/[pcre]/code/trunk/sljit/sljitNativeARM_v5.c
ViewVC logotype

Contents of /code/trunk/sljit/sljitNativeARM_v5.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 836 - (show annotations) (download)
Wed Dec 28 17:16:11 2011 UTC (2 years, 11 months ago) by ph10
File MIME type: text/plain
File size: 71837 byte(s)
Merging all the changes from the pcre16 branch into the trunk.

1 /*
2 * Stack-less Just-In-Time compiler
3 *
4 * Copyright 2009-2012 Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without modification, are
7 * permitted provided that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright notice, this list of
10 * conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright notice, this list
13 * of conditions and the following disclaimer in the documentation and/or other materials
14 * provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
17 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
19 * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
21 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
22 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
24 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27 SLJIT_API_FUNC_ATTRIBUTE SLJIT_CONST char* sljit_get_platform_name()
28 {
29 #if (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7)
30 return "arm-v7";
31 #elif (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
32 return "arm-v5";
33 #else
34 #error "Internal error: Unknown ARM architecture"
35 #endif
36 }
37
38 /* Last register + 1. */
39 #define TMP_REG1 (SLJIT_NO_REGISTERS + 1)
40 #define TMP_REG2 (SLJIT_NO_REGISTERS + 2)
41 #define TMP_REG3 (SLJIT_NO_REGISTERS + 3)
42 #define TMP_PC (SLJIT_NO_REGISTERS + 4)
43
44 #define TMP_FREG1 (SLJIT_FLOAT_REG4 + 1)
45 #define TMP_FREG2 (SLJIT_FLOAT_REG4 + 2)
46
47 /* In ARM instruction words.
48 Cache lines are usually 32 byte aligned. */
49 #define CONST_POOL_ALIGNMENT 8
50 #define CONST_POOL_EMPTY 0xffffffff
51
52 #define ALIGN_INSTRUCTION(ptr) \
53 (sljit_uw*)(((sljit_uw)(ptr) + (CONST_POOL_ALIGNMENT * sizeof(sljit_uw)) - 1) & ~((CONST_POOL_ALIGNMENT * sizeof(sljit_uw)) - 1))
54 #define MAX_DIFFERENCE(max_diff) \
55 (((max_diff) / (int)sizeof(sljit_uw)) - (CONST_POOL_ALIGNMENT - 1))
56
57 /* See sljit_emit_enter if you want to change them. */
58 static SLJIT_CONST sljit_ub reg_map[SLJIT_NO_REGISTERS + 5] = {
59 0, 0, 1, 2, 10, 11, 4, 5, 6, 7, 8, 13, 3, 12, 14, 15
60 };
61
62 #define RM(rm) (reg_map[rm])
63 #define RD(rd) (reg_map[rd] << 12)
64 #define RN(rn) (reg_map[rn] << 16)
65
66 /* --------------------------------------------------------------------- */
67 /* Instrucion forms */
68 /* --------------------------------------------------------------------- */
69
70 /* The instruction includes the AL condition.
71 INST_NAME - CONDITIONAL remove this flag. */
72 #define COND_MASK 0xf0000000
73 #define CONDITIONAL 0xe0000000
74 #define PUSH_POOL 0xff000000
75
76 /* DP - Data Processing instruction (use with EMIT_DATA_PROCESS_INS). */
77 #define ADC_DP 0x5
78 #define ADD_DP 0x4
79 #define AND_DP 0x0
80 #define B 0xea000000
81 #define BIC_DP 0xe
82 #define BL 0xeb000000
83 #define BLX 0xe12fff30
84 #define BX 0xe12fff10
85 #define CLZ 0xe16f0f10
86 #define CMP_DP 0xa
87 #define DEBUGGER 0xe1200070
88 #define EOR_DP 0x1
89 #define MOV_DP 0xd
90 #define MUL 0xe0000090
91 #define MVN_DP 0xf
92 #define NOP 0xe1a00000
93 #define ORR_DP 0xc
94 #define PUSH 0xe92d0000
95 #define POP 0xe8bd0000
96 #define RSB_DP 0x3
97 #define RSC_DP 0x7
98 #define SBC_DP 0x6
99 #define SMULL 0xe0c00090
100 #define SUB_DP 0x2
101 #define VABS_F64 0xeeb00bc0
102 #define VADD_F64 0xee300b00
103 #define VCMP_F64 0xeeb40b40
104 #define VDIV_F64 0xee800b00
105 #define VMOV_F64 0xeeb00b40
106 #define VMRS 0xeef1fa10
107 #define VMUL_F64 0xee200b00
108 #define VNEG_F64 0xeeb10b40
109 #define VSTR 0xed000b00
110 #define VSUB_F64 0xee300b40
111
112 #if (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7)
113 /* Arm v7 specific instructions. */
114 #define MOVW 0xe3000000
115 #define MOVT 0xe3400000
116 #define SXTB 0xe6af0070
117 #define SXTH 0xe6bf0070
118 #define UXTB 0xe6ef0070
119 #define UXTH 0xe6ff0070
120 #endif
121
122 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
123
124 static int push_cpool(struct sljit_compiler *compiler)
125 {
126 /* Pushing the constant pool into the instruction stream. */
127 sljit_uw* inst;
128 sljit_uw* cpool_ptr;
129 sljit_uw* cpool_end;
130 int i;
131
132 /* The label could point the address after the constant pool. */
133 if (compiler->last_label && compiler->last_label->size == compiler->size)
134 compiler->last_label->size += compiler->cpool_fill + (CONST_POOL_ALIGNMENT - 1) + 1;
135
136 SLJIT_ASSERT(compiler->cpool_fill > 0 && compiler->cpool_fill <= CPOOL_SIZE);
137 inst = (sljit_uw*)ensure_buf(compiler, sizeof(sljit_uw));
138 FAIL_IF(!inst);
139 compiler->size++;
140 *inst = 0xff000000 | compiler->cpool_fill;
141
142 for (i = 0; i < CONST_POOL_ALIGNMENT - 1; i++) {
143 inst = (sljit_uw*)ensure_buf(compiler, sizeof(sljit_uw));
144 FAIL_IF(!inst);
145 compiler->size++;
146 *inst = 0;
147 }
148
149 cpool_ptr = compiler->cpool;
150 cpool_end = cpool_ptr + compiler->cpool_fill;
151 while (cpool_ptr < cpool_end) {
152 inst = (sljit_uw*)ensure_buf(compiler, sizeof(sljit_uw));
153 FAIL_IF(!inst);
154 compiler->size++;
155 *inst = *cpool_ptr++;
156 }
157 compiler->cpool_diff = CONST_POOL_EMPTY;
158 compiler->cpool_fill = 0;
159 return SLJIT_SUCCESS;
160 }
161
162 static int push_inst(struct sljit_compiler *compiler, sljit_uw inst)
163 {
164 sljit_uw* ptr;
165
166 if (SLJIT_UNLIKELY(compiler->cpool_diff != CONST_POOL_EMPTY && compiler->size - compiler->cpool_diff >= MAX_DIFFERENCE(4092)))
167 FAIL_IF(push_cpool(compiler));
168
169 ptr = (sljit_uw*)ensure_buf(compiler, sizeof(sljit_uw));
170 FAIL_IF(!ptr);
171 compiler->size++;
172 *ptr = inst;
173 return SLJIT_SUCCESS;
174 }
175
176 static int push_inst_with_literal(struct sljit_compiler *compiler, sljit_uw inst, sljit_uw literal)
177 {
178 sljit_uw* ptr;
179 sljit_uw cpool_index = CPOOL_SIZE;
180 sljit_uw* cpool_ptr;
181 sljit_uw* cpool_end;
182 sljit_ub* cpool_unique_ptr;
183
184 if (SLJIT_UNLIKELY(compiler->cpool_diff != CONST_POOL_EMPTY && compiler->size - compiler->cpool_diff >= MAX_DIFFERENCE(4092)))
185 FAIL_IF(push_cpool(compiler));
186 else if (compiler->cpool_fill > 0) {
187 cpool_ptr = compiler->cpool;
188 cpool_end = cpool_ptr + compiler->cpool_fill;
189 cpool_unique_ptr = compiler->cpool_unique;
190 do {
191 if ((*cpool_ptr == literal) && !(*cpool_unique_ptr)) {
192 cpool_index = cpool_ptr - compiler->cpool;
193 break;
194 }
195 cpool_ptr++;
196 cpool_unique_ptr++;
197 } while (cpool_ptr < cpool_end);
198 }
199
200 if (cpool_index == CPOOL_SIZE) {
201 /* Must allocate a new entry in the literal pool. */
202 if (compiler->cpool_fill < CPOOL_SIZE) {
203 cpool_index = compiler->cpool_fill;
204 compiler->cpool_fill++;
205 }
206 else {
207 FAIL_IF(push_cpool(compiler));
208 cpool_index = 0;
209 compiler->cpool_fill = 1;
210 }
211 }
212
213 SLJIT_ASSERT((inst & 0xfff) == 0);
214 ptr = (sljit_uw*)ensure_buf(compiler, sizeof(sljit_uw));
215 FAIL_IF(!ptr);
216 compiler->size++;
217 *ptr = inst | cpool_index;
218
219 compiler->cpool[cpool_index] = literal;
220 compiler->cpool_unique[cpool_index] = 0;
221 if (compiler->cpool_diff == CONST_POOL_EMPTY)
222 compiler->cpool_diff = compiler->size;
223 return SLJIT_SUCCESS;
224 }
225
226 static int push_inst_with_unique_literal(struct sljit_compiler *compiler, sljit_uw inst, sljit_uw literal)
227 {
228 sljit_uw* ptr;
229 if (SLJIT_UNLIKELY((compiler->cpool_diff != CONST_POOL_EMPTY && compiler->size - compiler->cpool_diff >= MAX_DIFFERENCE(4092)) || compiler->cpool_fill >= CPOOL_SIZE))
230 FAIL_IF(push_cpool(compiler));
231
232 SLJIT_ASSERT(compiler->cpool_fill < CPOOL_SIZE && (inst & 0xfff) == 0);
233 ptr = (sljit_uw*)ensure_buf(compiler, sizeof(sljit_uw));
234 FAIL_IF(!ptr);
235 compiler->size++;
236 *ptr = inst | compiler->cpool_fill;
237
238 compiler->cpool[compiler->cpool_fill] = literal;
239 compiler->cpool_unique[compiler->cpool_fill] = 1;
240 compiler->cpool_fill++;
241 if (compiler->cpool_diff == CONST_POOL_EMPTY)
242 compiler->cpool_diff = compiler->size;
243 return SLJIT_SUCCESS;
244 }
245
246 static SLJIT_INLINE int prepare_blx(struct sljit_compiler *compiler)
247 {
248 /* Place for at least two instruction (doesn't matter whether the first has a literal). */
249 if (SLJIT_UNLIKELY(compiler->cpool_diff != CONST_POOL_EMPTY && compiler->size - compiler->cpool_diff >= MAX_DIFFERENCE(4088)))
250 return push_cpool(compiler);
251 return SLJIT_SUCCESS;
252 }
253
254 static SLJIT_INLINE int emit_blx(struct sljit_compiler *compiler)
255 {
256 /* Must follow tightly the previous instruction (to be able to convert it to bl instruction). */
257 SLJIT_ASSERT(compiler->cpool_diff == CONST_POOL_EMPTY || compiler->size - compiler->cpool_diff < MAX_DIFFERENCE(4092));
258 return push_inst(compiler, BLX | RM(TMP_REG1));
259 }
260
261 static sljit_uw patch_pc_relative_loads(sljit_uw *last_pc_patch, sljit_uw *code_ptr, sljit_uw* const_pool, sljit_uw cpool_size)
262 {
263 sljit_uw diff;
264 sljit_uw ind;
265 sljit_uw counter = 0;
266 sljit_uw* clear_const_pool = const_pool;
267 sljit_uw* clear_const_pool_end = const_pool + cpool_size;
268
269 SLJIT_ASSERT(const_pool - code_ptr <= CONST_POOL_ALIGNMENT);
270 /* Set unused flag for all literals in the constant pool.
271 I.e.: unused literals can belong to branches, which can be encoded as B or BL.
272 We can "compress" the constant pool by discarding these literals. */
273 while (clear_const_pool < clear_const_pool_end)
274 *clear_const_pool++ = (sljit_uw)(-1);
275
276 while (last_pc_patch < code_ptr) {
277 /* Data transfer instruction with Rn == r15. */
278 if ((*last_pc_patch & 0x0c0f0000) == 0x040f0000) {
279 diff = const_pool - last_pc_patch;
280 ind = (*last_pc_patch) & 0xfff;
281
282 /* Must be a load instruction with immediate offset. */
283 SLJIT_ASSERT(ind < cpool_size && !(*last_pc_patch & (1 << 25)) && (*last_pc_patch & (1 << 20)));
284 if ((int)const_pool[ind] < 0) {
285 const_pool[ind] = counter;
286 ind = counter;
287 counter++;
288 }
289 else
290 ind = const_pool[ind];
291
292 SLJIT_ASSERT(diff >= 1);
293 if (diff >= 2 || ind > 0) {
294 diff = (diff + ind - 2) << 2;
295 SLJIT_ASSERT(diff <= 0xfff);
296 *last_pc_patch = (*last_pc_patch & ~0xfff) | diff;
297 }
298 else
299 *last_pc_patch = (*last_pc_patch & ~(0xfff | (1 << 23))) | 0x004;
300 }
301 last_pc_patch++;
302 }
303 return counter;
304 }
305
306 /* In some rare ocasions we may need future patches. The probability is close to 0 in practice. */
307 struct future_patch {
308 struct future_patch* next;
309 int index;
310 int value;
311 };
312
313 static SLJIT_INLINE int resolve_const_pool_index(struct future_patch **first_patch, sljit_uw cpool_current_index, sljit_uw *cpool_start_address, sljit_uw *buf_ptr)
314 {
315 int value;
316 struct future_patch *curr_patch, *prev_patch;
317
318 /* Using the values generated by patch_pc_relative_loads. */
319 if (!*first_patch)
320 value = (int)cpool_start_address[cpool_current_index];
321 else {
322 curr_patch = *first_patch;
323 prev_patch = 0;
324 while (1) {
325 if (!curr_patch) {
326 value = (int)cpool_start_address[cpool_current_index];
327 break;
328 }
329 if ((sljit_uw)curr_patch->index == cpool_current_index) {
330 value = curr_patch->value;
331 if (prev_patch)
332 prev_patch->next = curr_patch->next;
333 else
334 *first_patch = curr_patch->next;
335 SLJIT_FREE(curr_patch);
336 break;
337 }
338 prev_patch = curr_patch;
339 curr_patch = curr_patch->next;
340 }
341 }
342
343 if (value >= 0) {
344 if ((sljit_uw)value > cpool_current_index) {
345 curr_patch = (struct future_patch*)SLJIT_MALLOC(sizeof(struct future_patch));
346 if (!curr_patch) {
347 while (*first_patch) {
348 curr_patch = *first_patch;
349 *first_patch = (*first_patch)->next;
350 SLJIT_FREE(curr_patch);
351 }
352 return SLJIT_ERR_ALLOC_FAILED;
353 }
354 curr_patch->next = *first_patch;
355 curr_patch->index = value;
356 curr_patch->value = cpool_start_address[value];
357 *first_patch = curr_patch;
358 }
359 cpool_start_address[value] = *buf_ptr;
360 }
361 return SLJIT_SUCCESS;
362 }
363
364 #else
365
366 static int push_inst(struct sljit_compiler *compiler, sljit_uw inst)
367 {
368 sljit_uw* ptr;
369
370 ptr = (sljit_uw*)ensure_buf(compiler, sizeof(sljit_uw));
371 FAIL_IF(!ptr);
372 compiler->size++;
373 *ptr = inst;
374 return SLJIT_SUCCESS;
375 }
376
377 static SLJIT_INLINE int emit_imm(struct sljit_compiler *compiler, int reg, sljit_w imm)
378 {
379 FAIL_IF(push_inst(compiler, MOVW | RD(reg) | ((imm << 4) & 0xf0000) | (imm & 0xfff)));
380 return push_inst(compiler, MOVT | RD(reg) | ((imm >> 12) & 0xf0000) | ((imm >> 16) & 0xfff));
381 }
382
383 #endif
384
385 static SLJIT_INLINE int detect_jump_type(struct sljit_jump *jump, sljit_uw *code_ptr, sljit_uw *code)
386 {
387 sljit_w diff;
388
389 if (jump->flags & SLJIT_REWRITABLE_JUMP)
390 return 0;
391
392 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
393 if (jump->flags & IS_BL)
394 code_ptr--;
395
396 if (jump->flags & JUMP_ADDR)
397 diff = ((sljit_w)jump->u.target - (sljit_w)(code_ptr + 2));
398 else {
399 SLJIT_ASSERT(jump->flags & JUMP_LABEL);
400 diff = ((sljit_w)(code + jump->u.label->size) - (sljit_w)(code_ptr + 2));
401 }
402
403 /* Branch to Thumb code has not been optimized yet. */
404 if (diff & 0x3)
405 return 0;
406
407 diff >>= 2;
408 if (jump->flags & IS_BL) {
409 if (diff <= 0x01ffffff && diff >= -0x02000000) {
410 *code_ptr = (BL - CONDITIONAL) | (*(code_ptr + 1) & COND_MASK);
411 jump->flags |= PATCH_B;
412 return 1;
413 }
414 }
415 else {
416 if (diff <= 0x01ffffff && diff >= -0x02000000) {
417 *code_ptr = (B - CONDITIONAL) | (*code_ptr & COND_MASK);
418 jump->flags |= PATCH_B;
419 }
420 }
421 #else
422 if (jump->flags & JUMP_ADDR)
423 diff = ((sljit_w)jump->u.target - (sljit_w)code_ptr);
424 else {
425 SLJIT_ASSERT(jump->flags & JUMP_LABEL);
426 diff = ((sljit_w)(code + jump->u.label->size) - (sljit_w)code_ptr);
427 }
428
429 /* Branch to Thumb code has not been optimized yet. */
430 if (diff & 0x3)
431 return 0;
432
433 diff >>= 2;
434 if (diff <= 0x01ffffff && diff >= -0x02000000) {
435 code_ptr -= 2;
436 *code_ptr = ((jump->flags & IS_BL) ? (BL - CONDITIONAL) : (B - CONDITIONAL)) | (code_ptr[2] & COND_MASK);
437 jump->flags |= PATCH_B;
438 return 1;
439 }
440 #endif
441 return 0;
442 }
443
444 static SLJIT_INLINE void inline_set_jump_addr(sljit_uw addr, sljit_uw new_addr, int flush)
445 {
446 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
447 sljit_uw *ptr = (sljit_uw*)addr;
448 sljit_uw *inst = (sljit_uw*)ptr[0];
449 sljit_uw mov_pc = ptr[1];
450 int bl = (mov_pc & 0x0000f000) != RD(TMP_PC);
451 sljit_w diff = (sljit_w)(((sljit_w)new_addr - (sljit_w)(inst + 2)) >> 2);
452
453 if (diff <= 0x7fffff && diff >= -0x800000) {
454 /* Turn to branch. */
455 if (!bl) {
456 inst[0] = (mov_pc & COND_MASK) | (B - CONDITIONAL) | (diff & 0xffffff);
457 if (flush) {
458 SLJIT_CACHE_FLUSH(inst, inst + 1);
459 }
460 } else {
461 inst[0] = (mov_pc & COND_MASK) | (BL - CONDITIONAL) | (diff & 0xffffff);
462 inst[1] = NOP;
463 if (flush) {
464 SLJIT_CACHE_FLUSH(inst, inst + 2);
465 }
466 }
467 } else {
468 /* Get the position of the constant. */
469 if (mov_pc & (1 << 23))
470 ptr = inst + ((mov_pc & 0xfff) >> 2) + 2;
471 else
472 ptr = inst + 1;
473
474 if (*inst != mov_pc) {
475 inst[0] = mov_pc;
476 if (!bl) {
477 if (flush) {
478 SLJIT_CACHE_FLUSH(inst, inst + 1);
479 }
480 } else {
481 inst[1] = BLX | RM(TMP_REG1);
482 if (flush) {
483 SLJIT_CACHE_FLUSH(inst, inst + 2);
484 }
485 }
486 }
487 *ptr = new_addr;
488 }
489 #else
490 sljit_uw *inst = (sljit_uw*)addr;
491 SLJIT_ASSERT((inst[0] & 0xfff00000) == MOVW && (inst[1] & 0xfff00000) == MOVT);
492 inst[0] = MOVW | (inst[0] & 0xf000) | ((new_addr << 4) & 0xf0000) | (new_addr & 0xfff);
493 inst[1] = MOVT | (inst[1] & 0xf000) | ((new_addr >> 12) & 0xf0000) | ((new_addr >> 16) & 0xfff);
494 if (flush) {
495 SLJIT_CACHE_FLUSH(inst, inst + 2);
496 }
497 #endif
498 }
499
500 static sljit_uw get_immediate(sljit_uw imm);
501
502 static SLJIT_INLINE void inline_set_const(sljit_uw addr, sljit_w new_constant, int flush)
503 {
504 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
505 sljit_uw *ptr = (sljit_uw*)addr;
506 sljit_uw *inst = (sljit_uw*)ptr[0];
507 sljit_uw ldr_literal = ptr[1];
508 sljit_uw src2;
509
510 src2 = get_immediate(new_constant);
511 if (src2) {
512 *inst = 0xe3a00000 | (ldr_literal & 0xf000) | src2;
513 if (flush) {
514 SLJIT_CACHE_FLUSH(inst, inst + 1);
515 }
516 return;
517 }
518
519 src2 = get_immediate(~new_constant);
520 if (src2) {
521 *inst = 0xe3e00000 | (ldr_literal & 0xf000) | src2;
522 if (flush) {
523 SLJIT_CACHE_FLUSH(inst, inst + 1);
524 }
525 return;
526 }
527
528 if (ldr_literal & (1 << 23))
529 ptr = inst + ((ldr_literal & 0xfff) >> 2) + 2;
530 else
531 ptr = inst + 1;
532
533 if (*inst != ldr_literal) {
534 *inst = ldr_literal;
535 if (flush) {
536 SLJIT_CACHE_FLUSH(inst, inst + 1);
537 }
538 }
539 *ptr = new_constant;
540 #else
541 sljit_uw *inst = (sljit_uw*)addr;
542 SLJIT_ASSERT((inst[0] & 0xfff00000) == MOVW && (inst[1] & 0xfff00000) == MOVT);
543 inst[0] = MOVW | (inst[0] & 0xf000) | ((new_constant << 4) & 0xf0000) | (new_constant & 0xfff);
544 inst[1] = MOVT | (inst[1] & 0xf000) | ((new_constant >> 12) & 0xf0000) | ((new_constant >> 16) & 0xfff);
545 if (flush) {
546 SLJIT_CACHE_FLUSH(inst, inst + 2);
547 }
548 #endif
549 }
550
551 SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler)
552 {
553 struct sljit_memory_fragment *buf;
554 sljit_uw *code;
555 sljit_uw *code_ptr;
556 sljit_uw *buf_ptr;
557 sljit_uw *buf_end;
558 sljit_uw size;
559 sljit_uw word_count;
560 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
561 sljit_uw cpool_size;
562 sljit_uw cpool_skip_alignment;
563 sljit_uw cpool_current_index;
564 sljit_uw *cpool_start_address;
565 sljit_uw *last_pc_patch;
566 struct future_patch *first_patch;
567 #endif
568
569 struct sljit_label *label;
570 struct sljit_jump *jump;
571 struct sljit_const *const_;
572
573 CHECK_ERROR_PTR();
574 check_sljit_generate_code(compiler);
575 reverse_buf(compiler);
576
577 /* Second code generation pass. */
578 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
579 size = compiler->size + (compiler->patches << 1);
580 if (compiler->cpool_fill > 0)
581 size += compiler->cpool_fill + CONST_POOL_ALIGNMENT - 1;
582 #else
583 size = compiler->size;
584 #endif
585 code = (sljit_uw*)SLJIT_MALLOC_EXEC(size * sizeof(sljit_uw));
586 PTR_FAIL_WITH_EXEC_IF(code);
587 buf = compiler->buf;
588
589 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
590 cpool_size = 0;
591 cpool_skip_alignment = 0;
592 cpool_current_index = 0;
593 cpool_start_address = NULL;
594 first_patch = NULL;
595 last_pc_patch = code;
596 #endif
597
598 code_ptr = code;
599 word_count = 0;
600
601 label = compiler->labels;
602 jump = compiler->jumps;
603 const_ = compiler->consts;
604
605 if (label && label->size == 0) {
606 label->addr = (sljit_uw)code;
607 label->size = 0;
608 label = label->next;
609 }
610
611 do {
612 buf_ptr = (sljit_uw*)buf->memory;
613 buf_end = buf_ptr + (buf->used_size >> 2);
614 do {
615 word_count++;
616 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
617 if (cpool_size > 0) {
618 if (cpool_skip_alignment > 0) {
619 buf_ptr++;
620 cpool_skip_alignment--;
621 }
622 else {
623 if (SLJIT_UNLIKELY(resolve_const_pool_index(&first_patch, cpool_current_index, cpool_start_address, buf_ptr))) {
624 SLJIT_FREE_EXEC(code);
625 compiler->error = SLJIT_ERR_ALLOC_FAILED;
626 return NULL;
627 }
628 buf_ptr++;
629 if (++cpool_current_index >= cpool_size) {
630 SLJIT_ASSERT(!first_patch);
631 cpool_size = 0;
632 if (label && label->size == word_count) {
633 /* Points after the current instruction. */
634 label->addr = (sljit_uw)code_ptr;
635 label->size = code_ptr - code;
636 label = label->next;
637 }
638 }
639 }
640 }
641 else if ((*buf_ptr & 0xff000000) != PUSH_POOL) {
642 #endif
643 *code_ptr = *buf_ptr++;
644 /* These structures are ordered by their address. */
645 SLJIT_ASSERT(!label || label->size >= word_count);
646 SLJIT_ASSERT(!jump || jump->addr >= word_count);
647 SLJIT_ASSERT(!const_ || const_->addr >= word_count);
648 if (jump && jump->addr == word_count) {
649 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
650 if (detect_jump_type(jump, code_ptr, code))
651 code_ptr--;
652 jump->addr = (sljit_uw)code_ptr;
653 #else
654 jump->addr = (sljit_uw)(code_ptr - 2);
655 if (detect_jump_type(jump, code_ptr, code))
656 code_ptr -= 2;
657 #endif
658 jump = jump->next;
659 }
660 if (label && label->size == word_count) {
661 /* code_ptr can be affected above. */
662 label->addr = (sljit_uw)(code_ptr + 1);
663 label->size = (code_ptr + 1) - code;
664 label = label->next;
665 }
666 if (const_ && const_->addr == word_count) {
667 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
668 const_->addr = (sljit_uw)code_ptr;
669 #else
670 const_->addr = (sljit_uw)(code_ptr - 1);
671 #endif
672 const_ = const_->next;
673 }
674 code_ptr++;
675 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
676 }
677 else {
678 /* Fortunately, no need to shift. */
679 cpool_size = *buf_ptr++ & ~PUSH_POOL;
680 SLJIT_ASSERT(cpool_size > 0);
681 cpool_start_address = ALIGN_INSTRUCTION(code_ptr + 1);
682 cpool_current_index = patch_pc_relative_loads(last_pc_patch, code_ptr, cpool_start_address, cpool_size);
683 if (cpool_current_index > 0) {
684 /* Unconditional branch. */
685 *code_ptr = B | (((cpool_start_address - code_ptr) + cpool_current_index - 2) & ~PUSH_POOL);
686 code_ptr = cpool_start_address + cpool_current_index;
687 }
688 cpool_skip_alignment = CONST_POOL_ALIGNMENT - 1;
689 cpool_current_index = 0;
690 last_pc_patch = code_ptr;
691 }
692 #endif
693 } while (buf_ptr < buf_end);
694 buf = buf->next;
695 } while (buf);
696
697 SLJIT_ASSERT(!label);
698 SLJIT_ASSERT(!jump);
699 SLJIT_ASSERT(!const_);
700
701 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
702 SLJIT_ASSERT(cpool_size == 0);
703 if (compiler->cpool_fill > 0) {
704 cpool_start_address = ALIGN_INSTRUCTION(code_ptr);
705 cpool_current_index = patch_pc_relative_loads(last_pc_patch, code_ptr, cpool_start_address, compiler->cpool_fill);
706 if (cpool_current_index > 0)
707 code_ptr = cpool_start_address + cpool_current_index;
708
709 buf_ptr = compiler->cpool;
710 buf_end = buf_ptr + compiler->cpool_fill;
711 cpool_current_index = 0;
712 while (buf_ptr < buf_end) {
713 if (SLJIT_UNLIKELY(resolve_const_pool_index(&first_patch, cpool_current_index, cpool_start_address, buf_ptr))) {
714 SLJIT_FREE_EXEC(code);
715 compiler->error = SLJIT_ERR_ALLOC_FAILED;
716 return NULL;
717 }
718 buf_ptr++;
719 cpool_current_index++;
720 }
721 SLJIT_ASSERT(!first_patch);
722 }
723 #endif
724
725 jump = compiler->jumps;
726 while (jump) {
727 buf_ptr = (sljit_uw*)jump->addr;
728
729 if (jump->flags & PATCH_B) {
730 if (!(jump->flags & JUMP_ADDR)) {
731 SLJIT_ASSERT(jump->flags & JUMP_LABEL);
732 SLJIT_ASSERT(((sljit_w)jump->u.label->addr - (sljit_w)(buf_ptr + 2)) <= 0x01ffffff && ((sljit_w)jump->u.label->addr - (sljit_w)(buf_ptr + 2)) >= -0x02000000);
733 *buf_ptr |= (((sljit_w)jump->u.label->addr - (sljit_w)(buf_ptr + 2)) >> 2) & 0x00ffffff;
734 }
735 else {
736 SLJIT_ASSERT(((sljit_w)jump->u.target - (sljit_w)(buf_ptr + 2)) <= 0x01ffffff && ((sljit_w)jump->u.target - (sljit_w)(buf_ptr + 2)) >= -0x02000000);
737 *buf_ptr |= (((sljit_w)jump->u.target - (sljit_w)(buf_ptr + 2)) >> 2) & 0x00ffffff;
738 }
739 }
740 else if (jump->flags & SLJIT_REWRITABLE_JUMP) {
741 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
742 jump->addr = (sljit_uw)code_ptr;
743 code_ptr[0] = (sljit_uw)buf_ptr;
744 code_ptr[1] = *buf_ptr;
745 inline_set_jump_addr((sljit_uw)code_ptr, (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target, 0);
746 code_ptr += 2;
747 #else
748 inline_set_jump_addr((sljit_uw)buf_ptr, (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target, 0);
749 #endif
750 }
751 else {
752 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
753 if (jump->flags & IS_BL)
754 buf_ptr--;
755 if (*buf_ptr & (1 << 23))
756 buf_ptr += ((*buf_ptr & 0xfff) >> 2) + 2;
757 else
758 buf_ptr += 1;
759 *buf_ptr = (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target;
760 #else
761 inline_set_jump_addr((sljit_uw)buf_ptr, (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target, 0);
762 #endif
763 }
764 jump = jump->next;
765 }
766
767 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
768 const_ = compiler->consts;
769 while (const_) {
770 buf_ptr = (sljit_uw*)const_->addr;
771 const_->addr = (sljit_uw)code_ptr;
772
773 code_ptr[0] = (sljit_uw)buf_ptr;
774 code_ptr[1] = *buf_ptr;
775 if (*buf_ptr & (1 << 23))
776 buf_ptr += ((*buf_ptr & 0xfff) >> 2) + 2;
777 else
778 buf_ptr += 1;
779 /* Set the value again (can be a simple constant). */
780 inline_set_const((sljit_uw)code_ptr, *buf_ptr, 0);
781 code_ptr += 2;
782
783 const_ = const_->next;
784 }
785 #endif
786
787 SLJIT_ASSERT(code_ptr - code <= (int)size);
788
789 SLJIT_CACHE_FLUSH(code, code_ptr);
790 compiler->error = SLJIT_ERR_COMPILED;
791 compiler->executable_size = size * sizeof(sljit_uw);
792 return code;
793 }
794
795 /* emit_op inp_flags.
796 WRITE_BACK must be the first, since it is a flag. */
797 #define WRITE_BACK 0x01
798 #define ALLOW_IMM 0x02
799 #define ALLOW_INV_IMM 0x04
800 #define ALLOW_ANY_IMM (ALLOW_IMM | ALLOW_INV_IMM)
801 #define ARG_TEST 0x08
802
803 /* Creates an index in data_transfer_insts array. */
804 #define WORD_DATA 0x00
805 #define BYTE_DATA 0x10
806 #define HALF_DATA 0x20
807 #define SIGNED_DATA 0x40
808 #define LOAD_DATA 0x80
809
810 #define EMIT_INSTRUCTION(inst) \
811 FAIL_IF(push_inst(compiler, (inst)))
812
813 /* Condition: AL. */
814 #define EMIT_DATA_PROCESS_INS(opcode, set_flags, dst, src1, src2) \
815 (0xe0000000 | ((opcode) << 21) | (set_flags) | RD(dst) | RN(src1) | (src2))
816
817 static int emit_op(struct sljit_compiler *compiler, int op, int inp_flags,
818 int dst, sljit_w dstw,
819 int src1, sljit_w src1w,
820 int src2, sljit_w src2w);
821
822 SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_enter(struct sljit_compiler *compiler, int args, int temporaries, int generals, int local_size)
823 {
824 int size;
825 sljit_uw push;
826
827 CHECK_ERROR();
828 check_sljit_emit_enter(compiler, args, temporaries, generals, local_size);
829
830 compiler->temporaries = temporaries;
831 compiler->generals = generals;
832
833 /* Push general registers, temporary registers
834 stmdb sp!, {..., lr} */
835 push = PUSH | (1 << 14);
836 if (temporaries >= 5)
837 push |= 1 << 11;
838 if (temporaries >= 4)
839 push |= 1 << 10;
840 if (generals >= 5)
841 push |= 1 << 8;
842 if (generals >= 4)
843 push |= 1 << 7;
844 if (generals >= 3)
845 push |= 1 << 6;
846 if (generals >= 2)
847 push |= 1 << 5;
848 if (generals >= 1)
849 push |= 1 << 4;
850 EMIT_INSTRUCTION(push);
851
852 /* Stack must be aligned to 8 bytes: */
853 size = (1 + generals) * sizeof(sljit_uw);
854 if (temporaries >= 4)
855 size += (temporaries - 3) * sizeof(sljit_uw);
856 local_size += size;
857 local_size = (local_size + 7) & ~7;
858 local_size -= size;
859 compiler->local_size = local_size;
860 if (local_size > 0)
861 FAIL_IF(emit_op(compiler, SLJIT_SUB, ALLOW_IMM, SLJIT_LOCALS_REG, 0, SLJIT_LOCALS_REG, 0, SLJIT_IMM, local_size));
862
863 if (args >= 1)
864 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, SLJIT_GENERAL_REG1, SLJIT_UNUSED, RM(SLJIT_TEMPORARY_REG1)));
865 if (args >= 2)
866 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, SLJIT_GENERAL_REG2, SLJIT_UNUSED, RM(SLJIT_TEMPORARY_REG2)));
867 if (args >= 3)
868 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, SLJIT_GENERAL_REG3, SLJIT_UNUSED, RM(SLJIT_TEMPORARY_REG3)));
869
870 return SLJIT_SUCCESS;
871 }
872
873 SLJIT_API_FUNC_ATTRIBUTE void sljit_fake_enter(struct sljit_compiler *compiler, int args, int temporaries, int generals, int local_size)
874 {
875 int size;
876
877 CHECK_ERROR_VOID();
878 check_sljit_fake_enter(compiler, args, temporaries, generals, local_size);
879
880 compiler->temporaries = temporaries;
881 compiler->generals = generals;
882
883 size = (1 + generals) * sizeof(sljit_uw);
884 if (temporaries >= 4)
885 size += (temporaries - 3) * sizeof(sljit_uw);
886 local_size += size;
887 local_size = (local_size + 7) & ~7;
888 local_size -= size;
889 compiler->local_size = local_size;
890 }
891
892 SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_return(struct sljit_compiler *compiler, int src, sljit_w srcw)
893 {
894 sljit_uw pop;
895
896 CHECK_ERROR();
897 check_sljit_emit_return(compiler, src, srcw);
898
899 if (src != SLJIT_UNUSED && src != SLJIT_RETURN_REG)
900 FAIL_IF(emit_op(compiler, SLJIT_MOV, ALLOW_ANY_IMM, SLJIT_RETURN_REG, 0, TMP_REG1, 0, src, srcw));
901
902 if (compiler->local_size > 0)
903 FAIL_IF(emit_op(compiler, SLJIT_ADD, ALLOW_IMM, SLJIT_LOCALS_REG, 0, SLJIT_LOCALS_REG, 0, SLJIT_IMM, compiler->local_size));
904
905 pop = POP | (1 << 15);
906 /* Push general registers, temporary registers
907 ldmia sp!, {..., pc} */
908 if (compiler->temporaries >= 5)
909 pop |= 1 << 11;
910 if (compiler->temporaries >= 4)
911 pop |= 1 << 10;
912 if (compiler->generals >= 5)
913 pop |= 1 << 8;
914 if (compiler->generals >= 4)
915 pop |= 1 << 7;
916 if (compiler->generals >= 3)
917 pop |= 1 << 6;
918 if (compiler->generals >= 2)
919 pop |= 1 << 5;
920 if (compiler->generals >= 1)
921 pop |= 1 << 4;
922
923 return push_inst(compiler, pop);
924 }
925
926 /* --------------------------------------------------------------------- */
927 /* Operators */
928 /* --------------------------------------------------------------------- */
929
930 /* s/l - store/load (1 bit)
931 u/s - signed/unsigned (1 bit)
932 w/b/h/N - word/byte/half/NOT allowed (2 bit)
933 It contans 16 items, but not all are different. */
934
935 static sljit_w data_transfer_insts[16] = {
936 /* s u w */ 0xe5000000 /* str */,
937 /* s u b */ 0xe5400000 /* strb */,
938 /* s u h */ 0xe10000b0 /* strh */,
939 /* s u N */ 0x00000000 /* not allowed */,
940 /* s s w */ 0xe5000000 /* str */,
941 /* s s b */ 0xe5400000 /* strb */,
942 /* s s h */ 0xe10000b0 /* strh */,
943 /* s s N */ 0x00000000 /* not allowed */,
944
945 /* l u w */ 0xe5100000 /* ldr */,
946 /* l u b */ 0xe5500000 /* ldrb */,
947 /* l u h */ 0xe11000b0 /* ldrh */,
948 /* l u N */ 0x00000000 /* not allowed */,
949 /* l s w */ 0xe5100000 /* ldr */,
950 /* l s b */ 0xe11000d0 /* ldrsb */,
951 /* l s h */ 0xe11000f0 /* ldrsh */,
952 /* l s N */ 0x00000000 /* not allowed */,
953 };
954
955 #define EMIT_DATA_TRANSFER(type, add, wb, target, base1, base2) \
956 (data_transfer_insts[(type) >> 4] | ((add) << 23) | ((wb) << 21) | (reg_map[target] << 12) | (reg_map[base1] << 16) | (base2))
957 /* Normal ldr/str instruction.
958 Type2: ldrsb, ldrh, ldrsh */
959 #define IS_TYPE1_TRANSFER(type) \
960 (data_transfer_insts[(type) >> 4] & 0x04000000)
961 #define TYPE2_TRANSFER_IMM(imm) \
962 (((imm) & 0xf) | (((imm) & 0xf0) << 4) | (1 << 22))
963
964 /* flags: */
965 /* Arguments are swapped. */
966 #define ARGS_SWAPPED 0x01
967 /* Inverted immediate. */
968 #define INV_IMM 0x02
969 /* Source and destination is register. */
970 #define REG_DEST 0x04
971 #define REG_SOURCE 0x08
972 /* One instruction is enough. */
973 #define FAST_DEST 0x10
974 /* Multiple instructions are required. */
975 #define SLOW_DEST 0x20
976 /* SET_FLAGS must be (1 << 20) as it is also the value of S bit (can be used for optimization). */
977 #define SET_FLAGS (1 << 20)
978 /* dst: reg
979 src1: reg
980 src2: reg or imm (if allowed)
981 SRC2_IMM must be (1 << 25) as it is also the value of I bit (can be used for optimization). */
982 #define SRC2_IMM (1 << 25)
983
984 #define EMIT_DATA_PROCESS_INS_AND_RETURN(opcode) \
985 return push_inst(compiler, EMIT_DATA_PROCESS_INS(opcode, flags & SET_FLAGS, dst, src1, (src2 & SRC2_IMM) ? src2 : RM(src2)))
986
987 #define EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(opcode, dst, src1, src2) \
988 return push_inst(compiler, EMIT_DATA_PROCESS_INS(opcode, flags & SET_FLAGS, dst, src1, src2))
989
990 #define EMIT_SHIFT_INS_AND_RETURN(opcode) \
991 SLJIT_ASSERT(!(flags & INV_IMM) && !(src2 & SRC2_IMM)); \
992 if (compiler->shift_imm != 0x20) { \
993 SLJIT_ASSERT(src1 == TMP_REG1); \
994 SLJIT_ASSERT(!(flags & ARGS_SWAPPED)); \
995 return push_inst(compiler, EMIT_DATA_PROCESS_INS(MOV_DP, flags & SET_FLAGS, dst, SLJIT_UNUSED, (compiler->shift_imm << 7) | (opcode << 5) | reg_map[src2])); \
996 } \
997 return push_inst(compiler, EMIT_DATA_PROCESS_INS(MOV_DP, flags & SET_FLAGS, dst, SLJIT_UNUSED, (reg_map[(flags & ARGS_SWAPPED) ? src1 : src2] << 8) | (opcode << 5) | 0x10 | ((flags & ARGS_SWAPPED) ? reg_map[src2] : reg_map[src1])));
998
999 static SLJIT_INLINE int emit_single_op(struct sljit_compiler *compiler, int op, int flags,
1000 int dst, int src1, int src2)
1001 {
1002 sljit_w mul_inst;
1003
1004 switch (GET_OPCODE(op)) {
1005 case SLJIT_ADD:
1006 SLJIT_ASSERT(!(flags & INV_IMM));
1007 EMIT_DATA_PROCESS_INS_AND_RETURN(ADD_DP);
1008
1009 case SLJIT_ADDC:
1010 SLJIT_ASSERT(!(flags & INV_IMM));
1011 EMIT_DATA_PROCESS_INS_AND_RETURN(ADC_DP);
1012
1013 case SLJIT_SUB:
1014 SLJIT_ASSERT(!(flags & INV_IMM));
1015 if (!(flags & ARGS_SWAPPED))
1016 EMIT_DATA_PROCESS_INS_AND_RETURN(SUB_DP);
1017 EMIT_DATA_PROCESS_INS_AND_RETURN(RSB_DP);
1018
1019 case SLJIT_SUBC:
1020 SLJIT_ASSERT(!(flags & INV_IMM));
1021 if (!(flags & ARGS_SWAPPED))
1022 EMIT_DATA_PROCESS_INS_AND_RETURN(SBC_DP);
1023 EMIT_DATA_PROCESS_INS_AND_RETURN(RSC_DP);
1024
1025 case SLJIT_MUL:
1026 SLJIT_ASSERT(!(flags & INV_IMM));
1027 SLJIT_ASSERT(!(src2 & SRC2_IMM));
1028 if (SLJIT_UNLIKELY(op & SLJIT_SET_O))
1029 mul_inst = SMULL | (reg_map[TMP_REG3] << 16) | (reg_map[dst] << 12);
1030 else
1031 mul_inst = MUL | (reg_map[dst] << 16);
1032
1033 if (dst != src2)
1034 FAIL_IF(push_inst(compiler, mul_inst | (reg_map[src1] << 8) | reg_map[src2]));
1035 else if (dst != src1)
1036 FAIL_IF(push_inst(compiler, mul_inst | (reg_map[src2] << 8) | reg_map[src1]));
1037 else {
1038 /* Rm and Rd must not be the same register. */
1039 SLJIT_ASSERT(dst != TMP_REG1);
1040 FAIL_IF(push_inst(compiler, EMIT_DATA_PROCESS_INS(MOV_DP, 0, TMP_REG1, SLJIT_UNUSED, reg_map[src2])));
1041 FAIL_IF(push_inst(compiler, mul_inst | (reg_map[src2] << 8) | reg_map[TMP_REG1]));
1042 }
1043
1044 if (!(op & SLJIT_SET_O))
1045 return SLJIT_SUCCESS;
1046
1047 /* We need to use TMP_REG3. */
1048 compiler->cache_arg = 0;
1049 compiler->cache_argw = 0;
1050 /* cmp TMP_REG2, dst asr #31. */
1051 return push_inst(compiler, EMIT_DATA_PROCESS_INS(CMP_DP, SET_FLAGS, SLJIT_UNUSED, TMP_REG3, RM(dst) | 0xfc0));
1052
1053 case SLJIT_AND:
1054 if (!(flags & INV_IMM))
1055 EMIT_DATA_PROCESS_INS_AND_RETURN(AND_DP);
1056 EMIT_DATA_PROCESS_INS_AND_RETURN(BIC_DP);
1057
1058 case SLJIT_OR:
1059 SLJIT_ASSERT(!(flags & INV_IMM));
1060 EMIT_DATA_PROCESS_INS_AND_RETURN(ORR_DP);
1061
1062 case SLJIT_XOR:
1063 SLJIT_ASSERT(!(flags & INV_IMM));
1064 EMIT_DATA_PROCESS_INS_AND_RETURN(EOR_DP);
1065
1066 case SLJIT_SHL:
1067 EMIT_SHIFT_INS_AND_RETURN(0);
1068
1069 case SLJIT_LSHR:
1070 EMIT_SHIFT_INS_AND_RETURN(1);
1071
1072 case SLJIT_ASHR:
1073 EMIT_SHIFT_INS_AND_RETURN(2);
1074
1075 case SLJIT_MOV:
1076 SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & ARGS_SWAPPED));
1077 if (dst != src2) {
1078 if (src2 & SRC2_IMM) {
1079 if (flags & INV_IMM)
1080 EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MVN_DP, dst, SLJIT_UNUSED, src2);
1081 EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MOV_DP, dst, SLJIT_UNUSED, src2);
1082 }
1083 EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MOV_DP, dst, SLJIT_UNUSED, reg_map[src2]);
1084 }
1085 return SLJIT_SUCCESS;
1086
1087 case SLJIT_MOV_UB:
1088 case SLJIT_MOV_SB:
1089 SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & ARGS_SWAPPED));
1090 if ((flags & (REG_DEST | REG_SOURCE)) == (REG_DEST | REG_SOURCE)) {
1091 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
1092 if (op == SLJIT_MOV_UB)
1093 return push_inst(compiler, EMIT_DATA_PROCESS_INS(AND_DP, 0, dst, src2, SRC2_IMM | 0xff));
1094 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, dst, SLJIT_UNUSED, (24 << 7) | reg_map[src2]));
1095 return push_inst(compiler, EMIT_DATA_PROCESS_INS(MOV_DP, 0, dst, SLJIT_UNUSED, (24 << 7) | (op == SLJIT_MOV_UB ? 0x20 : 0x40) | reg_map[dst]));
1096 #else
1097 return push_inst(compiler, (op == SLJIT_MOV_UB ? UXTB : SXTB) | RD(dst) | RM(src2));
1098 #endif
1099 }
1100 else if (dst != src2) {
1101 SLJIT_ASSERT(src2 & SRC2_IMM);
1102 if (flags & INV_IMM)
1103 EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MVN_DP, dst, SLJIT_UNUSED, src2);
1104 EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MOV_DP, dst, SLJIT_UNUSED, src2);
1105 }
1106 return SLJIT_SUCCESS;
1107
1108 case SLJIT_MOV_UH:
1109 case SLJIT_MOV_SH:
1110 SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & ARGS_SWAPPED));
1111 if ((flags & (REG_DEST | REG_SOURCE)) == (REG_DEST | REG_SOURCE)) {
1112 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
1113 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, dst, SLJIT_UNUSED, (16 << 7) | reg_map[src2]));
1114 return push_inst(compiler, EMIT_DATA_PROCESS_INS(MOV_DP, 0, dst, SLJIT_UNUSED, (16 << 7) | (op == SLJIT_MOV_UH ? 0x20 : 0x40) | reg_map[dst]));
1115 #else
1116 return push_inst(compiler, (op == SLJIT_MOV_UH ? UXTH : SXTH) | RD(dst) | RM(src2));
1117 #endif
1118 }
1119 else if (dst != src2) {
1120 SLJIT_ASSERT(src2 & SRC2_IMM);
1121 if (flags & INV_IMM)
1122 EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MVN_DP, dst, SLJIT_UNUSED, src2);
1123 EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MOV_DP, dst, SLJIT_UNUSED, src2);
1124 }
1125 return SLJIT_SUCCESS;
1126
1127 case SLJIT_NOT:
1128 if (src2 & SRC2_IMM) {
1129 if (flags & INV_IMM)
1130 EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MOV_DP, dst, SLJIT_UNUSED, src2);
1131 EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MVN_DP, dst, SLJIT_UNUSED, src2);
1132 }
1133 EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MVN_DP, dst, SLJIT_UNUSED, RM(src2));
1134
1135 case SLJIT_CLZ:
1136 SLJIT_ASSERT(!(flags & INV_IMM));
1137 SLJIT_ASSERT(!(src2 & SRC2_IMM));
1138 FAIL_IF(push_inst(compiler, CLZ | RD(dst) | RM(src2)));
1139 if (flags & SET_FLAGS)
1140 EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(CMP_DP, SLJIT_UNUSED, dst, SRC2_IMM);
1141 return SLJIT_SUCCESS;
1142 }
1143 SLJIT_ASSERT_STOP();
1144 return SLJIT_SUCCESS;
1145 }
1146
1147 #undef EMIT_DATA_PROCESS_INS_AND_RETURN
1148 #undef EMIT_FULL_DATA_PROCESS_INS_AND_RETURN
1149 #undef EMIT_SHIFT_INS_AND_RETURN
1150
1151 /* Tests whether the immediate can be stored in the 12 bit imm field.
1152 Returns with 0 if not possible. */
1153 static sljit_uw get_immediate(sljit_uw imm)
1154 {
1155 int rol;
1156
1157 if (imm <= 0xff)
1158 return SRC2_IMM | imm;
1159
1160 if (!(imm & 0xff000000)) {
1161 imm <<= 8;
1162 rol = 8;
1163 }
1164 else {
1165 imm = (imm << 24) | (imm >> 8);
1166 rol = 0;
1167 }
1168
1169 if (!(imm & 0xff000000)) {
1170 imm <<= 8;
1171 rol += 4;
1172 }
1173
1174 if (!(imm & 0xf0000000)) {
1175 imm <<= 4;
1176 rol += 2;
1177 }
1178
1179 if (!(imm & 0xc0000000)) {
1180 imm <<= 2;
1181 rol += 1;
1182 }
1183
1184 if (!(imm & 0x00ffffff))
1185 return SRC2_IMM | (imm >> 24) | (rol << 8);
1186 else
1187 return 0;
1188 }
1189
1190 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
1191 static int generate_int(struct sljit_compiler *compiler, int reg, sljit_uw imm, int positive)
1192 {
1193 sljit_uw mask;
1194 sljit_uw imm1;
1195 sljit_uw imm2;
1196 int rol;
1197
1198 /* Step1: Search a zero byte (8 continous zero bit). */
1199 mask = 0xff000000;
1200 rol = 8;
1201 while(1) {
1202 if (!(imm & mask)) {
1203 /* Rol imm by rol. */
1204 imm = (imm << rol) | (imm >> (32 - rol));
1205 /* Calculate arm rol. */
1206 rol = 4 + (rol >> 1);
1207 break;
1208 }
1209 rol += 2;
1210 mask >>= 2;
1211 if (mask & 0x3) {
1212 /* rol by 8. */
1213 imm = (imm << 8) | (imm >> 24);
1214 mask = 0xff00;
1215 rol = 24;
1216 while (1) {
1217 if (!(imm & mask)) {
1218 /* Rol imm by rol. */
1219 imm = (imm << rol) | (imm >> (32 - rol));
1220 /* Calculate arm rol. */
1221 rol = (rol >> 1) - 8;
1222 break;
1223 }
1224 rol += 2;
1225 mask >>= 2;
1226 if (mask & 0x3)
1227 return 0;
1228 }
1229 break;
1230 }
1231 }
1232
1233 /* The low 8 bit must be zero. */
1234 SLJIT_ASSERT(!(imm & 0xff));
1235
1236 if (!(imm & 0xff000000)) {
1237 imm1 = SRC2_IMM | ((imm >> 16) & 0xff) | (((rol + 4) & 0xf) << 8);
1238 imm2 = SRC2_IMM | ((imm >> 8) & 0xff) | (((rol + 8) & 0xf) << 8);
1239 }
1240 else if (imm & 0xc0000000) {
1241 imm1 = SRC2_IMM | ((imm >> 24) & 0xff) | ((rol & 0xf) << 8);
1242 imm <<= 8;
1243 rol += 4;
1244
1245 if (!(imm & 0xff000000)) {
1246 imm <<= 8;
1247 rol += 4;
1248 }
1249
1250 if (!(imm & 0xf0000000)) {
1251 imm <<= 4;
1252 rol += 2;
1253 }
1254
1255 if (!(imm & 0xc0000000)) {
1256 imm <<= 2;
1257 rol += 1;
1258 }
1259
1260 if (!(imm & 0x00ffffff))
1261 imm2 = SRC2_IMM | (imm >> 24) | ((rol & 0xf) << 8);
1262 else
1263 return 0;
1264 }
1265 else {
1266 if (!(imm & 0xf0000000)) {
1267 imm <<= 4;
1268 rol += 2;
1269 }
1270
1271 if (!(imm & 0xc0000000)) {
1272 imm <<= 2;
1273 rol += 1;
1274 }
1275
1276 imm1 = SRC2_IMM | ((imm >> 24) & 0xff) | ((rol & 0xf) << 8);
1277 imm <<= 8;
1278 rol += 4;
1279
1280 if (!(imm & 0xf0000000)) {
1281 imm <<= 4;
1282 rol += 2;
1283 }
1284
1285 if (!(imm & 0xc0000000)) {
1286 imm <<= 2;
1287 rol += 1;
1288 }
1289
1290 if (!(imm & 0x00ffffff))
1291 imm2 = SRC2_IMM | (imm >> 24) | ((rol & 0xf) << 8);
1292 else
1293 return 0;
1294 }
1295
1296 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(positive ? MOV_DP : MVN_DP, 0, reg, SLJIT_UNUSED, imm1));
1297 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(positive ? ORR_DP : BIC_DP, 0, reg, reg, imm2));
1298 return 1;
1299 }
1300 #endif
1301
1302 static int load_immediate(struct sljit_compiler *compiler, int reg, sljit_uw imm)
1303 {
1304 sljit_uw tmp;
1305
1306 #if (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7)
1307 if (!(imm & ~0xffff))
1308 return push_inst(compiler, MOVW | RD(reg) | ((imm << 4) & 0xf0000) | (imm & 0xfff));
1309 #endif
1310
1311 /* Create imm by 1 inst. */
1312 tmp = get_immediate(imm);
1313 if (tmp) {
1314 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, reg, SLJIT_UNUSED, tmp));
1315 return SLJIT_SUCCESS;
1316 }
1317
1318 tmp = get_immediate(~imm);
1319 if (tmp) {
1320 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MVN_DP, 0, reg, SLJIT_UNUSED, tmp));
1321 return SLJIT_SUCCESS;
1322 }
1323
1324 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
1325 /* Create imm by 2 inst. */
1326 FAIL_IF(generate_int(compiler, reg, imm, 1));
1327 FAIL_IF(generate_int(compiler, reg, ~imm, 0));
1328
1329 /* Load integer. */
1330 return push_inst_with_literal(compiler, EMIT_DATA_TRANSFER(WORD_DATA | LOAD_DATA, 1, 0, reg, TMP_PC, 0), imm);
1331 #else
1332 return emit_imm(compiler, reg, imm);
1333 #endif
1334 }
1335
1336 /* Can perform an operation using at most 1 instruction. */
1337 static int getput_arg_fast(struct sljit_compiler *compiler, int inp_flags, int reg, int arg, sljit_w argw)
1338 {
1339 sljit_uw imm;
1340
1341 if (arg & SLJIT_IMM) {
1342 imm = get_immediate(argw);
1343 if (imm) {
1344 if (inp_flags & ARG_TEST)
1345 return 1;
1346 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, reg, SLJIT_UNUSED, imm));
1347 return -1;
1348 }
1349 imm = get_immediate(~argw);
1350 if (imm) {
1351 if (inp_flags & ARG_TEST)
1352 return 1;
1353 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MVN_DP, 0, reg, SLJIT_UNUSED, imm));
1354 return -1;
1355 }
1356 return (inp_flags & ARG_TEST) ? SLJIT_SUCCESS : 0;
1357 }
1358
1359 SLJIT_ASSERT(arg & SLJIT_MEM);
1360
1361 /* Fast loads/stores. */
1362 if (arg & 0xf) {
1363 if (!(arg & 0xf0)) {
1364 if (IS_TYPE1_TRANSFER(inp_flags)) {
1365 if (argw >= 0 && argw <= 0xfff) {
1366 if (inp_flags & ARG_TEST)
1367 return 1;
1368 EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, 1, inp_flags & WRITE_BACK, reg, arg & 0xf, argw));
1369 return -1;
1370 }
1371 if (argw < 0 && argw >= -0xfff) {
1372 if (inp_flags & ARG_TEST)
1373 return 1;
1374 EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, 0, inp_flags & WRITE_BACK, reg, arg & 0xf, -argw));
1375 return -1;
1376 }
1377 }
1378 else {
1379 if (argw >= 0 && argw <= 0xff) {
1380 if (inp_flags & ARG_TEST)
1381 return 1;
1382 EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, 1, inp_flags & WRITE_BACK, reg, arg & 0xf, TYPE2_TRANSFER_IMM(argw)));
1383 return -1;
1384 }
1385 if (argw < 0 && argw >= -0xff) {
1386 if (inp_flags & ARG_TEST)
1387 return 1;
1388 argw = -argw;
1389 EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, 0, inp_flags & WRITE_BACK, reg, arg & 0xf, TYPE2_TRANSFER_IMM(argw)));
1390 return -1;
1391 }
1392 }
1393 }
1394 else if ((argw & 0x3) == 0 || IS_TYPE1_TRANSFER(inp_flags)) {
1395 if (inp_flags & ARG_TEST)
1396 return 1;
1397 EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, 1, inp_flags & WRITE_BACK, reg, arg & 0xf,
1398 RM((arg >> 4) & 0xf) | (IS_TYPE1_TRANSFER(inp_flags) ? SRC2_IMM : 0) | ((argw & 0x3) << 7)));
1399 return -1;
1400 }
1401 }
1402
1403 return (inp_flags & ARG_TEST) ? SLJIT_SUCCESS : 0;
1404 }
1405
1406 /* See getput_arg below.
1407 Note: can_cache is called only for binary operators. Those
1408 operators always uses word arguments without write back. */
1409 static int can_cache(int arg, sljit_w argw, int next_arg, sljit_w next_argw)
1410 {
1411 /* Immediate caching is not supported as it would be an operation on constant arguments. */
1412 if (arg & SLJIT_IMM)
1413 return 0;
1414
1415 /* Always a simple operation. */
1416 if (arg & 0xf0)
1417 return 0;
1418
1419 if (!(arg & 0xf)) {
1420 /* Immediate access. */
1421 if ((next_arg & SLJIT_MEM) && ((sljit_uw)argw - (sljit_uw)next_argw <= 0xfff || (sljit_uw)next_argw - (sljit_uw)argw <= 0xfff))
1422 return 1;
1423 return 0;
1424 }
1425
1426 if (argw <= 0xfffff && argw >= -0xfffff)
1427 return 0;
1428
1429 if (argw == next_argw && (next_arg & SLJIT_MEM))
1430 return 1;
1431
1432 if (arg == next_arg && ((sljit_uw)argw - (sljit_uw)next_argw <= 0xfff || (sljit_uw)next_argw - (sljit_uw)argw <= 0xfff))
1433 return 1;
1434
1435 return 0;
1436 }
1437
1438 #define GETPUT_ARG_DATA_TRANSFER(add, wb, target, base, imm) \
1439 if (max_delta & 0xf00) \
1440 FAIL_IF(push_inst(compiler, EMIT_DATA_TRANSFER(inp_flags, add, wb, target, base, imm))); \
1441 else \
1442 FAIL_IF(push_inst(compiler, EMIT_DATA_TRANSFER(inp_flags, add, wb, target, base, TYPE2_TRANSFER_IMM(imm))));
1443
1444 #define TEST_WRITE_BACK() \
1445 if (inp_flags & WRITE_BACK) { \
1446 tmp_r = arg & 0xf; \
1447 if (reg == tmp_r) { \
1448 /* This can only happen for stores */ \
1449 /* since ldr reg, [reg, ...]! has no meaning */ \
1450 SLJIT_ASSERT(!(inp_flags & LOAD_DATA)); \
1451 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, TMP_REG3, SLJIT_UNUSED, RM(reg))); \
1452 reg = TMP_REG3; \
1453 } \
1454 }
1455
1456 /* Emit the necessary instructions. See can_cache above. */
1457 static int getput_arg(struct sljit_compiler *compiler, int inp_flags, int reg, int arg, sljit_w argw, int next_arg, sljit_w next_argw)
1458 {
1459 int tmp_r;
1460 sljit_w max_delta;
1461 sljit_w sign;
1462
1463 if (arg & SLJIT_IMM) {
1464 SLJIT_ASSERT(inp_flags & LOAD_DATA);
1465 return load_immediate(compiler, reg, argw);
1466 }
1467
1468 SLJIT_ASSERT(arg & SLJIT_MEM);
1469
1470 tmp_r = (inp_flags & LOAD_DATA) ? reg : TMP_REG3;
1471 max_delta = IS_TYPE1_TRANSFER(inp_flags) ? 0xfff : 0xff;
1472
1473 if ((arg & 0xf) == SLJIT_UNUSED) {
1474 /* Write back is not used. */
1475 if ((compiler->cache_arg & SLJIT_IMM) && (((sljit_uw)argw - (sljit_uw)compiler->cache_argw) <= (sljit_uw)max_delta || ((sljit_uw)compiler->cache_argw - (sljit_uw)argw) <= (sljit_uw)max_delta)) {
1476 if (((sljit_uw)argw - (sljit_uw)compiler->cache_argw) <= (sljit_uw)max_delta) {
1477 sign = 1;
1478 argw = argw - compiler->cache_argw;
1479 }
1480 else {
1481 sign = 0;
1482 argw = compiler->cache_argw - argw;
1483 }
1484
1485 if (max_delta & 0xf00) {
1486 EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, sign, 0, reg, TMP_REG3, argw));
1487 }
1488 else {
1489 EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, sign, 0, reg, TMP_REG3, TYPE2_TRANSFER_IMM(argw)));
1490 }
1491 return SLJIT_SUCCESS;
1492 }
1493
1494 /* With write back, we can create some sophisticated loads, but
1495 it is hard to decide whether we should convert downward (0s) or upward (1s). */
1496 if ((next_arg & SLJIT_MEM) && ((sljit_uw)argw - (sljit_uw)next_argw <= (sljit_uw)max_delta || (sljit_uw)next_argw - (sljit_uw)argw <= (sljit_uw)max_delta)) {
1497 SLJIT_ASSERT(inp_flags & LOAD_DATA);
1498
1499 compiler->cache_arg = SLJIT_IMM;
1500 compiler->cache_argw = argw;
1501 tmp_r = TMP_REG3;
1502 }
1503
1504 FAIL_IF(load_immediate(compiler, tmp_r, argw));
1505 GETPUT_ARG_DATA_TRANSFER(1, 0, reg, tmp_r, 0);
1506 return SLJIT_SUCCESS;
1507 }
1508
1509 /* Extended imm addressing for [reg+imm] format. */
1510 sign = (max_delta << 8) | 0xff;
1511 if (!(arg & 0xf0) && argw <= sign && argw >= -sign) {
1512 TEST_WRITE_BACK();
1513 if (argw >= 0) {
1514 sign = 1;
1515 }
1516 else {
1517 sign = 0;
1518 argw = -argw;
1519 }
1520
1521 /* Optimization: add is 0x4, sub is 0x2. Sign is 1 for add and 0 for sub. */
1522 if (max_delta & 0xf00)
1523 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(SUB_DP << sign, 0, tmp_r, arg & 0xf, SRC2_IMM | (argw >> 12) | 0xa00));
1524 else
1525 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(SUB_DP << sign, 0, tmp_r, arg & 0xf, SRC2_IMM | (argw >> 8) | 0xc00));
1526
1527 argw &= max_delta;
1528 GETPUT_ARG_DATA_TRANSFER(sign, inp_flags & WRITE_BACK, reg, tmp_r, argw);
1529 return SLJIT_SUCCESS;
1530 }
1531
1532 if (arg & 0xf0) {
1533 SLJIT_ASSERT((argw & 0x3) && !(max_delta & 0xf00));
1534 if (inp_flags & WRITE_BACK)
1535 tmp_r = arg & 0xf;
1536 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(ADD_DP, 0, tmp_r, arg & 0xf, RM((arg >> 4) & 0xf) | ((argw & 0x3) << 7)));
1537 EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, 1, 0, reg, tmp_r, TYPE2_TRANSFER_IMM(0)));
1538 return SLJIT_SUCCESS;
1539 }
1540
1541 if (compiler->cache_arg == arg && ((sljit_uw)argw - (sljit_uw)compiler->cache_argw) <= (sljit_uw)max_delta) {
1542 SLJIT_ASSERT(!(inp_flags & WRITE_BACK));
1543 argw = argw - compiler->cache_argw;
1544 GETPUT_ARG_DATA_TRANSFER(1, 0, reg, TMP_REG3, argw);
1545 return SLJIT_SUCCESS;
1546 }
1547
1548 if (compiler->cache_arg == arg && ((sljit_uw)compiler->cache_argw - (sljit_uw)argw) <= (sljit_uw)max_delta) {
1549 SLJIT_ASSERT(!(inp_flags & WRITE_BACK));
1550 argw = compiler->cache_argw - argw;
1551 GETPUT_ARG_DATA_TRANSFER(0, 0, reg, TMP_REG3, argw);
1552 return SLJIT_SUCCESS;
1553 }
1554
1555 if ((compiler->cache_arg & SLJIT_IMM) && compiler->cache_argw == argw) {
1556 TEST_WRITE_BACK();
1557 EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, 1, inp_flags & WRITE_BACK, reg, arg & 0xf, RM(TMP_REG3) | (max_delta & 0xf00 ? SRC2_IMM : 0)));
1558 return SLJIT_SUCCESS;
1559 }
1560
1561 if (argw == next_argw && (next_arg & SLJIT_MEM)) {
1562 SLJIT_ASSERT(inp_flags & LOAD_DATA);
1563 FAIL_IF(load_immediate(compiler, TMP_REG3, argw));
1564
1565 compiler->cache_arg = SLJIT_IMM;
1566 compiler->cache_argw = argw;
1567
1568 TEST_WRITE_BACK();
1569 EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, 1, inp_flags & WRITE_BACK, reg, arg & 0xf, RM(TMP_REG3) | (max_delta & 0xf00 ? SRC2_IMM : 0)));
1570 return SLJIT_SUCCESS;
1571 }
1572
1573 if (arg == next_arg && !(inp_flags & WRITE_BACK) && ((sljit_uw)argw - (sljit_uw)next_argw <= (sljit_uw)max_delta || (sljit_uw)next_argw - (sljit_uw)argw <= (sljit_uw)max_delta)) {
1574 SLJIT_ASSERT(inp_flags & LOAD_DATA);
1575 FAIL_IF(load_immediate(compiler, TMP_REG3, argw));
1576 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(ADD_DP, 0, TMP_REG3, TMP_REG3, reg_map[arg & 0xf]));
1577
1578 compiler->cache_arg = arg;
1579 compiler->cache_argw = argw;
1580
1581 GETPUT_ARG_DATA_TRANSFER(1, 0, reg, TMP_REG3, 0);
1582 return SLJIT_SUCCESS;
1583 }
1584
1585 if ((arg & 0xf) == tmp_r) {
1586 compiler->cache_arg = SLJIT_IMM;
1587 compiler->cache_argw = argw;
1588 tmp_r = TMP_REG3;
1589 }
1590
1591 FAIL_IF(load_immediate(compiler, tmp_r, argw));
1592 EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, 1, inp_flags & WRITE_BACK, reg, arg & 0xf, reg_map[tmp_r] | (max_delta & 0xf00 ? SRC2_IMM : 0)));
1593 return SLJIT_SUCCESS;
1594 }
1595
1596 static int emit_op(struct sljit_compiler *compiler, int op, int inp_flags,
1597 int dst, sljit_w dstw,
1598 int src1, sljit_w src1w,
1599 int src2, sljit_w src2w)
1600 {
1601 /* arg1 goes to TMP_REG1 or src reg
1602 arg2 goes to TMP_REG2, imm or src reg
1603 TMP_REG3 can be used for caching
1604 result goes to TMP_REG2, so put result can use TMP_REG1 and TMP_REG3. */
1605
1606 /* We prefers register and simple consts. */
1607 int dst_r;
1608 int src1_r;
1609 int src2_r = 0;
1610 int sugg_src2_r = TMP_REG2;
1611 int flags = GET_FLAGS(op) ? SET_FLAGS : 0;
1612
1613 compiler->cache_arg = 0;
1614 compiler->cache_argw = 0;
1615
1616 /* Destination check. */
1617 if (dst >= SLJIT_TEMPORARY_REG1 && dst <= TMP_REG3) {
1618 dst_r = dst;
1619 flags |= REG_DEST;
1620 if (op >= SLJIT_MOV && op <= SLJIT_MOVU_SI)
1621 sugg_src2_r = dst_r;
1622 }
1623 else if (dst == SLJIT_UNUSED) {
1624 if (op >= SLJIT_MOV && op <= SLJIT_MOVU_SI && !(src2 & SLJIT_MEM))
1625 return SLJIT_SUCCESS;
1626 dst_r = TMP_REG2;
1627 }
1628 else {
1629 SLJIT_ASSERT(dst & SLJIT_MEM);
1630 if (getput_arg_fast(compiler, inp_flags | ARG_TEST, TMP_REG2, dst, dstw)) {
1631 flags |= FAST_DEST;
1632 dst_r = TMP_REG2;
1633 }
1634 else {
1635 flags |= SLOW_DEST;
1636 dst_r = 0;
1637 }
1638 }
1639
1640 /* Source 1. */
1641 if (src1 >= SLJIT_TEMPORARY_REG1 && src1 <= TMP_REG3)
1642 src1_r = src1;
1643 else if (src2 >= SLJIT_TEMPORARY_REG1 && src2 <= TMP_REG3) {
1644 flags |= ARGS_SWAPPED;
1645 src1_r = src2;
1646 src2 = src1;
1647 src2w = src1w;
1648 }
1649 else {
1650 if ((inp_flags & ALLOW_ANY_IMM) && (src1 & SLJIT_IMM)) {
1651 /* The second check will generate a hit. */
1652 src2_r = get_immediate(src1w);
1653 if (src2_r) {
1654 flags |= ARGS_SWAPPED;
1655 src1 = src2;
1656 src1w = src2w;
1657 }
1658 if (inp_flags & ALLOW_INV_IMM) {
1659 src2_r = get_immediate(~src1w);
1660 if (src2_r) {
1661 flags |= ARGS_SWAPPED | INV_IMM;
1662 src1 = src2;
1663 src1w = src2w;
1664 }
1665 }
1666 }
1667
1668 src1_r = 0;
1669 if (getput_arg_fast(compiler, inp_flags | LOAD_DATA, TMP_REG1, src1, src1w)) {
1670 FAIL_IF(compiler->error);
1671 src1_r = TMP_REG1;
1672 }
1673 }
1674
1675 /* Source 2. */
1676 if (src2_r == 0) {
1677 if (src2 >= SLJIT_TEMPORARY_REG1 && src2 <= TMP_REG3) {
1678 src2_r = src2;
1679 flags |= REG_SOURCE;
1680 if (!(flags & REG_DEST) && op >= SLJIT_MOV && op <= SLJIT_MOVU_SI)
1681 dst_r = src2_r;
1682 }
1683 else do { /* do { } while(0) is used because of breaks. */
1684 if ((inp_flags & ALLOW_ANY_IMM) && (src2 & SLJIT_IMM)) {
1685 src2_r = get_immediate(src2w);
1686 if (src2_r)
1687 break;
1688 if (inp_flags & ALLOW_INV_IMM) {
1689 src2_r = get_immediate(~src2w);
1690 if (src2_r) {
1691 flags |= INV_IMM;
1692 break;
1693 }
1694 }
1695 }
1696
1697 /* src2_r is 0. */
1698 if (getput_arg_fast(compiler, inp_flags | LOAD_DATA, sugg_src2_r, src2, src2w)) {
1699 FAIL_IF(compiler->error);
1700 src2_r = sugg_src2_r;
1701 }
1702 } while (0);
1703 }
1704
1705 /* src1_r, src2_r and dst_r can be zero (=unprocessed) or non-zero.
1706 If they are zero, they must not be registers. */
1707 if (src1_r == 0 && src2_r == 0 && dst_r == 0) {
1708 if (!can_cache(src1, src1w, src2, src2w) && can_cache(src1, src1w, dst, dstw)) {
1709 SLJIT_ASSERT(!(flags & ARGS_SWAPPED));
1710 flags |= ARGS_SWAPPED;
1711 FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, TMP_REG1, src2, src2w, src1, src1w));
1712 FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, TMP_REG2, src1, src1w, dst, dstw));
1713 }
1714 else {
1715 FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, TMP_REG1, src1, src1w, src2, src2w));
1716 FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, TMP_REG2, src2, src2w, dst, dstw));
1717 }
1718 src1_r = TMP_REG1;
1719 src2_r = TMP_REG2;
1720 }
1721 else if (src1_r == 0 && src2_r == 0) {
1722 FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, TMP_REG1, src1, src1w, src2, src2w));
1723 src1_r = TMP_REG1;
1724 }
1725 else if (src1_r == 0 && dst_r == 0) {
1726 FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, TMP_REG1, src1, src1w, dst, dstw));
1727 src1_r = TMP_REG1;
1728 }
1729 else if (src2_r == 0 && dst_r == 0) {
1730 FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, sugg_src2_r, src2, src2w, dst, dstw));
1731 src2_r = sugg_src2_r;
1732 }
1733
1734 if (dst_r == 0)
1735 dst_r = TMP_REG2;
1736
1737 if (src1_r == 0) {
1738 FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, TMP_REG1, src1, src1w, 0, 0));
1739 src1_r = TMP_REG1;
1740 }
1741
1742 if (src2_r == 0) {
1743 FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, sugg_src2_r, src2, src2w, 0, 0));
1744 src2_r = sugg_src2_r;
1745 }
1746
1747 FAIL_IF(emit_single_op(compiler, op, flags, dst_r, src1_r, src2_r));
1748
1749 if (flags & (FAST_DEST | SLOW_DEST)) {
1750 if (flags & FAST_DEST)
1751 FAIL_IF(getput_arg_fast(compiler, inp_flags, dst_r, dst, dstw));
1752 else
1753 FAIL_IF(getput_arg(compiler, inp_flags, dst_r, dst, dstw, 0, 0));
1754 }
1755 return SLJIT_SUCCESS;
1756 }
1757
1758 SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_op0(struct sljit_compiler *compiler, int op)
1759 {
1760 CHECK_ERROR();
1761 check_sljit_emit_op0(compiler, op);
1762
1763 op = GET_OPCODE(op);
1764 switch (op) {
1765 case SLJIT_BREAKPOINT:
1766 EMIT_INSTRUCTION(DEBUGGER);
1767 break;
1768 case SLJIT_NOP:
1769 EMIT_INSTRUCTION(NOP);
1770 break;
1771 }
1772
1773 return SLJIT_SUCCESS;
1774 }
1775
1776 SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_op1(struct sljit_compiler *compiler, int op,
1777 int dst, sljit_w dstw,
1778 int src, sljit_w srcw)
1779 {
1780 CHECK_ERROR();
1781 check_sljit_emit_op1(compiler, op, dst, dstw, src, srcw);
1782
1783 switch (GET_OPCODE(op)) {
1784 case SLJIT_MOV:
1785 case SLJIT_MOV_UI:
1786 case SLJIT_MOV_SI:
1787 return emit_op(compiler, SLJIT_MOV, ALLOW_ANY_IMM, dst, dstw, TMP_REG1, 0, src, srcw);
1788
1789 case SLJIT_MOV_UB:
1790 return emit_op(compiler, SLJIT_MOV_UB, ALLOW_ANY_IMM | BYTE_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (unsigned char)srcw : srcw);
1791
1792 case SLJIT_MOV_SB:
1793 return emit_op(compiler, SLJIT_MOV_SB, ALLOW_ANY_IMM | SIGNED_DATA | BYTE_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (signed char)srcw : srcw);
1794
1795 case SLJIT_MOV_UH:
1796 return emit_op(compiler, SLJIT_MOV_UH, ALLOW_ANY_IMM | HALF_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (unsigned short)srcw : srcw);
1797
1798 case SLJIT_MOV_SH:
1799 return emit_op(compiler, SLJIT_MOV_SH, ALLOW_ANY_IMM | SIGNED_DATA | HALF_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (signed short)srcw : srcw);
1800
1801 case SLJIT_MOVU:
1802 case SLJIT_MOVU_UI:
1803 case SLJIT_MOVU_SI:
1804 return emit_op(compiler, SLJIT_MOV, ALLOW_ANY_IMM | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);
1805
1806 case SLJIT_MOVU_UB:
1807 return emit_op(compiler, SLJIT_MOV_UB, ALLOW_ANY_IMM | BYTE_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (unsigned char)srcw : srcw);
1808
1809 case SLJIT_MOVU_SB:
1810 return emit_op(compiler, SLJIT_MOV_SB, ALLOW_ANY_IMM | SIGNED_DATA | BYTE_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (signed char)srcw : srcw);
1811
1812 case SLJIT_MOVU_UH:
1813 return emit_op(compiler, SLJIT_MOV_UH, ALLOW_ANY_IMM | HALF_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (unsigned short)srcw : srcw);
1814
1815 case SLJIT_MOVU_SH:
1816 return emit_op(compiler, SLJIT_MOV_SH, ALLOW_ANY_IMM | SIGNED_DATA | HALF_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (signed short)srcw : srcw);
1817
1818 case SLJIT_NOT:
1819 return emit_op(compiler, op, ALLOW_ANY_IMM, dst, dstw, TMP_REG1, 0, src, srcw);
1820
1821 case SLJIT_NEG:
1822 #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE) || (defined SLJIT_DEBUG && SLJIT_DEBUG)
1823 compiler->skip_checks = 1;
1824 #endif
1825 return sljit_emit_op2(compiler, SLJIT_SUB | GET_FLAGS(op), dst, dstw, SLJIT_IMM, 0, src, srcw);
1826
1827 case SLJIT_CLZ:
1828 return emit_op(compiler, op, 0, dst, dstw, TMP_REG1, 0, src, srcw);
1829 }
1830
1831 return SLJIT_SUCCESS;
1832 }
1833
1834 SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_op2(struct sljit_compiler *compiler, int op,
1835 int dst, sljit_w dstw,
1836 int src1, sljit_w src1w,
1837 int src2, sljit_w src2w)
1838 {
1839 CHECK_ERROR();
1840 check_sljit_emit_op2(compiler, op, dst, dstw, src1, src1w, src2, src2w);
1841
1842 switch (GET_OPCODE(op)) {
1843 case SLJIT_ADD:
1844 case SLJIT_ADDC:
1845 case SLJIT_SUB:
1846 case SLJIT_SUBC:
1847 case SLJIT_OR:
1848 case SLJIT_XOR:
1849 return emit_op(compiler, op, ALLOW_IMM, dst, dstw, src1, src1w, src2, src2w);
1850
1851 case SLJIT_MUL:
1852 return emit_op(compiler, op, 0, dst, dstw, src1, src1w, src2, src2w);
1853
1854 case SLJIT_AND:
1855 return emit_op(compiler, op, ALLOW_ANY_IMM, dst, dstw, src1, src1w, src2, src2w);
1856
1857 case SLJIT_SHL:
1858 case SLJIT_LSHR:
1859 case SLJIT_ASHR:
1860 if (src2 & SLJIT_IMM) {
1861 compiler->shift_imm = src2w & 0x1f;
1862 return emit_op(compiler, op, 0, dst, dstw, TMP_REG1, 0, src1, src1w);
1863 }
1864 else {
1865 compiler->shift_imm = 0x20;
1866 return emit_op(compiler, op, 0, dst, dstw, src1, src1w, src2, src2w);
1867 }
1868 }
1869
1870 return SLJIT_SUCCESS;
1871 }
1872
1873 /* --------------------------------------------------------------------- */
1874 /* Floating point operators */
1875 /* --------------------------------------------------------------------- */
1876
1877 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
1878
1879 /* 0 - no fpu
1880 1 - vfp */
1881 static int arm_fpu_type = -1;
1882
1883 static void init_compiler()
1884 {
1885 if (arm_fpu_type != -1)
1886 return;
1887
1888 /* TODO: Only the OS can help to determine the correct fpu type. */
1889 arm_fpu_type = 1;
1890 }
1891
1892 SLJIT_API_FUNC_ATTRIBUTE int sljit_is_fpu_available(void)
1893 {
1894 if (arm_fpu_type == -1)
1895 init_compiler();
1896 return arm_fpu_type;
1897 }
1898
1899 #else
1900
1901 #define arm_fpu_type 1
1902
1903 SLJIT_API_FUNC_ATTRIBUTE int sljit_is_fpu_available(void)
1904 {
1905 /* Always available. */
1906 return 1;
1907 }
1908
1909 #endif
1910
1911 #define EMIT_FPU_DATA_TRANSFER(add, load, base, freg, offs) \
1912 (VSTR | ((add) << 23) | ((load) << 20) | (reg_map[base] << 16) | (freg << 12) | (offs))
1913 #define EMIT_FPU_OPERATION(opcode, dst, src1, src2) \
1914 ((opcode) | ((dst) << 12) | (src1) | ((src2) << 16))
1915
1916 static int emit_fpu_data_transfer(struct sljit_compiler *compiler, int fpu_reg, int load, int arg, sljit_w argw)
1917 {
1918 SLJIT_ASSERT(arg & SLJIT_MEM);
1919
1920 /* Fast loads and stores. */
1921 if ((arg & 0xf) && !(arg & 0xf0) && (argw & 0x3) == 0) {
1922 if (argw >= 0 && argw <= 0x3ff) {
1923 EMIT_INSTRUCTION(EMIT_FPU_DATA_TRANSFER(1, load, arg & 0xf, fpu_reg, argw >> 2));
1924 return SLJIT_SUCCESS;
1925 }
1926 if (argw < 0 && argw >= -0x3ff) {
1927 EMIT_INSTRUCTION(EMIT_FPU_DATA_TRANSFER(0, load, arg & 0xf, fpu_reg, (-argw) >> 2));
1928 return SLJIT_SUCCESS;
1929 }
1930 if (argw >= 0 && argw <= 0x3ffff) {
1931 SLJIT_ASSERT(get_immediate(argw & 0x3fc00));
1932 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(ADD_DP, 0, TMP_REG1, arg & 0xf, get_immediate(argw & 0x3fc00)));
1933 argw &= 0x3ff;
1934 EMIT_INSTRUCTION(EMIT_FPU_DATA_TRANSFER(1, load, TMP_REG1, fpu_reg, argw >> 2));
1935 return SLJIT_SUCCESS;
1936 }
1937 if (argw < 0 && argw >= -0x3ffff) {
1938 argw = -argw;
1939 SLJIT_ASSERT(get_immediate(argw & 0x3fc00));
1940 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(SUB_DP, 0, TMP_REG1, arg & 0xf, get_immediate(argw & 0x3fc00)));
1941 argw &= 0x3ff;
1942 EMIT_INSTRUCTION(EMIT_FPU_DATA_TRANSFER(0, load, TMP_REG1, fpu_reg, argw >> 2));
1943 return SLJIT_SUCCESS;
1944 }
1945 }
1946
1947 if (arg & 0xf0) {
1948 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(ADD_DP, 0, TMP_REG1, arg & 0xf, RM((arg >> 4) & 0xf) | ((argw & 0x3) << 7)));
1949 EMIT_INSTRUCTION(EMIT_FPU_DATA_TRANSFER(1, load, TMP_REG1, fpu_reg, 0));
1950 return SLJIT_SUCCESS;
1951 }
1952
1953 if (compiler->cache_arg == arg && ((argw - compiler->cache_argw) & 0x3) == 0) {
1954 if (((sljit_uw)argw - (sljit_uw)compiler->cache_argw) <= 0x3ff) {
1955 EMIT_INSTRUCTION(EMIT_FPU_DATA_TRANSFER(1, load, TMP_REG3, fpu_reg, (argw - compiler->cache_argw) >> 2));
1956 return SLJIT_SUCCESS;
1957 }
1958 if (((sljit_uw)compiler->cache_argw - (sljit_uw)argw) <= 0x3ff) {
1959 EMIT_INSTRUCTION(EMIT_FPU_DATA_TRANSFER(0, load, TMP_REG3, fpu_reg, (compiler->cache_argw - argw) >> 2));
1960 return SLJIT_SUCCESS;
1961 }
1962 }
1963
1964 compiler->cache_arg = arg;
1965 compiler->cache_argw = argw;
1966 if (arg & 0xf) {
1967 FAIL_IF(load_immediate(compiler, TMP_REG1, argw));
1968 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(ADD_DP, 0, TMP_REG3, arg & 0xf, reg_map[TMP_REG1]));
1969 }
1970 else
1971 FAIL_IF(load_immediate(compiler, TMP_REG3, argw));
1972
1973 EMIT_INSTRUCTION(EMIT_FPU_DATA_TRANSFER(1, load, TMP_REG3, fpu_reg, 0));
1974 return SLJIT_SUCCESS;
1975 }
1976
1977 SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_fop1(struct sljit_compiler *compiler, int op,
1978 int dst, sljit_w dstw,
1979 int src, sljit_w srcw)
1980 {
1981 int dst_freg;
1982
1983 CHECK_ERROR();
1984 check_sljit_emit_fop1(compiler, op, dst, dstw, src, srcw);
1985
1986 compiler->cache_arg = 0;
1987 compiler->cache_argw = 0;
1988
1989 if (GET_OPCODE(op) == SLJIT_FCMP) {
1990 if (dst > SLJIT_FLOAT_REG4) {
1991 FAIL_IF(emit_fpu_data_transfer(compiler, TMP_FREG1, 1, dst, dstw));
1992 dst = TMP_FREG1;
1993 }
1994 if (src > SLJIT_FLOAT_REG4) {
1995 FAIL_IF(emit_fpu_data_transfer(compiler, TMP_FREG2, 1, src, srcw));
1996 src = TMP_FREG2;
1997 }
1998 EMIT_INSTRUCTION(VCMP_F64 | (dst << 12) | src);
1999 EMIT_INSTRUCTION(VMRS);
2000 return SLJIT_SUCCESS;
2001 }
2002
2003 dst_freg = (dst > SLJIT_FLOAT_REG4) ? TMP_FREG1 : dst;
2004
2005 if (src > SLJIT_FLOAT_REG4) {
2006 FAIL_IF(emit_fpu_data_transfer(compiler, dst_freg, 1, src, srcw));
2007 src = dst_freg;
2008 }
2009
2010 switch (op) {
2011 case SLJIT_FMOV:
2012 if (src != dst_freg && dst_freg != TMP_FREG1)
2013 EMIT_INSTRUCTION(EMIT_FPU_OPERATION(VMOV_F64, dst_freg, src, 0));
2014 break;
2015 case SLJIT_FNEG:
2016 EMIT_INSTRUCTION(EMIT_FPU_OPERATION(VNEG_F64, dst_freg, src, 0));
2017 break;
2018 case SLJIT_FABS:
2019 EMIT_INSTRUCTION(EMIT_FPU_OPERATION(VABS_F64, dst_freg, src, 0));
2020 break;
2021 }
2022
2023 if (dst_freg == TMP_FREG1)
2024 FAIL_IF(emit_fpu_data_transfer(compiler, src, 0, dst, dstw));
2025
2026 return SLJIT_SUCCESS;
2027 }
2028
2029 SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_fop2(struct sljit_compiler *compiler, int op,
2030 int dst, sljit_w dstw,
2031 int src1, sljit_w src1w,
2032 int src2, sljit_w src2w)
2033 {
2034 int dst_freg;
2035
2036 CHECK_ERROR();
2037 check_sljit_emit_fop2(compiler, op, dst, dstw, src1, src1w, src2, src2w);
2038
2039 compiler->cache_arg = 0;
2040 compiler->cache_argw = 0;
2041
2042 dst_freg = (dst > SLJIT_FLOAT_REG4) ? TMP_FREG1 : dst;
2043
2044 if (src2 > SLJIT_FLOAT_REG4) {
2045 FAIL_IF(emit_fpu_data_transfer(compiler, TMP_FREG2, 1, src2, src2w));
2046 src2 = TMP_FREG2;
2047 }
2048
2049 if (src1 > SLJIT_FLOAT_REG4) {
2050 FAIL_IF(emit_fpu_data_transfer(compiler, TMP_FREG1, 1, src1, src1w));
2051 src1 = TMP_FREG1;
2052 }
2053
2054 switch (op) {
2055 case SLJIT_FADD:
2056 EMIT_INSTRUCTION(EMIT_FPU_OPERATION(VADD_F64, dst_freg, src2, src1));
2057 break;
2058
2059 case SLJIT_FSUB:
2060 EMIT_INSTRUCTION(EMIT_FPU_OPERATION(VSUB_F64, dst_freg, src2, src1));
2061 break;
2062
2063 case SLJIT_FMUL:
2064 EMIT_INSTRUCTION(EMIT_FPU_OPERATION(VMUL_F64, dst_freg, src2, src1));
2065 break;
2066
2067 case SLJIT_FDIV:
2068 EMIT_INSTRUCTION(EMIT_FPU_OPERATION(VDIV_F64, dst_freg, src2, src1));
2069 break;
2070 }
2071
2072 if (dst_freg == TMP_FREG1)
2073 FAIL_IF(emit_fpu_data_transfer(compiler, TMP_FREG1, 0, dst, dstw));
2074
2075 return SLJIT_SUCCESS;
2076 }
2077
2078 /* --------------------------------------------------------------------- */
2079 /* Other instructions */
2080 /* --------------------------------------------------------------------- */
2081
2082 SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_fast_enter(struct sljit_compiler *compiler, int dst, sljit_w dstw, int args, int temporaries, int generals, int local_size)
2083 {
2084 int size;
2085
2086 CHECK_ERROR();
2087 check_sljit_emit_fast_enter(compiler, dst, dstw, args, temporaries, generals, local_size);
2088
2089 compiler->temporaries = temporaries;
2090 compiler->generals = generals;
2091
2092 size = (1 + generals) * sizeof(sljit_uw);
2093 if (temporaries >= 4)
2094 size += (temporaries - 3) * sizeof(sljit_uw);
2095 local_size += size;
2096 local_size = (local_size + 7) & ~7;
2097 local_size -= size;
2098 compiler->local_size = local_size;
2099
2100 if (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS)
2101 return push_inst(compiler, EMIT_DATA_PROCESS_INS(MOV_DP, 0, dst, SLJIT_UNUSED, RM(TMP_REG3)));
2102 else if (dst & SLJIT_MEM) {
2103 if (getput_arg_fast(compiler, WORD_DATA, TMP_REG3, dst, dstw))
2104 return compiler->error;
2105 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, TMP_REG2, SLJIT_UNUSED, RM(TMP_REG3)));
2106 compiler->cache_arg = 0;
2107 compiler->cache_argw = 0;
2108 return getput_arg(compiler, WORD_DATA, TMP_REG2, dst, dstw, 0, 0);
2109 }
2110
2111 return SLJIT_SUCCESS;
2112 }
2113
2114 SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_fast_return(struct sljit_compiler *compiler, int src, sljit_w srcw)
2115 {
2116 CHECK_ERROR();
2117 check_sljit_emit_fast_return(compiler, src, srcw);
2118
2119 if (src >= SLJIT_TEMPORARY_REG1 && src <= SLJIT_NO_REGISTERS)
2120 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, TMP_REG3, SLJIT_UNUSED, RM(src)));
2121 else if (src & SLJIT_MEM) {
2122 if (getput_arg_fast(compiler, WORD_DATA | LOAD_DATA, TMP_REG3, src, srcw))
2123 FAIL_IF(compiler->error);
2124 else {
2125 compiler->cache_arg = 0;
2126 compiler->cache_argw = 0;
2127 FAIL_IF(getput_arg(compiler, WORD_DATA | LOAD_DATA, TMP_REG2, src, srcw, 0, 0));
2128 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, TMP_REG3, SLJIT_UNUSED, RM(TMP_REG2)));
2129 }
2130 }
2131 else if (src & SLJIT_IMM)
2132 FAIL_IF(load_immediate(compiler, TMP_REG3, srcw));
2133 return push_inst(compiler, BLX | RM(TMP_REG3));
2134 }
2135
2136 /* --------------------------------------------------------------------- */
2137 /* Conditional instructions */
2138 /* --------------------------------------------------------------------- */
2139
2140 static sljit_uw get_cc(int type)
2141 {
2142 switch (type) {
2143 case SLJIT_C_EQUAL:
2144 case SLJIT_C_MUL_NOT_OVERFLOW:
2145 case SLJIT_C_FLOAT_EQUAL:
2146 return 0x00000000;
2147
2148 case SLJIT_C_NOT_EQUAL:
2149 case SLJIT_C_MUL_OVERFLOW:
2150 case SLJIT_C_FLOAT_NOT_EQUAL:
2151 return 0x10000000;
2152
2153 case SLJIT_C_LESS:
2154 case SLJIT_C_FLOAT_LESS:
2155 return 0x30000000;
2156
2157 case SLJIT_C_GREATER_EQUAL:
2158 case SLJIT_C_FLOAT_GREATER_EQUAL:
2159 return 0x20000000;
2160
2161 case SLJIT_C_GREATER:
2162 case SLJIT_C_FLOAT_GREATER:
2163 return 0x80000000;
2164
2165 case SLJIT_C_LESS_EQUAL:
2166 case SLJIT_C_FLOAT_LESS_EQUAL:
2167 return 0x90000000;
2168
2169 case SLJIT_C_SIG_LESS:
2170 return 0xb0000000;
2171
2172 case SLJIT_C_SIG_GREATER_EQUAL:
2173 return 0xa0000000;
2174
2175 case SLJIT_C_SIG_GREATER:
2176 return 0xc0000000;
2177
2178 case SLJIT_C_SIG_LESS_EQUAL:
2179 return 0xd0000000;
2180
2181 case SLJIT_C_OVERFLOW:
2182 case SLJIT_C_FLOAT_NAN:
2183 return 0x60000000;
2184
2185 case SLJIT_C_NOT_OVERFLOW:
2186 case SLJIT_C_FLOAT_NOT_NAN:
2187 return 0x70000000;
2188
2189 default: /* SLJIT_JUMP */
2190 return 0xe0000000;
2191 }
2192 }
2193
2194 SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler)
2195 {
2196 struct sljit_label *label;
2197
2198 CHECK_ERROR_PTR();
2199 check_sljit_emit_label(compiler);
2200
2201 if (compiler->last_label && compiler->last_label->size == compiler->size)
2202 return compiler->last_label;
2203
2204 label = (struct sljit_label*)ensure_abuf(compiler, sizeof(struct sljit_label));
2205 PTR_FAIL_IF(!label);
2206 set_label(label, compiler);
2207 return label;
2208 }
2209
2210 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, int type)
2211 {
2212 struct sljit_jump *jump;
2213
2214 CHECK_ERROR_PTR();
2215 check_sljit_emit_jump(compiler, type);
2216
2217 jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
2218 PTR_FAIL_IF(!jump);
2219 set_jump(jump, compiler, type & SLJIT_REWRITABLE_JUMP);
2220 type &= 0xff;
2221
2222 /* In ARM, we don't need to touch the arguments. */
2223 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
2224 if (type >= SLJIT_FAST_CALL)
2225 PTR_FAIL_IF(prepare_blx(compiler));
2226 PTR_FAIL_IF(push_inst_with_unique_literal(compiler, ((EMIT_DATA_TRANSFER(WORD_DATA | LOAD_DATA, 1, 0,
2227 type <= SLJIT_JUMP ? TMP_PC : TMP_REG1, TMP_PC, 0)) & ~COND_MASK) | get_cc(type), 0));
2228
2229 if (jump->flags & SLJIT_REWRITABLE_JUMP) {
2230 jump->addr = compiler->size;
2231 compiler->patches++;
2232 }
2233
2234 if (type >= SLJIT_FAST_CALL) {
2235 jump->flags |= IS_BL;
2236 PTR_FAIL_IF(emit_blx(compiler));
2237 }
2238
2239 if (!(jump->flags & SLJIT_REWRITABLE_JUMP))
2240 jump->addr = compiler->size;
2241 #else
2242 if (type >= SLJIT_FAST_CALL)
2243 jump->flags |= IS_BL;
2244 PTR_FAIL_IF(emit_imm(compiler, TMP_REG1, 0));
2245 PTR_FAIL_IF(push_inst(compiler, (((type <= SLJIT_JUMP ? BX : BLX) | RM(TMP_REG1)) & ~COND_MASK) | get_cc(type)));
2246 jump->addr = compiler->size;
2247 #endif
2248 return jump;
2249 }
2250
2251 SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_ijump(struct sljit_compiler *compiler, int type, int src, sljit_w srcw)
2252 {
2253 struct sljit_jump *jump;
2254
2255 CHECK_ERROR();
2256 check_sljit_emit_ijump(compiler, type, src, srcw);
2257
2258 /* In ARM, we don't need to touch the arguments. */
2259 if (src & SLJIT_IMM) {
2260 jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
2261 FAIL_IF(!jump);
2262 set_jump(jump, compiler, JUMP_ADDR | ((type >= SLJIT_FAST_CALL) ? IS_BL : 0));
2263 jump->u.target = srcw;
2264
2265 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
2266 if (type >= SLJIT_FAST_CALL)
2267 FAIL_IF(prepare_blx(compiler));
2268 FAIL_IF(push_inst_with_unique_literal(compiler, EMIT_DATA_TRANSFER(WORD_DATA | LOAD_DATA, 1, 0, type <= SLJIT_JUMP ? TMP_PC : TMP_REG1, TMP_PC, 0), 0));
2269 if (type >= SLJIT_FAST_CALL)
2270 FAIL_IF(emit_blx(compiler));
2271 #else
2272 FAIL_IF(emit_imm(compiler, TMP_REG1, 0));
2273 FAIL_IF(push_inst(compiler, (type <= SLJIT_JUMP ? BX : BLX) | RM(TMP_REG1)));
2274 #endif
2275 jump->addr = compiler->size;
2276 }
2277 else {
2278 if (src >= SLJIT_TEMPORARY_REG1 && src <= SLJIT_NO_REGISTERS)
2279 return push_inst(compiler, (type <= SLJIT_JUMP ? BX : BLX) | RM(src));
2280
2281 SLJIT_ASSERT(src & SLJIT_MEM);
2282 FAIL_IF(emit_op(compiler, SLJIT_MOV, ALLOW_ANY_IMM, TMP_REG2, 0, TMP_REG1, 0, src, srcw));
2283 return push_inst(compiler, (type <= SLJIT_JUMP ? BX : BLX) | RM(TMP_REG2));
2284 }
2285
2286 return SLJIT_SUCCESS;
2287 }
2288
2289 SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_cond_value(struct sljit_compiler *compiler, int op, int dst, sljit_w dstw, int type)
2290 {
2291 int reg;
2292 sljit_uw cc;
2293
2294 CHECK_ERROR();
2295 check_sljit_emit_cond_value(compiler, op, dst, dstw, type);
2296
2297 if (dst == SLJIT_UNUSED)
2298 return SLJIT_SUCCESS;
2299
2300 cc = get_cc(type);
2301 if (GET_OPCODE(op) == SLJIT_OR) {
2302 if (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) {
2303 EMIT_INSTRUCTION((EMIT_DATA_PROCESS_INS(ORR_DP, 0, dst, dst, SRC2_IMM | 1) & ~COND_MASK) | cc);
2304 if (op & SLJIT_SET_E)
2305 return push_inst(compiler, EMIT_DATA_PROCESS_INS(MOV_DP, SET_FLAGS, TMP_REG1, SLJIT_UNUSED, RM(dst)));
2306 return SLJIT_SUCCESS;
2307 }
2308
2309 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, TMP_REG1, SLJIT_UNUSED, SRC2_IMM | 0));
2310 EMIT_INSTRUCTION((EMIT_DATA_PROCESS_INS(MOV_DP, 0, TMP_REG1, SLJIT_UNUSED, SRC2_IMM | 1) & ~COND_MASK) | cc);
2311 #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE) || (defined SLJIT_DEBUG && SLJIT_DEBUG)
2312 compiler->skip_checks = 1;
2313 #endif
2314 return emit_op(compiler, op, ALLOW_IMM, dst, dstw, TMP_REG1, 0, dst, dstw);
2315 }
2316
2317 reg = (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) ? dst : TMP_REG2;
2318
2319 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, reg, SLJIT_UNUSED, SRC2_IMM | 0));
2320 EMIT_INSTRUCTION((EMIT_DATA_PROCESS_INS(MOV_DP, 0, reg, SLJIT_UNUSED, SRC2_IMM | 1) & ~COND_MASK) | cc);
2321
2322 if (reg == TMP_REG2)
2323 return emit_op(compiler, SLJIT_MOV, ALLOW_ANY_IMM, dst, dstw, TMP_REG1, 0, TMP_REG2, 0);
2324 return SLJIT_SUCCESS;
2325 }
2326
2327 SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, int dst, sljit_w dstw, sljit_w init_value)
2328 {
2329 struct sljit_const *const_;
2330 int reg;
2331
2332 CHECK_ERROR_PTR();
2333 check_sljit_emit_const(compiler, dst, dstw, init_value);
2334
2335 const_ = (struct sljit_const*)ensure_abuf(compiler, sizeof(struct sljit_const));
2336 PTR_FAIL_IF(!const_);
2337
2338 reg = (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) ? dst : TMP_REG2;
2339
2340 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
2341 PTR_FAIL_IF(push_inst_with_unique_literal(compiler, EMIT_DATA_TRANSFER(WORD_DATA | LOAD_DATA, 1, 0, reg, TMP_PC, 0), init_value));
2342 compiler->patches++;
2343 #else
2344 PTR_FAIL_IF(emit_imm(compiler, reg, init_value));
2345 #endif
2346 set_const(const_, compiler);
2347
2348 if (reg == TMP_REG2 && dst != SLJIT_UNUSED)
2349 if (emit_op(compiler, SLJIT_MOV, ALLOW_ANY_IMM, dst, dstw, TMP_REG1, 0, TMP_REG2, 0))
2350 return NULL;
2351 return const_;
2352 }
2353
2354 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_addr)
2355 {
2356 inline_set_jump_addr(addr, new_addr, 1);
2357 }
2358
2359 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_w new_constant)
2360 {
2361 inline_set_const(addr, new_constant, 1);
2362 }

webmaster@exim.org
ViewVC Help
Powered by ViewVC 1.1.12