_MAX && src1w >= SIMM_MIN))
827     || ((flags & LOGICAL_OP) && !(src1w & ~UIMM_MAX))) {
828     flags |= SRC2_IMM;
829     src2_r = src1w;
830    
831     /* And swap arguments. */
832     src1 = src2;
833     src1w = src2w;
834     src2 = SLJIT_IMM;
835     /* src2w = src2_r unneeded. */
836     }
837     }
838     }
839    
840     /* Source 1. */
841     if (src1 >= SLJIT_TEMPORARY_REG1 && src1 <= TMP_REG3) {
842     src1_r = src1;
843     flags |= REG1_SOURCE;
844     }
845     else if (src1 & SLJIT_IMM) {
846     if (src1w) {
847     FAIL_IF(load_immediate(compiler, DR(TMP_REG1), src1w));
848     src1_r = TMP_REG1;
849     }
850     else
851     src1_r = 0;
852     }
853     else {
854     if (getput_arg_fast(compiler, flags | LOAD_DATA, DR(TMP_REG1), src1, src1w))
855     FAIL_IF(compiler->error);
856     else
857     flags |= SLOW_SRC1;
858     src1_r = TMP_REG1;
859     }
860    
861     /* Source 2. */
862     if (src2 >= SLJIT_TEMPORARY_REG1 && src2 <= TMP_REG3) {
863     src2_r = src2;
864     flags |= REG2_SOURCE;
865     if (!(flags & REG_DEST) && GET_OPCODE(op) >= SLJIT_MOV && GET_OPCODE(op) <= SLJIT_MOVU_SI)
866     dst_r = src2_r;
867     }
868     else if (src2 & SLJIT_IMM) {
869     if (!(flags & SRC2_IMM)) {
870     if (src2w || (GET_OPCODE(op) >= SLJIT_MOV && GET_OPCODE(op) <= SLJIT_MOVU_SI)) {
871     FAIL_IF(load_immediate(compiler, DR(sugg_src2_r), src2w));
872     src2_r = sugg_src2_r;
873     }
874     else
875     src2_r = 0;
876     }
877     }
878     else {
879     if (getput_arg_fast(compiler, flags | LOAD_DATA, DR(sugg_src2_r), src2, src2w))
880     FAIL_IF(compiler->error);
881     else
882     flags |= SLOW_SRC2;
883     src2_r = sugg_src2_r;
884     }
885    
886     if ((flags & (SLOW_SRC1 | SLOW_SRC2)) == (SLOW_SRC1 | SLOW_SRC2)) {
887     SLJIT_ASSERT(src2_r == TMP_REG2);
888     if (!can_cache(src1, src1w, src2, src2w) && can_cache(src1, src1w, dst, dstw)) {
889     FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, DR(TMP_REG2), src2, src2w, src1, src1w));
890     FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, DR(TMP_REG1), src1, src1w, dst, dstw));
891     }
892     else {
893     FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, DR(TMP_REG1), src1, src1w, src2, src2w));
894     FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, DR(TMP_REG2), src2, src2w, dst, dstw));
895     }
896     }
897     else if (flags & SLOW_SRC1)
898     FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, DR(TMP_REG1), src1, src1w, dst, dstw));
899     else if (flags & SLOW_SRC2)
900     FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, DR(sugg_src2_r), src2, src2w, dst, dstw));
901    
902     FAIL_IF(emit_single_op(compiler, op, flags, dst_r, src1_r, src2_r));
903    
904     if (dst & SLJIT_MEM) {
905     if (!(flags & SLOW_DEST)) {
906     getput_arg_fast(compiler, flags, DR(dst_r), dst, dstw);
907     return compiler->error;
908     }
909     return getput_arg(compiler, flags, DR(dst_r), dst, dstw, 0, 0);
910     }
911    
912     return SLJIT_SUCCESS;
913     }
914    
915     int sljit_emit_op0(struct sljit_compiler *compiler, int op)
916     {
917     CHECK_ERROR();
918     check_sljit_emit_op0(compiler, op);
919    
920     op = GET_OPCODE(op);
921     switch (op) {
922     case SLJIT_BREAKPOINT:
923     return push_inst(compiler, BREAK, UNMOVABLE_INS);
924     case SLJIT_NOP:
925     return push_inst(compiler, NOP, UNMOVABLE_INS);
926     }
927    
928     return SLJIT_SUCCESS;
929     }
930    
931     int sljit_emit_op1(struct sljit_compiler *compiler, int op,
932     int dst, sljit_w dstw,
933     int src, sljit_w srcw)
934     {
935     #if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
936     #define inp_flags 0
937     #endif
938    
939     CHECK_ERROR();
940     check_sljit_emit_op1(compiler, op, dst, dstw, src, srcw);
941    
942     SLJIT_ASSERT(SLJIT_MOV + 7 == SLJIT_MOVU);
943    
944     switch (GET_OPCODE(op)) {
945     case SLJIT_MOV:
946     return emit_op(compiler, SLJIT_MOV, inp_flags | WORD_DATA, dst, dstw, TMP_REG1, 0, src, srcw);
947    
948     case SLJIT_MOV_UI:
949     return emit_op(compiler, SLJIT_MOV_UI, inp_flags | INT_DATA, dst, dstw, TMP_REG1, 0, src, srcw);
950    
951     case SLJIT_MOV_SI:
952     return emit_op(compiler, SLJIT_MOV_SI, inp_flags | INT_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, srcw);
953    
954     case SLJIT_MOV_UB:
955     return emit_op(compiler, SLJIT_MOV_UB, inp_flags | BYTE_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (unsigned char)srcw : srcw);
956    
957     case SLJIT_MOV_SB:
958     return emit_op(compiler, SLJIT_MOV_SB, inp_flags | BYTE_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (signed char)srcw : srcw);
959    
960     case SLJIT_MOV_UH:
961     return emit_op(compiler, SLJIT_MOV_UH, inp_flags | HALF_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (unsigned short)srcw : srcw);
962    
963     case SLJIT_MOV_SH:
964     return emit_op(compiler, SLJIT_MOV_SH, inp_flags | HALF_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (signed short)srcw : srcw);
965    
966     case SLJIT_MOVU:
967     return emit_op(compiler, SLJIT_MOV, inp_flags | WORD_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);
968    
969     case SLJIT_MOVU_UI:
970     return emit_op(compiler, SLJIT_MOV_UI, inp_flags | INT_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);
971    
972     case SLJIT_MOVU_SI:
973     return emit_op(compiler, SLJIT_MOV_SI, inp_flags | INT_DATA | SIGNED_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);
974    
975     case SLJIT_MOVU_UB:
976     return emit_op(compiler, SLJIT_MOV_UB, inp_flags | BYTE_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (unsigned char)srcw : srcw);
977    
978     case SLJIT_MOVU_SB:
979     return emit_op(compiler, SLJIT_MOV_SB, inp_flags | BYTE_DATA | SIGNED_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (signed char)srcw : srcw);
980    
981     case SLJIT_MOVU_UH:
982     return emit_op(compiler, SLJIT_MOV_UH, inp_flags | HALF_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (unsigned short)srcw : srcw);
983    
984     case SLJIT_MOVU_SH:
985     return emit_op(compiler, SLJIT_MOV_SH, inp_flags | HALF_DATA | SIGNED_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (signed short)srcw : srcw);
986    
987     case SLJIT_NOT:
988     return emit_op(compiler, op, inp_flags, dst, dstw, TMP_REG1, 0, src, srcw);
989    
990     case SLJIT_NEG:
991     return emit_op(compiler, SLJIT_SUB | GET_ALL_FLAGS(op), inp_flags | IMM_OP, dst, dstw, SLJIT_IMM, 0, src, srcw);
992    
993     case SLJIT_CLZ:
994     return emit_op(compiler, op, inp_flags, dst, dstw, TMP_REG1, 0, src, srcw);
995     }
996    
997     return SLJIT_SUCCESS;
998     #if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
999     #undef inp_flags
1000     #endif
1001     }
1002    
1003     int sljit_emit_op2(struct sljit_compiler *compiler, int op,
1004     int dst, sljit_w dstw,
1005     int src1, sljit_w src1w,
1006     int src2, sljit_w src2w)
1007     {
1008     #if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
1009     #define inp_flags 0
1010     #endif
1011    
1012     CHECK_ERROR();
1013     check_sljit_emit_op2(compiler, op, dst, dstw, src1, src1w, src2, src2w);
1014    
1015     switch (GET_OPCODE(op)) {
1016     case SLJIT_ADD:
1017     case SLJIT_ADDC:
1018     return emit_op(compiler, op, inp_flags | CUMULATIVE_OP | IMM_OP, dst, dstw, src1, src1w, src2, src2w);
1019    
1020     case SLJIT_SUB:
1021     case SLJIT_SUBC:
1022     return emit_op(compiler, op, inp_flags | IMM_OP, dst, dstw, src1, src1w, src2, src2w);
1023    
1024     case SLJIT_MUL:
1025     return emit_op(compiler, op, inp_flags | CUMULATIVE_OP, dst, dstw, src1, src1w, src2, src2w);
1026    
1027     case SLJIT_AND:
1028     case SLJIT_OR:
1029     case SLJIT_XOR:
1030     return emit_op(compiler, op, inp_flags | CUMULATIVE_OP | LOGICAL_OP | IMM_OP, dst, dstw, src1, src1w, src2, src2w);
1031    
1032     case SLJIT_SHL:
1033     case SLJIT_LSHR:
1034     case SLJIT_ASHR:
1035     #if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
1036     if (src2 & SLJIT_IMM)
1037     src2w &= 0x1f;
1038     #else
1039     if (src2 & SLJIT_IMM)
1040     src2w &= 0x3f;
1041     #endif
1042     return emit_op(compiler, op, inp_flags | IMM_OP, dst, dstw, src1, src1w, src2, src2w);
1043     }
1044    
1045     return SLJIT_SUCCESS;
1046     #if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
1047     #undef inp_flags
1048     #endif
1049     }
1050    
1051     /* --------------------------------------------------------------------- */
1052     /* Floating point operators */
1053     /* --------------------------------------------------------------------- */
1054    
1055     int sljit_is_fpu_available(void)
1056     {
1057     #if 0
1058     sljit_w fir;
1059     asm ("cfc1 %0, $0" : "=r"(fir));
1060     return (fir >> 22) & 0x1;
1061     #endif
1062     /* Qemu says fir is 0 by default. */
1063     return 1;
1064     }
1065    
1066     static int emit_fpu_data_transfer(struct sljit_compiler *compiler, int fpu_reg, int load, int arg, sljit_w argw)
1067     {
1068     int hi_reg;
1069    
1070     SLJIT_ASSERT(arg & SLJIT_MEM);
1071    
1072     /* Fast loads and stores. */
1073     if (!(arg & 0xf0)) {
1074     /* Both for (arg & 0xf) == SLJIT_UNUSED and (arg & 0xf) != SLJIT_UNUSED. */
1075     if (argw <= SIMM_MAX && argw >= SIMM_MIN)
1076     return push_inst(compiler, (load ? LDC1 : SDC1) | S(arg & 0xf) | FT(fpu_reg) | IMM(argw), MOVABLE_INS);
1077     }
1078    
1079     if (arg & 0xf0) {
1080     argw &= 0x3;
1081     hi_reg = (arg >> 4) & 0xf;
1082     if (argw) {
1083     FAIL_IF(push_inst(compiler, SLL_W | T(hi_reg) | D(TMP_REG1) | SH_IMM(argw), DR(TMP_REG1)));
1084     hi_reg = TMP_REG1;
1085     }
1086     FAIL_IF(push_inst(compiler, ADDU_W | S(hi_reg) | T(arg & 0xf) | D(TMP_REG1), DR(TMP_REG1)));
1087     return push_inst(compiler, (load ? LDC1 : SDC1) | S(TMP_REG1) | FT(fpu_reg) | IMM(0), MOVABLE_INS);
1088     }
1089    
1090     /* Use cache. */
1091     if (compiler->cache_arg == arg && argw - compiler->cache_argw <= SIMM_MAX && argw - compiler->cache_argw >= SIMM_MIN)
1092     return push_inst(compiler, (load ? LDC1 : SDC1) | S(TMP_REG3) | FT(fpu_reg) | IMM(argw - compiler->cache_argw), MOVABLE_INS);
1093    
1094     /* Put value to cache. */
1095     compiler->cache_arg = arg;
1096     compiler->cache_argw = argw;
1097    
1098     FAIL_IF(load_immediate(compiler, DR(TMP_REG3), argw));
1099     if (arg & 0xf)
1100     FAIL_IF(push_inst(compiler, ADDU_W | S(TMP_REG3) | T(arg & 0xf) | D(TMP_REG3), DR(TMP_REG3)));
1101     return push_inst(compiler, (load ? LDC1 : SDC1) | S(TMP_REG3) | FT(fpu_reg) | IMM(0), MOVABLE_INS);
1102     }
1103    
1104     int sljit_emit_fop1(struct sljit_compiler *compiler, int op,
1105     int dst, sljit_w dstw,
1106     int src, sljit_w srcw)
1107     {
1108     int dst_fr;
1109    
1110     CHECK_ERROR();
1111     check_sljit_emit_fop1(compiler, op, dst, dstw, src, srcw);
1112    
1113     compiler->cache_arg = 0;
1114     compiler->cache_argw = 0;
1115    
1116     if (GET_OPCODE(op) == SLJIT_FCMP) {
1117     if (dst > SLJIT_FLOAT_REG4) {
1118     FAIL_IF(emit_fpu_data_transfer(compiler, TMP_FREG1, 1, dst, dstw));
1119     dst = TMP_FREG1;
1120     }
1121     if (src > SLJIT_FLOAT_REG4) {
1122     FAIL_IF(emit_fpu_data_transfer(compiler, TMP_FREG2, 1, src, srcw));
1123     src = TMP_FREG2;
1124     }
1125    
1126     /* src and dst are swapped. */
1127     if (op & SLJIT_SET_E)
1128     FAIL_IF(push_inst(compiler, C_UEQ_D | FT(src) | FS(dst) | (EQUAL_BIT << 8), FCSR_FCC + EQUAL_BIT));
1129     if (op & SLJIT_SET_S) {
1130     FAIL_IF(push_inst(compiler, C_ULT_D | FT(src) | FS(dst) | (LESS_BIT << 8), FCSR_FCC + LESS_BIT));
1131     FAIL_IF(push_inst(compiler, C_ULT_D | FT(dst) | FS(src) | (GREATER_BIT << 8), FCSR_FCC + GREATER_BIT));
1132     }
1133     return push_inst(compiler, C_UN_D | FT(src) | FS(dst) | (UNORD_BIT << 8), FCSR_FCC + UNORD_BIT);
1134     }
1135    
1136     dst_fr = (dst > SLJIT_FLOAT_REG4) ? TMP_FREG1 : dst;
1137    
1138     if (src > SLJIT_FLOAT_REG4) {
1139     FAIL_IF(emit_fpu_data_transfer(compiler, dst_fr, 1, src, srcw));
1140     src = dst_fr;
1141     }
1142    
1143     switch (op) {
1144     case SLJIT_FMOV:
1145     if (src != dst_fr && dst_fr != TMP_FREG1)
1146     FAIL_IF(push_inst(compiler, MOV_D | FS(src) | FD(dst_fr), MOVABLE_INS));
1147     break;
1148     case SLJIT_FNEG:
1149     FAIL_IF(push_inst(compiler, NEG_D | FS(src) | FD(dst_fr), MOVABLE_INS));
1150     break;
1151     case SLJIT_FABS:
1152     FAIL_IF(push_inst(compiler, ABS_D | FS(src) | FD(dst_fr), MOVABLE_INS));
1153     break;
1154     }
1155    
1156     if (dst_fr == TMP_FREG1)
1157     FAIL_IF(emit_fpu_data_transfer(compiler, src, 0, dst, dstw));
1158    
1159     return SLJIT_SUCCESS;
1160     }
1161    
1162     int sljit_emit_fop2(struct sljit_compiler *compiler, int op,
1163     int dst, sljit_w dstw,
1164     int src1, sljit_w src1w,
1165     int src2, sljit_w src2w)
1166     {
1167     int dst_fr;
1168    
1169     CHECK_ERROR();
1170     check_sljit_emit_fop2(compiler, op, dst, dstw, src1, src1w, src2, src2w);
1171    
1172     compiler->cache_arg = 0;
1173     compiler->cache_argw = 0;
1174    
1175     dst_fr = (dst > SLJIT_FLOAT_REG4) ? TMP_FREG1 : dst;
1176    
1177     if (src2 > SLJIT_FLOAT_REG4) {
1178     FAIL_IF(emit_fpu_data_transfer(compiler, TMP_FREG2, 1, src2, src2w));
1179     src2 = TMP_FREG2;
1180     }
1181    
1182     if (src1 > SLJIT_FLOAT_REG4) {
1183     FAIL_IF(emit_fpu_data_transfer(compiler, TMP_FREG1, 1, src1, src1w));
1184     src1 = TMP_FREG1;
1185     }
1186    
1187     switch (op) {
1188     case SLJIT_FADD:
1189     FAIL_IF(push_inst(compiler, ADD_D | FT(src2) | FS(src1) | FD(dst_fr), MOVABLE_INS));
1190     break;
1191    
1192     case SLJIT_FSUB:
1193     FAIL_IF(push_inst(compiler, SUB_D | FT(src2) | FS(src1) | FD(dst_fr), MOVABLE_INS));
1194     break;
1195    
1196     case SLJIT_FMUL:
1197     FAIL_IF(push_inst(compiler, MUL_D | FT(src2) | FS(src1) | FD(dst_fr), MOVABLE_INS));
1198     break;
1199    
1200     case SLJIT_FDIV:
1201     FAIL_IF(push_inst(compiler, DIV_D | FT(src2) | FS(src1) | FD(dst_fr), MOVABLE_INS));
1202     break;
1203     }
1204    
1205     if (dst_fr == TMP_FREG1)
1206     FAIL_IF(emit_fpu_data_transfer(compiler, TMP_FREG1, 0, dst, dstw));
1207    
1208     return SLJIT_SUCCESS;
1209     }
1210    
1211     /* --------------------------------------------------------------------- */
1212     /* Other instructions */
1213     /* --------------------------------------------------------------------- */
1214    
1215     int sljit_emit_fast_enter(struct sljit_compiler *compiler, int dst, sljit_w dstw, int args, int temporaries, int generals, int local_size)
1216     {
1217     CHECK_ERROR();
1218     check_sljit_emit_fast_enter(compiler, dst, dstw, args, temporaries, generals, local_size);
1219    
1220     compiler->temporaries = temporaries;
1221     compiler->generals = generals;
1222    
1223     compiler->has_locals = local_size > 0;
1224     local_size += (generals + 2 + 4) * sizeof(sljit_w);
1225     compiler->local_size = (local_size + 15) & ~0xf;
1226    
1227     if (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS)
1228     return push_inst(compiler, ADDU_W | SA(31) | TA(0) | D(dst), DR(dst));
1229     else if (dst & SLJIT_MEM)
1230     return emit_op_mem(compiler, WORD_DATA, 31, dst, dstw);
1231     return SLJIT_SUCCESS;
1232     }
1233    
1234     int sljit_emit_fast_return(struct sljit_compiler *compiler, int src, sljit_w srcw)
1235     {
1236     CHECK_ERROR();
1237     check_sljit_emit_fast_return(compiler, src, srcw);
1238    
1239     if (src >= SLJIT_TEMPORARY_REG1 && src <= SLJIT_NO_REGISTERS)
1240     FAIL_IF(push_inst(compiler, ADDU_W | S(src) | TA(0) | DA(31), 31));
1241     else if (src & SLJIT_MEM)
1242     FAIL_IF(emit_op_mem(compiler, WORD_DATA | LOAD_DATA, 31, src, srcw));
1243     else if (src & SLJIT_IMM)
1244     FAIL_IF(load_immediate(compiler, 31, srcw));
1245    
1246     FAIL_IF(push_inst(compiler, JR | SA(31), UNMOVABLE_INS));
1247     return push_inst(compiler, NOP, UNMOVABLE_INS);
1248     }
1249    
1250     /* --------------------------------------------------------------------- */
1251     /* Conditional instructions */
1252     /* --------------------------------------------------------------------- */
1253    
1254     struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler)
1255     {
1256     struct sljit_label *label;
1257    
1258     CHECK_ERROR_PTR();
1259     check_sljit_emit_label(compiler);
1260    
1261     if (compiler->last_label && compiler->last_label->size == compiler->size)
1262     return compiler->last_label;
1263    
1264     label = (struct sljit_label*)ensure_abuf(compiler, sizeof(struct sljit_label));
1265     PTR_FAIL_IF(!label);
1266     set_label(label, compiler);
1267     compiler->delay_slot = UNMOVABLE_INS;
1268     return label;
1269     }
1270    
1271     #if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
1272     #define JUMP_LENGTH 4
1273     #else
1274     #define JUMP_LENGTH 7
1275     #endif
1276    
1277     #define BR_Z(src) \
1278     inst = BEQ | SA(src) | TA(0) | JUMP_LENGTH; \
1279     flags = IS_BIT26_COND; \
1280     delay_check = src;
1281    
1282     #define BR_NZ(src) \
1283     inst = BNE | SA(src) | TA(0) | JUMP_LENGTH; \
1284     flags = IS_BIT26_COND; \
1285     delay_check = src;
1286    
1287     #define BR_T(bit) \
1288     inst = BC1T | (bit << 18) | JUMP_LENGTH; \
1289     flags = IS_BIT16_COND; \
1290     delay_check = FCSR_FCC + bit;
1291    
1292     #define BR_F(bit) \
1293     inst = BC1F | (bit << 18) | JUMP_LENGTH; \
1294     flags = IS_BIT16_COND; \
1295     delay_check = FCSR_FCC + bit;
1296    
1297     struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, int type)
1298     {
1299     struct sljit_jump *jump;
1300     sljit_ins inst;
1301     int flags = 0;
1302     int delay_check = UNMOVABLE_INS;
1303    
1304     CHECK_ERROR_PTR();
1305     check_sljit_emit_jump(compiler, type);
1306    
1307     jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
1308     PTR_FAIL_IF(!jump);
1309     set_jump(jump, compiler, type & SLJIT_REWRITABLE_JUMP);
1310     type &= 0xff;
1311    
1312     switch (type) {
1313     case SLJIT_C_EQUAL:
1314     BR_NZ(EQUAL_FLAG);
1315     break;
1316     case SLJIT_C_NOT_EQUAL:
1317     BR_Z(EQUAL_FLAG);
1318     break;
1319     case SLJIT_C_LESS:
1320     BR_Z(ULESS_FLAG);
1321     break;
1322     case SLJIT_C_GREATER_EQUAL:
1323     BR_NZ(ULESS_FLAG);
1324     break;
1325     case SLJIT_C_GREATER:
1326     BR_Z(UGREATER_FLAG);
1327     break;
1328     case SLJIT_C_LESS_EQUAL:
1329     BR_NZ(UGREATER_FLAG);
1330     break;
1331     case SLJIT_C_SIG_LESS:
1332     BR_Z(LESS_FLAG);
1333     break;
1334     case SLJIT_C_SIG_GREATER_EQUAL:
1335     BR_NZ(LESS_FLAG);
1336     break;
1337     case SLJIT_C_SIG_GREATER:
1338     BR_Z(GREATER_FLAG);
1339     break;
1340     case SLJIT_C_SIG_LESS_EQUAL:
1341     BR_NZ(GREATER_FLAG);
1342     break;
1343     case SLJIT_C_OVERFLOW:
1344     case SLJIT_C_MUL_OVERFLOW:
1345     BR_Z(OVERFLOW_FLAG);
1346     break;
1347     case SLJIT_C_NOT_OVERFLOW:
1348     case SLJIT_C_MUL_NOT_OVERFLOW:
1349     BR_NZ(OVERFLOW_FLAG);
1350     break;
1351     case SLJIT_C_FLOAT_EQUAL:
1352     BR_F(EQUAL_BIT);
1353     break;
1354     case SLJIT_C_FLOAT_NOT_EQUAL:
1355     BR_T(EQUAL_BIT);
1356     break;
1357     case SLJIT_C_FLOAT_LESS:
1358     BR_F(LESS_BIT);
1359     break;
1360     case SLJIT_C_FLOAT_GREATER_EQUAL:
1361     BR_T(LESS_BIT);
1362     break;
1363     case SLJIT_C_FLOAT_GREATER:
1364     BR_F(GREATER_BIT);
1365     break;
1366     case SLJIT_C_FLOAT_LESS_EQUAL:
1367     BR_T(GREATER_BIT);
1368     break;
1369     case SLJIT_C_FLOAT_NAN:
1370     BR_F(UNORD_BIT);
1371     break;
1372     case SLJIT_C_FLOAT_NOT_NAN:
1373     BR_T(UNORD_BIT);
1374     break;
1375     default:
1376     /* Not conditional branch. */
1377     inst = 0;
1378     break;
1379     }
1380    
1381     jump->flags |= flags;
1382     if (compiler->delay_slot == MOVABLE_INS || (compiler->delay_slot != UNMOVABLE_INS && compiler->delay_slot != delay_check))
1383     jump->flags |= IS_MOVABLE;
1384    
1385     if (inst)
1386     PTR_FAIL_IF(push_inst(compiler, inst, UNMOVABLE_INS));
1387    
1388     if (type >= SLJIT_CALL1)
1389     PTR_FAIL_IF(push_inst(compiler, ADDU_W | S(SLJIT_TEMPORARY_REG1) | TA(0) | DA(4), 4));
1390    
1391     PTR_FAIL_IF(emit_const(compiler, TMP_REG2, 0));
1392     if (type <= SLJIT_JUMP)
1393     PTR_FAIL_IF(push_inst(compiler, JR | S(TMP_REG2), UNMOVABLE_INS));
1394     else {
1395     jump->flags |= IS_JAL;
1396     PTR_FAIL_IF(push_inst(compiler, JALR | S(TMP_REG2) | DA(31), UNMOVABLE_INS));
1397     }
1398     jump->addr = compiler->size;
1399     PTR_FAIL_IF(push_inst(compiler, NOP, UNMOVABLE_INS));
1400     return jump;
1401     }
1402    
1403     #define RESOLVE_IMM1() \
1404     if (src1 & SLJIT_IMM) { \
1405     if (src1w) { \
1406     PTR_FAIL_IF(load_immediate(compiler, DR(TMP_REG1), src1w)); \
1407     src1 = TMP_REG1; \
1408     } \
1409     else \
1410     src1 = 0; \
1411     }
1412    
1413     #define RESOLVE_IMM2() \
1414     if (src2 & SLJIT_IMM) { \
1415     if (src2w) { \
1416     PTR_FAIL_IF(load_immediate(compiler, DR(TMP_REG2), src2w)); \
1417     src2 = TMP_REG2; \
1418     } \
1419     else \
1420     src2 = 0; \
1421     }
1422    
1423     struct sljit_jump* sljit_emit_cmp(struct sljit_compiler *compiler, int type,
1424     int src1, sljit_w src1w,
1425     int src2, sljit_w src2w)
1426     {
1427     struct sljit_jump *jump;
1428     int flags;
1429     sljit_ins inst;
1430    
1431     CHECK_ERROR_PTR();
1432     check_sljit_emit_cmp(compiler, type, src1, src1w, src2, src2w);
1433    
1434     compiler->cache_arg = 0;
1435     compiler->cache_argw = 0;
1436     flags = ((type & SLJIT_INT_OP) ? INT_DATA : WORD_DATA) | LOAD_DATA;
1437     if (src1 & SLJIT_MEM) {
1438     if (getput_arg_fast(compiler, flags, DR(TMP_REG1), src1, src1w))
1439     PTR_FAIL_IF(compiler->error);
1440     else
1441     PTR_FAIL_IF(getput_arg(compiler, flags, DR(TMP_REG1), src1, src1w, src2, src2w));
1442     src1 = TMP_REG1;
1443     }
1444     if (src2 & SLJIT_MEM) {
1445     if (getput_arg_fast(compiler, flags, DR(TMP_REG2), src2, src2w))
1446     PTR_FAIL_IF(compiler->error);
1447     else
1448     PTR_FAIL_IF(getput_arg(compiler, flags, DR(TMP_REG2), src2, src2w, 0, 0));
1449     src2 = TMP_REG2;
1450     }
1451    
1452     jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
1453     PTR_FAIL_IF(!jump);
1454     set_jump(jump, compiler, type & SLJIT_REWRITABLE_JUMP);
1455     type &= 0xff;
1456    
1457     if (type <= SLJIT_C_NOT_EQUAL) {
1458     RESOLVE_IMM1();
1459     RESOLVE_IMM2();
1460     jump->flags |= IS_BIT26_COND;
1461     if (compiler->delay_slot == MOVABLE_INS || (compiler->delay_slot != UNMOVABLE_INS && compiler->delay_slot != DR(src1) && compiler->delay_slot != DR(src2)))
1462     jump->flags |= IS_MOVABLE;
1463     PTR_FAIL_IF(push_inst(compiler, (type == SLJIT_C_EQUAL ? BNE : BEQ) | S(src1) | T(src2) | JUMP_LENGTH, UNMOVABLE_INS));
1464     }
1465     else if (type >= SLJIT_C_SIG_LESS && (((src1 & SLJIT_IMM) && (src1w == 0)) || ((src2 & SLJIT_IMM) && (src2w == 0)))) {
1466     inst = NOP;
1467     if ((src1 & SLJIT_IMM) && (src1w == 0)) {
1468     RESOLVE_IMM2();
1469     switch (type) {
1470     case SLJIT_C_SIG_LESS:
1471     inst = BLEZ;
1472     jump->flags |= IS_BIT26_COND;
1473     break;
1474     case SLJIT_C_SIG_GREATER_EQUAL:
1475     inst = BGTZ;
1476     jump->flags |= IS_BIT26_COND;
1477     break;
1478     case SLJIT_C_SIG_GREATER:
1479     inst = BGEZ;
1480     jump->flags |= IS_BIT16_COND;
1481     break;
1482     case SLJIT_C_SIG_LESS_EQUAL:
1483     inst = BLTZ;
1484     jump->flags |= IS_BIT16_COND;
1485     break;
1486     }
1487     src1 = src2;
1488     }
1489     else {
1490     RESOLVE_IMM1();
1491     switch (type) {
1492     case SLJIT_C_SIG_LESS:
1493     inst = BGEZ;
1494     jump->flags |= IS_BIT16_COND;
1495     break;
1496     case SLJIT_C_SIG_GREATER_EQUAL:
1497     inst = BLTZ;
1498     jump->flags |= IS_BIT16_COND;
1499     break;
1500     case SLJIT_C_SIG_GREATER:
1501     inst = BLEZ;
1502     jump->flags |= IS_BIT26_COND;
1503     break;
1504     case SLJIT_C_SIG_LESS_EQUAL:
1505     inst = BGTZ;
1506     jump->flags |= IS_BIT26_COND;
1507     break;
1508     }
1509     }
1510     PTR_FAIL_IF(push_inst(compiler, inst | S(src1) | JUMP_LENGTH, UNMOVABLE_INS));
1511     }
1512     else {
1513     if (type == SLJIT_C_LESS || type == SLJIT_C_GREATER_EQUAL || type == SLJIT_C_SIG_LESS || type == SLJIT_C_SIG_GREATER_EQUAL) {
1514     RESOLVE_IMM1();
1515     if ((src2 & SLJIT_IMM) && src2w <= SIMM_MAX && src2w >= SIMM_MIN)
1516     PTR_FAIL_IF(push_inst(compiler, (type <= SLJIT_C_LESS_EQUAL ? SLTIU : SLTI) | S(src1) | T(TMP_REG1) | IMM(src2w), DR(TMP_REG1)));
1517     else {
1518     RESOLVE_IMM2();
1519     PTR_FAIL_IF(push_inst(compiler, (type <= SLJIT_C_LESS_EQUAL ? SLTU : SLT) | S(src1) | T(src2) | D(TMP_REG1), DR(TMP_REG1)));
1520     }
1521     type = (type == SLJIT_C_LESS || type == SLJIT_C_SIG_LESS) ? SLJIT_C_NOT_EQUAL : SLJIT_C_EQUAL;
1522     }
1523     else {
1524     RESOLVE_IMM2();
1525     if ((src1 & SLJIT_IMM) && src1w <= SIMM_MAX && src1w >= SIMM_MIN)
1526     PTR_FAIL_IF(push_inst(compiler, (type <= SLJIT_C_LESS_EQUAL ? SLTIU : SLTI) | S(src2) | T(TMP_REG1) | IMM(src1w), DR(TMP_REG1)));
1527     else {
1528     RESOLVE_IMM1();
1529     PTR_FAIL_IF(push_inst(compiler, (type <= SLJIT_C_LESS_EQUAL ? SLTU : SLT) | S(src2) | T(src1) | D(TMP_REG1), DR(TMP_REG1)));
1530     }
1531     type = (type == SLJIT_C_GREATER || type == SLJIT_C_SIG_GREATER) ? SLJIT_C_NOT_EQUAL : SLJIT_C_EQUAL;
1532     }
1533    
1534     jump->flags |= IS_BIT26_COND;
1535     PTR_FAIL_IF(push_inst(compiler, (type == SLJIT_C_EQUAL ? BNE : BEQ) | S(TMP_REG1) | TA(0) | JUMP_LENGTH, UNMOVABLE_INS));
1536     }
1537    
1538     PTR_FAIL_IF(emit_const(compiler, TMP_REG2, 0));
1539     PTR_FAIL_IF(push_inst(compiler, JR | S(TMP_REG2), UNMOVABLE_INS));
1540     jump->addr = compiler->size;
1541     PTR_FAIL_IF(push_inst(compiler, NOP, UNMOVABLE_INS));
1542     return jump;
1543     }
1544    
1545     #undef RESOLVE_IMM1
1546     #undef RESOLVE_IMM2
1547    
1548     #undef JUMP_LENGTH
1549     #undef BR_Z
1550     #undef BR_NZ
1551     #undef BR_T
1552     #undef BR_F
1553    
1554     int sljit_emit_ijump(struct sljit_compiler *compiler, int type, int src, sljit_w srcw)
1555     {
1556     int src_r = TMP_REG2;
1557     struct sljit_jump *jump = NULL;
1558    
1559     CHECK_ERROR();
1560     check_sljit_emit_ijump(compiler, type, src, srcw);
1561    
1562     if (src >= SLJIT_TEMPORARY_REG1 && src <= SLJIT_NO_REGISTERS) {
1563 zherczeg 705 if (DR(src) != 4)
1564 ph10 662 src_r = src;
1565     else
1566     FAIL_IF(push_inst(compiler, ADDU_W | S(src) | TA(0) | D(TMP_REG2), DR(TMP_REG2)));
1567     }
1568    
1569 zherczeg 705 if (type >= SLJIT_CALL0) {
1570     if (src & SLJIT_IMM) {
1571     FAIL_IF(load_immediate(compiler, 25, srcw));
1572     FAIL_IF(push_inst(compiler, JALR | SA(25) | DA(31), UNMOVABLE_INS));
1573     /* We need an extra instruction in any case. */
1574     return push_inst(compiler, ADDU_W | S(SLJIT_TEMPORARY_REG1) | TA(0) | DA(4), UNMOVABLE_INS);
1575     }
1576     if (src & SLJIT_MEM)
1577     FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, TMP_REG2, 0, TMP_REG1, 0, src, srcw));
1578 ph10 662
1579 zherczeg 705 if (type >= SLJIT_CALL1)
1580     FAIL_IF(push_inst(compiler, ADDU_W | S(SLJIT_TEMPORARY_REG1) | TA(0) | DA(4), 4));
1581     FAIL_IF(push_inst(compiler, JALR | S(src_r) | DA(31), UNMOVABLE_INS));
1582     return push_inst(compiler, ADDU_W | S(src_r) | TA(0) | DA(25), UNMOVABLE_INS);
1583     }
1584    
1585 ph10 662 if (src & SLJIT_IMM) {
1586     jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
1587     FAIL_IF(!jump);
1588     set_jump(jump, compiler, JUMP_ADDR | ((type >= SLJIT_CALL0) ? IS_JAL : 0));
1589     jump->u.target = srcw;
1590    
1591     if (compiler->delay_slot != UNMOVABLE_INS)
1592     jump->flags |= IS_MOVABLE;
1593    
1594     FAIL_IF(emit_const(compiler, TMP_REG2, 0));
1595     }
1596     else if (src & SLJIT_MEM)
1597     FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, TMP_REG2, 0, TMP_REG1, 0, src, srcw));
1598    
1599 zherczeg 705 FAIL_IF(push_inst(compiler, JR | S(src_r), UNMOVABLE_INS));
1600 ph10 662 if (jump)
1601     jump->addr = compiler->size;
1602     FAIL_IF(push_inst(compiler, NOP, UNMOVABLE_INS));
1603     return SLJIT_SUCCESS;
1604     }
1605    
1606     int sljit_emit_cond_value(struct sljit_compiler *compiler, int op, int dst, sljit_w dstw, int type)
1607     {
1608     int sugg_dst_ar, dst_ar;
1609    
1610     CHECK_ERROR();
1611     check_sljit_emit_cond_value(compiler, op, dst, dstw, type);
1612    
1613     if (dst == SLJIT_UNUSED)
1614     return SLJIT_SUCCESS;
1615    
1616     sugg_dst_ar = DR((op == SLJIT_MOV && dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) ? dst : TMP_REG2);
1617    
1618     switch (type) {
1619     case SLJIT_C_EQUAL:
1620     case SLJIT_C_NOT_EQUAL:
1621     FAIL_IF(push_inst(compiler, SLTIU | SA(EQUAL_FLAG) | TA(sugg_dst_ar) | IMM(1), sugg_dst_ar));
1622     dst_ar = sugg_dst_ar;
1623     break;
1624     case SLJIT_C_LESS:
1625     case SLJIT_C_GREATER_EQUAL:
1626     dst_ar = ULESS_FLAG;
1627     break;
1628     case SLJIT_C_GREATER:
1629     case SLJIT_C_LESS_EQUAL:
1630     dst_ar = UGREATER_FLAG;
1631     break;
1632     case SLJIT_C_SIG_LESS:
1633     case SLJIT_C_SIG_GREATER_EQUAL:
1634     dst_ar = LESS_FLAG;
1635     break;
1636     case SLJIT_C_SIG_GREATER:
1637     case SLJIT_C_SIG_LESS_EQUAL:
1638     dst_ar = GREATER_FLAG;
1639     break;
1640     case SLJIT_C_OVERFLOW:
1641     case SLJIT_C_NOT_OVERFLOW:
1642     dst_ar = OVERFLOW_FLAG;
1643     break;
1644     case SLJIT_C_MUL_OVERFLOW:
1645     case SLJIT_C_MUL_NOT_OVERFLOW:
1646     FAIL_IF(push_inst(compiler, SLTIU | SA(OVERFLOW_FLAG) | TA(sugg_dst_ar) | IMM(1), sugg_dst_ar));
1647     dst_ar = sugg_dst_ar;
1648     type ^= 0x1; /* Flip type bit for the XORI below. */
1649     break;
1650     default:
1651     if (type >= SLJIT_C_FLOAT_EQUAL && type <= SLJIT_C_FLOAT_NOT_NAN) {
1652     FAIL_IF(push_inst(compiler, CFC1 | TA(sugg_dst_ar) | DA(31), sugg_dst_ar));
1653     switch (type) {
1654     case SLJIT_C_FLOAT_EQUAL:
1655     case SLJIT_C_FLOAT_NOT_EQUAL:
1656     dst_ar = EQUAL_BIT + 24;
1657     break;
1658     case SLJIT_C_FLOAT_LESS:
1659     case SLJIT_C_FLOAT_GREATER_EQUAL:
1660     dst_ar = LESS_BIT + 24;
1661     break;
1662     case SLJIT_C_FLOAT_GREATER:
1663     case SLJIT_C_FLOAT_LESS_EQUAL:
1664     dst_ar = GREATER_BIT + 24;
1665     break;
1666     case SLJIT_C_FLOAT_NAN:
1667     case SLJIT_C_FLOAT_NOT_NAN:
1668     dst_ar = UNORD_BIT + 24;
1669     break;
1670     }
1671     FAIL_IF(push_inst(compiler, EXT_W | SA(sugg_dst_ar) | TA(sugg_dst_ar) | (dst_ar << 6), sugg_dst_ar));
1672     }
1673     dst_ar = sugg_dst_ar;
1674     break;
1675     }
1676    
1677     if (type & 0x1) {
1678     FAIL_IF(push_inst(compiler, XORI | SA(dst_ar) | TA(sugg_dst_ar) | IMM(1), sugg_dst_ar));
1679     dst_ar = sugg_dst_ar;
1680     }
1681    
1682     if (GET_OPCODE(op) == SLJIT_OR) {
1683     if (DR(TMP_REG2) != dst_ar)
1684     FAIL_IF(push_inst(compiler, ADDU_W | SA(dst_ar) | TA(0) | D(TMP_REG2), DR(TMP_REG2)));
1685     return emit_op(compiler, op, CUMULATIVE_OP | LOGICAL_OP | IMM_OP, dst, dstw, dst, dstw, TMP_REG2, 0);
1686     }
1687    
1688     if (dst & SLJIT_MEM)
1689     return emit_op_mem(compiler, WORD_DATA, dst_ar, dst, dstw);
1690    
1691     if (sugg_dst_ar != dst_ar)
1692     return push_inst(compiler, ADDU_W | SA(dst_ar) | TA(0) | DA(sugg_dst_ar), sugg_dst_ar);
1693     return SLJIT_SUCCESS;
1694     }
1695    
1696     struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, int dst, sljit_w dstw, sljit_w init_value)
1697     {
1698     struct sljit_const *const_;
1699     int reg;
1700    
1701     CHECK_ERROR_PTR();
1702     check_sljit_emit_const(compiler, dst, dstw, init_value);
1703    
1704     const_ = (struct sljit_const*)ensure_abuf(compiler, sizeof(struct sljit_const));
1705     PTR_FAIL_IF(!const_);
1706     set_const(const_, compiler);
1707    
1708     reg = (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) ? dst : TMP_REG2;
1709    
1710     PTR_FAIL_IF(emit_const(compiler, reg, init_value));
1711    
1712     if (dst & SLJIT_MEM)
1713     PTR_FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, dst, dstw, TMP_REG1, 0, TMP_REG2, 0));
1714     return const_;
1715     }

webmaster@exim.org
ViewVC Help
Powered by ViewVC 1.1.12