/[pcre]/code/trunk/sljit/sljitLir.h
ViewVC logotype

Contents of /code/trunk/sljit/sljitLir.h

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1499 - (show annotations) (download)
Mon Aug 11 06:42:28 2014 UTC (3 weeks ago) by zherczeg
File MIME type: text/plain
File size: 50847 byte(s)
JIT compiler update.
1 /*
2 * Stack-less Just-In-Time compiler
3 *
4 * Copyright 2009-2012 Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without modification, are
7 * permitted provided that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright notice, this list of
10 * conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright notice, this list
13 * of conditions and the following disclaimer in the documentation and/or other materials
14 * provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
17 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
19 * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
21 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
22 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
24 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27 #ifndef _SLJIT_LIR_H_
28 #define _SLJIT_LIR_H_
29
30 /*
31 ------------------------------------------------------------------------
32 Stack-Less JIT compiler for multiple architectures (x86, ARM, PowerPC)
33 ------------------------------------------------------------------------
34
35 Short description
36 Advantages:
37 - The execution can be continued from any LIR instruction. In other
38 words, it is possible to jump to any label from anywhere, even from
39 a code fragment, which is compiled later, if both compiled code
40 shares the same context. See sljit_emit_enter for more details
41 - Supports self modifying code: target of (conditional) jump and call
42 instructions and some constant values can be dynamically modified
43 during runtime
44 - although it is not suggested to do it frequently
45 - can be used for inline caching: save an important value once
46 in the instruction stream
47 - since this feature limits the optimization possibilities, a
48 special flag must be passed at compile time when these
49 instructions are emitted
50 - A fixed stack space can be allocated for local variables
51 - The compiler is thread-safe
52 - The compiler is highly configurable through preprocessor macros.
53 You can disable unneeded features (multithreading in single
54 threaded applications), and you can use your own system functions
55 (including memory allocators). See sljitConfig.h
56 Disadvantages:
57 - No automatic register allocation, and temporary results are
58 not stored on the stack. (hence the name comes)
59 In practice:
60 - This approach is very effective for interpreters
61 - One of the saved registers typically points to a stack interface
62 - It can jump to any exception handler anytime (even if it belongs
63 to another function)
64 - Hot paths can be modified during runtime reflecting the changes
65 of the fastest execution path of the dynamic language
66 - SLJIT supports complex memory addressing modes
67 - mainly position and context independent code (except some cases)
68
69 For valgrind users:
70 - pass --smc-check=all argument to valgrind, since JIT is a "self-modifying code"
71 */
72
73 #if !(defined SLJIT_NO_DEFAULT_CONFIG && SLJIT_NO_DEFAULT_CONFIG)
74 #include "sljitConfig.h"
75 #endif
76
77 /* The following header file defines useful macros for fine tuning
78 sljit based code generators. They are listed in the beginning
79 of sljitConfigInternal.h */
80
81 #include "sljitConfigInternal.h"
82
83 /* --------------------------------------------------------------------- */
84 /* Error codes */
85 /* --------------------------------------------------------------------- */
86
87 /* Indicates no error. */
88 #define SLJIT_SUCCESS 0
89 /* After the call of sljit_generate_code(), the error code of the compiler
90 is set to this value to avoid future sljit calls (in debug mode at least).
91 The complier should be freed after sljit_generate_code(). */
92 #define SLJIT_ERR_COMPILED 1
93 /* Cannot allocate non executable memory. */
94 #define SLJIT_ERR_ALLOC_FAILED 2
95 /* Cannot allocate executable memory.
96 Only for sljit_generate_code() */
97 #define SLJIT_ERR_EX_ALLOC_FAILED 3
98 /* return value for SLJIT_CONFIG_UNSUPPORTED empty architecture. */
99 #define SLJIT_ERR_UNSUPPORTED 4
100
101 /* --------------------------------------------------------------------- */
102 /* Registers */
103 /* --------------------------------------------------------------------- */
104
105 /*
106 Scratch (R) registers: registers whose may not preserve their values
107 across function calls.
108
109 Saved (S) registers: registers whose preserve their values across
110 function calls.
111
112 The scratch and saved register sets are overlap. The last scratch register
113 is the first saved register, the one before the last is the second saved
114 register, and so on.
115
116 If an architecture provides two scratch and three saved registers,
117 its scratch and saved register sets are the following:
118
119 R0 | [S4] | R0 and S4 represent the same physical register
120 R1 | [S3] | R1 and S3 represent the same physical register
121 [R2] | S2 | R2 and S2 represent the same physical register
122 [R3] | S1 | R3 and S1 represent the same physical register
123 [R4] | S0 | R4 and S0 represent the same physical register
124
125 Note: SLJIT_NUMBER_OF_SCRATCH_REGISTERS would be 2 and
126 SLJIT_NUMBER_OF_SAVED_REGISTERS would be 3 for this architecture.
127
128 Note: On all supported architectures SLJIT_NUMBER_OF_REGISTERS >= 10
129 and SLJIT_NUMBER_OF_SAVED_REGISTERS >= 5. However, 4 registers
130 are virtual on x86-32. See below.
131
132 The purpose of this definition is convenience. Although a register
133 is either scratch register or saved register, SLJIT allows accessing
134 them from the other set. For example, four registers can be used as
135 scratch registers and the fifth one as saved register on the architecture
136 above. Of course the last two scratch registers (R2 and R3) from this
137 four will be saved on the stack, because they are defined as saved
138 registers in the application binary interface. Still R2 and R3 can be
139 used for referencing to these registers instead of S2 and S1, which
140 makes easier to write platform independent code. Scratch registers
141 can be saved registers in a similar way, but these extra saved
142 registers will not be preserved across function calls! Hence the
143 application must save them on those platforms, where the number of
144 saved registers is too low. This can be done by copy them onto
145 the stack and restore them after a function call.
146
147 Note: To emphasize that registers assigned to R2-R4 are saved
148 registers, they are enclosed by square brackets. S3-S4
149 are marked in a similar way.
150
151 Note: sljit_emit_enter and sljit_set_context defines whether a register
152 is S or R register. E.g: when 3 scratches and 1 saved is mapped
153 by sljit_emit_enter, the allowed register set will be: R0-R2 and
154 S0. Although S2 is mapped to the same position as R2, it does not
155 available in the current configuration. Furthermore the R3 (S1)
156 register does not available as well.
157 */
158
159 /* When SLJIT_UNUSED is specified as destination, the result is discarded. */
160 #define SLJIT_UNUSED 0
161
162 /* Scratch registers. */
163 #define SLJIT_R0 1
164 #define SLJIT_R1 2
165 #define SLJIT_R2 3
166 /* Note: on x86-32, R3 - R6 (same as S3 - S6) are emulated (they
167 are allocated on the stack). These registers are called virtual
168 and cannot be used for memory addressing (cannot be part of
169 any SLJIT_MEM1, SLJIT_MEM2 construct). There is no such
170 limitation on other CPUs. See sljit_get_register_index(). */
171 #define SLJIT_R3 4
172 #define SLJIT_R4 5
173 #define SLJIT_R5 6
174 #define SLJIT_R6 7
175 #define SLJIT_R7 8
176 #define SLJIT_R8 9
177 #define SLJIT_R9 10
178 /* All R registers provided by the architecture can be accessed by SLJIT_R(i)
179 The i parameter must be >= 0 and < SLJIT_NUMBER_OF_REGISTERS. */
180 #define SLJIT_R(i) (1 + (i))
181
182 /* Saved registers. */
183 #define SLJIT_S0 (SLJIT_NUMBER_OF_REGISTERS)
184 #define SLJIT_S1 (SLJIT_NUMBER_OF_REGISTERS - 1)
185 #define SLJIT_S2 (SLJIT_NUMBER_OF_REGISTERS - 2)
186 /* Note: on x86-32, S3 - S6 (same as R3 - R6) are emulated (they
187 are allocated on the stack). These registers are called virtual
188 and cannot be used for memory addressing (cannot be part of
189 any SLJIT_MEM1, SLJIT_MEM2 construct). There is no such
190 limitation on other CPUs. See sljit_get_register_index(). */
191 #define SLJIT_S3 (SLJIT_NUMBER_OF_REGISTERS - 3)
192 #define SLJIT_S4 (SLJIT_NUMBER_OF_REGISTERS - 4)
193 #define SLJIT_S5 (SLJIT_NUMBER_OF_REGISTERS - 5)
194 #define SLJIT_S6 (SLJIT_NUMBER_OF_REGISTERS - 6)
195 #define SLJIT_S7 (SLJIT_NUMBER_OF_REGISTERS - 7)
196 #define SLJIT_S8 (SLJIT_NUMBER_OF_REGISTERS - 8)
197 #define SLJIT_S9 (SLJIT_NUMBER_OF_REGISTERS - 9)
198 /* All S registers provided by the architecture can be accessed by SLJIT_S(i)
199 The i parameter must be >= 0 and < SLJIT_NUMBER_OF_SAVED_REGISTERS. */
200 #define SLJIT_S(i) (SLJIT_NUMBER_OF_REGISTERS - (i))
201
202 /* Registers >= SLJIT_FIRST_SAVED_REG are saved registers. */
203 #define SLJIT_FIRST_SAVED_REG (SLJIT_S0 - SLJIT_NUMBER_OF_SAVED_REGISTERS + 1)
204
205 /* The SLJIT_SP provides direct access to the linear stack space allocated by
206 sljit_emit_enter. It can only be used in the following form: SLJIT_MEM1(SLJIT_SP).
207 The immediate offset is extended by the relative stack offset automatically.
208 The sljit_get_local_base can be used to obtain the absolute offset. */
209 #define SLJIT_SP (SLJIT_NUMBER_OF_REGISTERS + 1)
210
211 /* Return with machine word. */
212
213 #define SLJIT_RETURN_REG SLJIT_R0
214
215 /* x86 prefers specific registers for special purposes. In case of shift
216 by register it supports only SLJIT_R2 for shift argument
217 (which is the src2 argument of sljit_emit_op2). If another register is
218 used, sljit must exchange data between registers which cause a minor
219 slowdown. Other architectures has no such limitation. */
220
221 #define SLJIT_PREF_SHIFT_REG SLJIT_R2
222
223 /* --------------------------------------------------------------------- */
224 /* Floating point registers */
225 /* --------------------------------------------------------------------- */
226
227 /* Each floating point register can store a double or single precision
228 value. The FR and FS register sets are overlap in the same way as R
229 and S register sets. See above. */
230
231 /* Note: SLJIT_UNUSED as destination is not valid for floating point
232 operations, since they cannot be used for setting flags. */
233
234 /* Floating point scratch registers. */
235 #define SLJIT_FR0 1
236 #define SLJIT_FR1 2
237 #define SLJIT_FR2 3
238 #define SLJIT_FR3 4
239 #define SLJIT_FR4 5
240 #define SLJIT_FR5 6
241 /* All FR registers provided by the architecture can be accessed by SLJIT_FR(i)
242 The i parameter must be >= 0 and < SLJIT_NUMBER_OF_FLOAT_REGISTERS. */
243 #define SLJIT_FR(i) (1 + (i))
244
245 /* Floating point saved registers. */
246 #define SLJIT_FS0 (SLJIT_NUMBER_OF_FLOAT_REGISTERS)
247 #define SLJIT_FS1 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 1)
248 #define SLJIT_FS2 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 2)
249 #define SLJIT_FS3 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 3)
250 #define SLJIT_FS4 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 4)
251 #define SLJIT_FS5 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 5)
252 /* All S registers provided by the architecture can be accessed by SLJIT_FS(i)
253 The i parameter must be >= 0 and < SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS. */
254 #define SLJIT_FS(i) (SLJIT_NUMBER_OF_FLOAT_REGISTERS - (i))
255
256 /* Float registers >= SLJIT_FIRST_SAVED_FLOAT_REG are saved registers. */
257 #define SLJIT_FIRST_SAVED_FLOAT_REG (SLJIT_FS0 - SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS + 1)
258
259 /* --------------------------------------------------------------------- */
260 /* Main structures and functions */
261 /* --------------------------------------------------------------------- */
262
263 /*
264 The following structures are private, and can be changed in the
265 future. Keeping them here allows code inlining.
266 */
267
268 struct sljit_memory_fragment {
269 struct sljit_memory_fragment *next;
270 sljit_uw used_size;
271 /* Must be aligned to sljit_sw. */
272 sljit_ub memory[1];
273 };
274
275 struct sljit_label {
276 struct sljit_label *next;
277 sljit_uw addr;
278 /* The maximum size difference. */
279 sljit_uw size;
280 };
281
282 struct sljit_jump {
283 struct sljit_jump *next;
284 sljit_uw addr;
285 sljit_sw flags;
286 union {
287 sljit_uw target;
288 struct sljit_label* label;
289 } u;
290 };
291
292 struct sljit_const {
293 struct sljit_const *next;
294 sljit_uw addr;
295 };
296
297 struct sljit_compiler {
298 sljit_si error;
299 sljit_si options;
300
301 struct sljit_label *labels;
302 struct sljit_jump *jumps;
303 struct sljit_const *consts;
304 struct sljit_label *last_label;
305 struct sljit_jump *last_jump;
306 struct sljit_const *last_const;
307
308 struct sljit_memory_fragment *buf;
309 struct sljit_memory_fragment *abuf;
310
311 /* Used scratch registers. */
312 sljit_si scratches;
313 /* Used saved registers. */
314 sljit_si saveds;
315 /* Used float scratch registers. */
316 sljit_si fscratches;
317 /* Used float saved registers. */
318 sljit_si fsaveds;
319 /* Local stack size. */
320 sljit_si local_size;
321 /* Code size. */
322 sljit_uw size;
323 /* For statistical purposes. */
324 sljit_uw executable_size;
325
326 #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
327 sljit_si args;
328 #endif
329
330 #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
331 sljit_si mode32;
332 #endif
333
334 #if (defined SLJIT_CONFIG_X86 && SLJIT_CONFIG_X86)
335 sljit_si flags_saved;
336 #endif
337
338 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
339 /* Constant pool handling. */
340 sljit_uw *cpool;
341 sljit_ub *cpool_unique;
342 sljit_uw cpool_diff;
343 sljit_uw cpool_fill;
344 /* Other members. */
345 /* Contains pointer, "ldr pc, [...]" pairs. */
346 sljit_uw patches;
347 #endif
348
349 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) || (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7)
350 /* Temporary fields. */
351 sljit_uw shift_imm;
352 sljit_si cache_arg;
353 sljit_sw cache_argw;
354 #endif
355
356 #if (defined SLJIT_CONFIG_ARM_THUMB2 && SLJIT_CONFIG_ARM_THUMB2)
357 sljit_si cache_arg;
358 sljit_sw cache_argw;
359 #endif
360
361 #if (defined SLJIT_CONFIG_ARM_64 && SLJIT_CONFIG_ARM_64)
362 sljit_si locals_offset;
363 sljit_si cache_arg;
364 sljit_sw cache_argw;
365 #endif
366
367 #if (defined SLJIT_CONFIG_PPC && SLJIT_CONFIG_PPC)
368 sljit_sw imm;
369 sljit_si cache_arg;
370 sljit_sw cache_argw;
371 #endif
372
373 #if (defined SLJIT_CONFIG_MIPS && SLJIT_CONFIG_MIPS)
374 sljit_si delay_slot;
375 sljit_si cache_arg;
376 sljit_sw cache_argw;
377 #endif
378
379 #if (defined SLJIT_CONFIG_SPARC_32 && SLJIT_CONFIG_SPARC_32)
380 sljit_si delay_slot;
381 sljit_si cache_arg;
382 sljit_sw cache_argw;
383 #endif
384
385 #if (defined SLJIT_CONFIG_TILEGX && SLJIT_CONFIG_TILEGX)
386 sljit_si cache_arg;
387 sljit_sw cache_argw;
388 #endif
389
390 #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
391 FILE* verbose;
392 #endif
393
394 #if (defined SLJIT_DEBUG && SLJIT_DEBUG)
395 /* Local size passed to the functions. */
396 sljit_si logical_local_size;
397 #endif
398
399 #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE) || (defined SLJIT_DEBUG && SLJIT_DEBUG)
400 sljit_si skip_checks;
401 #endif
402 };
403
404 /* --------------------------------------------------------------------- */
405 /* Main functions */
406 /* --------------------------------------------------------------------- */
407
408 /* Creates an sljit compiler.
409 Returns NULL if failed. */
410 SLJIT_API_FUNC_ATTRIBUTE struct sljit_compiler* sljit_create_compiler(void);
411
412 /* Free everything except the compiled machine code. */
413 SLJIT_API_FUNC_ATTRIBUTE void sljit_free_compiler(struct sljit_compiler *compiler);
414
415 /* Returns the current error code. If an error is occurred, future sljit
416 calls which uses the same compiler argument returns early with the same
417 error code. Thus there is no need for checking the error after every
418 call, it is enough to do it before the code is compiled. Removing
419 these checks increases the performance of the compiling process. */
420 static SLJIT_INLINE sljit_si sljit_get_compiler_error(struct sljit_compiler *compiler) { return compiler->error; }
421
422 /*
423 Allocate a small amount of memory. The size must be <= 64 bytes on 32 bit,
424 and <= 128 bytes on 64 bit architectures. The memory area is owned by the
425 compiler, and freed by sljit_free_compiler. The returned pointer is
426 sizeof(sljit_sw) aligned. Excellent for allocating small blocks during
427 the compiling, and no need to worry about freeing them. The size is
428 enough to contain at most 16 pointers. If the size is outside of the range,
429 the function will return with NULL. However, this return value does not
430 indicate that there is no more memory (does not set the current error code
431 of the compiler to out-of-memory status).
432 */
433 SLJIT_API_FUNC_ATTRIBUTE void* sljit_alloc_memory(struct sljit_compiler *compiler, sljit_si size);
434
435 #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
436 /* Passing NULL disables verbose. */
437 SLJIT_API_FUNC_ATTRIBUTE void sljit_compiler_verbose(struct sljit_compiler *compiler, FILE* verbose);
438 #endif
439
440 SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler);
441 SLJIT_API_FUNC_ATTRIBUTE void sljit_free_code(void* code);
442
443 /*
444 After the machine code generation is finished we can retrieve the allocated
445 executable memory size, although this area may not be fully filled with
446 instructions depending on some optimizations. This function is useful only
447 for statistical purposes.
448
449 Before a successful code generation, this function returns with 0.
450 */
451 static SLJIT_INLINE sljit_uw sljit_get_generated_code_size(struct sljit_compiler *compiler) { return compiler->executable_size; }
452
453 /* Instruction generation. Returns with any error code. If there is no
454 error, they return with SLJIT_SUCCESS. */
455
456 /*
457 The executable code is a function call from the viewpoint of the C
458 language. The function calls must obey to the ABI (Application
459 Binary Interface) of the platform, which specify the purpose of
460 all machine registers and stack handling among other things. The
461 sljit_emit_enter function emits the necessary instructions for
462 setting up a new context for the executable code and moves function
463 arguments to the saved registers. Furthermore the options argument
464 can be used to pass configuration options to the compiler. Currently
465 there are no options, so it must be set to 0.
466
467 The number of sljit_sw arguments passed to the generated function
468 are specified in the "args" parameter. The number of arguments must
469 be less than or equal to 3. The first argument goes to SLJIT_S0,
470 the second goes to SLJIT_S1 and so on. The register set used by
471 the function must be declared as well. The number of scratch and
472 saved registers used by the function must be passed to sljit_emit_enter.
473 Only R registers between R0 and "scratches" argument can be used
474 later. E.g. if "scratches" is set to 2, the register set will be
475 limited to R0 and R1. The S registers and the floating point
476 registers ("fscratches" and "fsaveds") are specified in a similar
477 way. The sljit_emit_enter is also capable of allocating a stack
478 space for local variables. The "local_size" argument contains the
479 size in bytes of this local area and its staring address is stored
480 in SLJIT_SP. The memory area between SLJIT_SP (inclusive) and
481 SLJIT_SP + local_size (exclusive) can be modified freely until
482 the function returns. The stack space is not initialized.
483
484 Note: the following conditions must met:
485 0 <= scratches <= SLJIT_NUMBER_OF_REGISTERS
486 0 <= saveds <= SLJIT_NUMBER_OF_REGISTERS
487 scratches + saveds <= SLJIT_NUMBER_OF_REGISTERS
488 0 <= fscratches <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
489 0 <= fsaveds <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
490 fscratches + fsaveds <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
491
492 Note: every call of sljit_emit_enter and sljit_set_context
493 overwrites the previous context.
494 */
495
496 #define SLJIT_MAX_LOCAL_SIZE 65536
497
498 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_enter(struct sljit_compiler *compiler,
499 sljit_si options, sljit_si args, sljit_si scratches, sljit_si saveds,
500 sljit_si fscratches, sljit_si fsaveds, sljit_si local_size);
501
502 /* The machine code has a context (which contains the local stack space size,
503 number of used registers, etc.) which initialized by sljit_emit_enter. Several
504 functions (like sljit_emit_return) requres this context to be able to generate
505 the appropriate code. However, some code fragments (like inline cache) may have
506 no normal entry point so their context is unknown for the compiler. Their context
507 can be provided to the compiler by the sljit_set_context function.
508
509 Note: every call of sljit_emit_enter and sljit_set_context overwrites
510 the previous context. */
511
512 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_context(struct sljit_compiler *compiler,
513 sljit_si options, sljit_si args, sljit_si scratches, sljit_si saveds,
514 sljit_si fscratches, sljit_si fsaveds, sljit_si local_size);
515
516 /* Return from machine code. The op argument can be SLJIT_UNUSED which means the
517 function does not return with anything or any opcode between SLJIT_MOV and
518 SLJIT_MOV_P (see sljit_emit_op1). As for src and srcw they must be 0 if op
519 is SLJIT_UNUSED, otherwise see below the description about source and
520 destination arguments. */
521
522 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_return(struct sljit_compiler *compiler, sljit_si op,
523 sljit_si src, sljit_sw srcw);
524
525 /* Fast calling mechanism for utility functions (see SLJIT_FAST_CALL). All registers and
526 even the stack frame is passed to the callee. The return address is preserved in
527 dst/dstw by sljit_emit_fast_enter (the type of the value stored by this function
528 is sljit_p), and sljit_emit_fast_return can use this as a return value later. */
529
530 /* Note: only for sljit specific, non ABI compilant calls. Fast, since only a few machine
531 instructions are needed. Excellent for small uility functions, where saving registers
532 and setting up a new stack frame would cost too much performance. However, it is still
533 possible to return to the address of the caller (or anywhere else). */
534
535 /* Note: flags are not changed (unlike sljit_emit_enter / sljit_emit_return). */
536
537 /* Note: although sljit_emit_fast_return could be replaced by an ijump, it is not suggested,
538 since many architectures do clever branch prediction on call / return instruction pairs. */
539
540 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw);
541 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fast_return(struct sljit_compiler *compiler, sljit_si src, sljit_sw srcw);
542
543 /*
544 Source and destination values for arithmetical instructions
545 imm - a simple immediate value (cannot be used as a destination)
546 reg - any of the registers (immediate argument must be 0)
547 [imm] - absolute immediate memory address
548 [reg+imm] - indirect memory address
549 [reg+(reg<<imm)] - indirect indexed memory address (shift must be between 0 and 3)
550 useful for (byte, half, int, sljit_sw) array access
551 (fully supported by both x86 and ARM architectures, and cheap operation on others)
552 */
553
554 /*
555 IMPORATNT NOTE: memory access MUST be naturally aligned except
556 SLJIT_UNALIGNED macro is defined and its value is 1.
557
558 length | alignment
559 ---------+-----------
560 byte | 1 byte (any physical_address is accepted)
561 half | 2 byte (physical_address & 0x1 == 0)
562 int | 4 byte (physical_address & 0x3 == 0)
563 word | 4 byte if SLJIT_32BIT_ARCHITECTURE is defined and its value is 1
564 | 8 byte if SLJIT_64BIT_ARCHITECTURE is defined and its value is 1
565 pointer | size of sljit_p type (4 byte on 32 bit machines, 4 or 8 byte
566 | on 64 bit machines)
567
568 Note: Different architectures have different addressing limitations.
569 A single instruction is enough for the following addressing
570 modes. Other adrressing modes are emulated by instruction
571 sequences. This information could help to improve those code
572 generators which focuses only a few architectures.
573
574 x86: [reg+imm], -2^32+1 <= imm <= 2^32-1 (full address space on x86-32)
575 [reg+(reg<<imm)] is supported
576 [imm], -2^32+1 <= imm <= 2^32-1 is supported
577 Write-back is not supported
578 arm: [reg+imm], -4095 <= imm <= 4095 or -255 <= imm <= 255 for signed
579 bytes, any halfs or floating point values)
580 [reg+(reg<<imm)] is supported
581 Write-back is supported
582 arm-t2: [reg+imm], -255 <= imm <= 4095
583 [reg+(reg<<imm)] is supported
584 Write back is supported only for [reg+imm], where -255 <= imm <= 255
585 ppc: [reg+imm], -65536 <= imm <= 65535. 64 bit loads/stores and 32 bit
586 signed load on 64 bit requires immediates divisible by 4.
587 [reg+imm] is not supported for signed 8 bit values.
588 [reg+reg] is supported
589 Write-back is supported except for one instruction: 32 bit signed
590 load with [reg+imm] addressing mode on 64 bit.
591 mips: [reg+imm], -65536 <= imm <= 65535
592 sparc: [reg+imm], -4096 <= imm <= 4095
593 [reg+reg] is supported
594 */
595
596 /* Register output: simply the name of the register.
597 For destination, you can use SLJIT_UNUSED as well. */
598 #define SLJIT_MEM 0x80
599 #define SLJIT_MEM0() (SLJIT_MEM)
600 #define SLJIT_MEM1(r1) (SLJIT_MEM | (r1))
601 #define SLJIT_MEM2(r1, r2) (SLJIT_MEM | (r1) | ((r2) << 8))
602 #define SLJIT_IMM 0x40
603
604 /* Set 32 bit operation mode (I) on 64 bit CPUs. The flag is totally ignored on
605 32 bit CPUs. If this flag is set for an arithmetic operation, it uses only the
606 lower 32 bit of the input register(s), and set the CPU status flags according
607 to the 32 bit result. The higher 32 bits are undefined for both the input and
608 output. However, the CPU might not ignore those higher 32 bits, like MIPS, which
609 expects it to be the sign extension of the lower 32 bit. All 32 bit operations
610 are undefined, if this condition is not fulfilled. Therefore, when SLJIT_INT_OP
611 is specified, all register arguments must be the result of other operations with
612 the same SLJIT_INT_OP flag. In other words, although a register can hold either
613 a 64 or 32 bit value, these values cannot be mixed. The only exceptions are
614 SLJIT_IMOV and SLJIT_IMOVU (SLJIT_MOV_SI/SLJIT_MOVU_SI with SLJIT_INT_OP flag)
615 which can convert any source argument to SLJIT_INT_OP compatible result. This
616 conversion might be unnecessary on some CPUs like x86-64, since the upper 32
617 bit is always ignored. In this case SLJIT is clever enough to not generate any
618 instructions if the source and destination operands are the same registers.
619 Affects sljit_emit_op0, sljit_emit_op1 and sljit_emit_op2. */
620 #define SLJIT_INT_OP 0x100
621
622 /* Single precision mode (SP). This flag is similar to SLJIT_INT_OP, just
623 it applies to floating point registers (it is even the same bit). When
624 this flag is passed, the CPU performs single precision floating point
625 operations. Similar to SLJIT_INT_OP, all register arguments must be the
626 result of other floating point operations with this flag. Affects
627 sljit_emit_fop1, sljit_emit_fop2 and sljit_emit_fcmp. */
628 #define SLJIT_SINGLE_OP 0x100
629
630 /* Common CPU status flags for all architectures (x86, ARM, PPC)
631 - carry flag
632 - overflow flag
633 - zero flag
634 - negative/positive flag (depends on arc)
635 On mips, these flags are emulated by software. */
636
637 /* By default, the instructions may, or may not set the CPU status flags.
638 Forcing to set or keep status flags can be done with the following flags: */
639
640 /* Note: sljit tries to emit the minimum number of instructions. Using these
641 flags can increase them, so use them wisely to avoid unnecessary code generation. */
642
643 /* Set Equal (Zero) status flag (E). */
644 #define SLJIT_SET_E 0x0200
645 /* Set unsigned status flag (U). */
646 #define SLJIT_SET_U 0x0400
647 /* Set signed status flag (S). */
648 #define SLJIT_SET_S 0x0800
649 /* Set signed overflow flag (O). */
650 #define SLJIT_SET_O 0x1000
651 /* Set carry flag (C).
652 Note: Kinda unsigned overflow, but behaves differently on various cpus. */
653 #define SLJIT_SET_C 0x2000
654 /* Do not modify the flags (K).
655 Note: This flag cannot be combined with any other SLJIT_SET_* flag. */
656 #define SLJIT_KEEP_FLAGS 0x4000
657
658 /* Notes:
659 - you cannot postpone conditional jump instructions except if noted that
660 the instruction does not set flags (See: SLJIT_KEEP_FLAGS).
661 - flag combinations: '|' means 'logical or'. */
662
663 /* Starting index of opcodes for sljit_emit_op0. */
664 #define SLJIT_OP0_BASE 0
665
666 /* Flags: - (never set any flags)
667 Note: breakpoint instruction is not supported by all architectures (namely ppc)
668 It falls back to SLJIT_NOP in those cases. */
669 #define SLJIT_BREAKPOINT (SLJIT_OP0_BASE + 0)
670 /* Flags: - (never set any flags)
671 Note: may or may not cause an extra cycle wait
672 it can even decrease the runtime in a few cases. */
673 #define SLJIT_NOP (SLJIT_OP0_BASE + 1)
674 /* Flags: - (may destroy flags)
675 Unsigned multiplication of SLJIT_R0 and SLJIT_R1.
676 Result goes to SLJIT_R1:SLJIT_R0 (high:low) word */
677 #define SLJIT_UMUL (SLJIT_OP0_BASE + 2)
678 /* Flags: - (may destroy flags)
679 Signed multiplication of SLJIT_R0 and SLJIT_R1.
680 Result goes to SLJIT_R1:SLJIT_R0 (high:low) word */
681 #define SLJIT_SMUL (SLJIT_OP0_BASE + 3)
682 /* Flags: I - (may destroy flags)
683 Unsigned divide of the value in SLJIT_R0 by the value in SLJIT_R1.
684 The result is placed in SLJIT_R0 and the remainder goes to SLJIT_R1.
685 Note: if SLJIT_R1 contains 0, the behaviour is undefined. */
686 #define SLJIT_UDIV (SLJIT_OP0_BASE + 4)
687 #define SLJIT_IUDIV (SLJIT_UDIV | SLJIT_INT_OP)
688 /* Flags: I - (may destroy flags)
689 Signed divide of the value in SLJIT_R0 by the value in SLJIT_R1.
690 The result is placed in SLJIT_R0 and the remainder goes to SLJIT_R1.
691 Note: if SLJIT_R1 contains 0, the behaviour is undefined. */
692 #define SLJIT_SDIV (SLJIT_OP0_BASE + 5)
693 #define SLJIT_ISDIV (SLJIT_SDIV | SLJIT_INT_OP)
694
695 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op0(struct sljit_compiler *compiler, sljit_si op);
696
697 /* Starting index of opcodes for sljit_emit_op1. */
698 #define SLJIT_OP1_BASE 32
699
700 /* Notes for MOV instructions:
701 U = Mov with update (pre form). If source or destination defined as SLJIT_MEM1(r1)
702 or SLJIT_MEM2(r1, r2), r1 is increased by the sum of r2 and the constant argument
703 UB = unsigned byte (8 bit)
704 SB = signed byte (8 bit)
705 UH = unsigned half (16 bit)
706 SH = signed half (16 bit)
707 UI = unsigned int (32 bit)
708 SI = signed int (32 bit)
709 P = pointer (sljit_p) size */
710
711 /* Flags: - (never set any flags) */
712 #define SLJIT_MOV (SLJIT_OP1_BASE + 0)
713 /* Flags: I - (never set any flags) */
714 #define SLJIT_MOV_UB (SLJIT_OP1_BASE + 1)
715 #define SLJIT_IMOV_UB (SLJIT_MOV_UB | SLJIT_INT_OP)
716 /* Flags: I - (never set any flags) */
717 #define SLJIT_MOV_SB (SLJIT_OP1_BASE + 2)
718 #define SLJIT_IMOV_SB (SLJIT_MOV_SB | SLJIT_INT_OP)
719 /* Flags: I - (never set any flags) */
720 #define SLJIT_MOV_UH (SLJIT_OP1_BASE + 3)
721 #define SLJIT_IMOV_UH (SLJIT_MOV_UH | SLJIT_INT_OP)
722 /* Flags: I - (never set any flags) */
723 #define SLJIT_MOV_SH (SLJIT_OP1_BASE + 4)
724 #define SLJIT_IMOV_SH (SLJIT_MOV_SH | SLJIT_INT_OP)
725 /* Flags: I - (never set any flags)
726 Note: see SLJIT_INT_OP for further details. */
727 #define SLJIT_MOV_UI (SLJIT_OP1_BASE + 5)
728 /* No SLJIT_INT_OP form, since it is the same as SLJIT_IMOV. */
729 /* Flags: I - (never set any flags)
730 Note: see SLJIT_INT_OP for further details. */
731 #define SLJIT_MOV_SI (SLJIT_OP1_BASE + 6)
732 #define SLJIT_IMOV (SLJIT_MOV_SI | SLJIT_INT_OP)
733 /* Flags: - (never set any flags) */
734 #define SLJIT_MOV_P (SLJIT_OP1_BASE + 7)
735 /* Flags: - (never set any flags) */
736 #define SLJIT_MOVU (SLJIT_OP1_BASE + 8)
737 /* Flags: I - (never set any flags) */
738 #define SLJIT_MOVU_UB (SLJIT_OP1_BASE + 9)
739 #define SLJIT_IMOVU_UB (SLJIT_MOVU_UB | SLJIT_INT_OP)
740 /* Flags: I - (never set any flags) */
741 #define SLJIT_MOVU_SB (SLJIT_OP1_BASE + 10)
742 #define SLJIT_IMOVU_SB (SLJIT_MOVU_SB | SLJIT_INT_OP)
743 /* Flags: I - (never set any flags) */
744 #define SLJIT_MOVU_UH (SLJIT_OP1_BASE + 11)
745 #define SLJIT_IMOVU_UH (SLJIT_MOVU_UH | SLJIT_INT_OP)
746 /* Flags: I - (never set any flags) */
747 #define SLJIT_MOVU_SH (SLJIT_OP1_BASE + 12)
748 #define SLJIT_IMOVU_SH (SLJIT_MOVU_SH | SLJIT_INT_OP)
749 /* Flags: I - (never set any flags)
750 Note: see SLJIT_INT_OP for further details. */
751 #define SLJIT_MOVU_UI (SLJIT_OP1_BASE + 13)
752 /* No SLJIT_INT_OP form, since it is the same as SLJIT_IMOVU. */
753 /* Flags: I - (never set any flags)
754 Note: see SLJIT_INT_OP for further details. */
755 #define SLJIT_MOVU_SI (SLJIT_OP1_BASE + 14)
756 #define SLJIT_IMOVU (SLJIT_MOVU_SI | SLJIT_INT_OP)
757 /* Flags: - (never set any flags) */
758 #define SLJIT_MOVU_P (SLJIT_OP1_BASE + 15)
759 /* Flags: I | E | K */
760 #define SLJIT_NOT (SLJIT_OP1_BASE + 16)
761 #define SLJIT_INOT (SLJIT_NOT | SLJIT_INT_OP)
762 /* Flags: I | E | O | K */
763 #define SLJIT_NEG (SLJIT_OP1_BASE + 17)
764 #define SLJIT_INEG (SLJIT_NEG | SLJIT_INT_OP)
765 /* Count leading zeroes
766 Flags: I | E | K
767 Important note! Sparc 32 does not support K flag, since
768 the required popc instruction is introduced only in sparc 64. */
769 #define SLJIT_CLZ (SLJIT_OP1_BASE + 18)
770 #define SLJIT_ICLZ (SLJIT_CLZ | SLJIT_INT_OP)
771
772 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op1(struct sljit_compiler *compiler, sljit_si op,
773 sljit_si dst, sljit_sw dstw,
774 sljit_si src, sljit_sw srcw);
775
776 /* Starting index of opcodes for sljit_emit_op2. */
777 #define SLJIT_OP2_BASE 96
778
779 /* Flags: I | E | O | C | K */
780 #define SLJIT_ADD (SLJIT_OP2_BASE + 0)
781 #define SLJIT_IADD (SLJIT_ADD | SLJIT_INT_OP)
782 /* Flags: I | C | K */
783 #define SLJIT_ADDC (SLJIT_OP2_BASE + 1)
784 #define SLJIT_IADDC (SLJIT_ADDC | SLJIT_INT_OP)
785 /* Flags: I | E | U | S | O | C | K */
786 #define SLJIT_SUB (SLJIT_OP2_BASE + 2)
787 #define SLJIT_ISUB (SLJIT_SUB | SLJIT_INT_OP)
788 /* Flags: I | C | K */
789 #define SLJIT_SUBC (SLJIT_OP2_BASE + 3)
790 #define SLJIT_ISUBC (SLJIT_SUBC | SLJIT_INT_OP)
791 /* Note: integer mul
792 Flags: I | O (see SLJIT_C_MUL_*) | K */
793 #define SLJIT_MUL (SLJIT_OP2_BASE + 4)
794 #define SLJIT_IMUL (SLJIT_MUL | SLJIT_INT_OP)
795 /* Flags: I | E | K */
796 #define SLJIT_AND (SLJIT_OP2_BASE + 5)
797 #define SLJIT_IAND (SLJIT_AND | SLJIT_INT_OP)
798 /* Flags: I | E | K */
799 #define SLJIT_OR (SLJIT_OP2_BASE + 6)
800 #define SLJIT_IOR (SLJIT_OR | SLJIT_INT_OP)
801 /* Flags: I | E | K */
802 #define SLJIT_XOR (SLJIT_OP2_BASE + 7)
803 #define SLJIT_IXOR (SLJIT_XOR | SLJIT_INT_OP)
804 /* Flags: I | E | K
805 Let bit_length be the length of the shift operation: 32 or 64.
806 If src2 is immediate, src2w is masked by (bit_length - 1).
807 Otherwise, if the content of src2 is outside the range from 0
808 to bit_length - 1, the result is undefined. */
809 #define SLJIT_SHL (SLJIT_OP2_BASE + 8)
810 #define SLJIT_ISHL (SLJIT_SHL | SLJIT_INT_OP)
811 /* Flags: I | E | K
812 Let bit_length be the length of the shift operation: 32 or 64.
813 If src2 is immediate, src2w is masked by (bit_length - 1).
814 Otherwise, if the content of src2 is outside the range from 0
815 to bit_length - 1, the result is undefined. */
816 #define SLJIT_LSHR (SLJIT_OP2_BASE + 9)
817 #define SLJIT_ILSHR (SLJIT_LSHR | SLJIT_INT_OP)
818 /* Flags: I | E | K
819 Let bit_length be the length of the shift operation: 32 or 64.
820 If src2 is immediate, src2w is masked by (bit_length - 1).
821 Otherwise, if the content of src2 is outside the range from 0
822 to bit_length - 1, the result is undefined. */
823 #define SLJIT_ASHR (SLJIT_OP2_BASE + 10)
824 #define SLJIT_IASHR (SLJIT_ASHR | SLJIT_INT_OP)
825
826 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op2(struct sljit_compiler *compiler, sljit_si op,
827 sljit_si dst, sljit_sw dstw,
828 sljit_si src1, sljit_sw src1w,
829 sljit_si src2, sljit_sw src2w);
830
831 /* The following function is a helper function for sljit_emit_op_custom.
832 It returns with the real machine register index ( >=0 ) of any SLJIT_R,
833 SLJIT_S and SLJIT_SP registers.
834
835 Note: it returns with -1 for virtual registers (only on x86-32). */
836
837 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_get_register_index(sljit_si reg);
838
839 /* The following function is a helper function for sljit_emit_op_custom.
840 It returns with the real machine register index of any SLJIT_FLOAT register.
841
842 Note: the index is always an even number on ARM (except ARM-64), MIPS, and SPARC. */
843
844 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_get_float_register_index(sljit_si reg);
845
846 /* Any instruction can be inserted into the instruction stream by
847 sljit_emit_op_custom. It has a similar purpose as inline assembly.
848 The size parameter must match to the instruction size of the target
849 architecture:
850
851 x86: 0 < size <= 15. The instruction argument can be byte aligned.
852 Thumb2: if size == 2, the instruction argument must be 2 byte aligned.
853 if size == 4, the instruction argument must be 4 byte aligned.
854 Otherwise: size must be 4 and instruction argument must be 4 byte aligned. */
855
856 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op_custom(struct sljit_compiler *compiler,
857 void *instruction, sljit_si size);
858
859 /* Returns with non-zero if fpu is available. */
860
861 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_is_fpu_available(void);
862
863 /* Starting index of opcodes for sljit_emit_fop1. */
864 #define SLJIT_FOP1_BASE 128
865
866 /* Flags: SP - (never set any flags) */
867 #define SLJIT_MOVD (SLJIT_FOP1_BASE + 0)
868 #define SLJIT_MOVS (SLJIT_MOVD | SLJIT_SINGLE_OP)
869 /* Convert opcodes: CONV[DST_TYPE].FROM[SRC_TYPE]
870 SRC/DST TYPE can be: D - double, S - single, W - signed word, I - signed int
871 Rounding mode when the destination is W or I: round towards zero. */
872 /* Flags: SP - (never set any flags) */
873 #define SLJIT_CONVD_FROMS (SLJIT_FOP1_BASE + 1)
874 #define SLJIT_CONVS_FROMD (SLJIT_CONVD_FROMS | SLJIT_SINGLE_OP)
875 /* Flags: SP - (never set any flags) */
876 #define SLJIT_CONVW_FROMD (SLJIT_FOP1_BASE + 2)
877 #define SLJIT_CONVW_FROMS (SLJIT_CONVW_FROMD | SLJIT_SINGLE_OP)
878 /* Flags: SP - (never set any flags) */
879 #define SLJIT_CONVI_FROMD (SLJIT_FOP1_BASE + 3)
880 #define SLJIT_CONVI_FROMS (SLJIT_CONVI_FROMD | SLJIT_SINGLE_OP)
881 /* Flags: SP - (never set any flags) */
882 #define SLJIT_CONVD_FROMW (SLJIT_FOP1_BASE + 4)
883 #define SLJIT_CONVS_FROMW (SLJIT_CONVD_FROMW | SLJIT_SINGLE_OP)
884 /* Flags: SP - (never set any flags) */
885 #define SLJIT_CONVD_FROMI (SLJIT_FOP1_BASE + 5)
886 #define SLJIT_CONVS_FROMI (SLJIT_CONVD_FROMI | SLJIT_SINGLE_OP)
887 /* Note: dst is the left and src is the right operand for SLJIT_CMPD.
888 Note: NaN check is always performed. If SLJIT_C_FLOAT_UNORDERED flag
889 is set, the comparison result is unpredictable.
890 Flags: SP | E | S (see SLJIT_C_FLOAT_*) */
891 #define SLJIT_CMPD (SLJIT_FOP1_BASE + 6)
892 #define SLJIT_CMPS (SLJIT_CMPD | SLJIT_SINGLE_OP)
893 /* Flags: SP - (never set any flags) */
894 #define SLJIT_NEGD (SLJIT_FOP1_BASE + 7)
895 #define SLJIT_NEGS (SLJIT_NEGD | SLJIT_SINGLE_OP)
896 /* Flags: SP - (never set any flags) */
897 #define SLJIT_ABSD (SLJIT_FOP1_BASE + 8)
898 #define SLJIT_ABSS (SLJIT_ABSD | SLJIT_SINGLE_OP)
899
900 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fop1(struct sljit_compiler *compiler, sljit_si op,
901 sljit_si dst, sljit_sw dstw,
902 sljit_si src, sljit_sw srcw);
903
904 /* Starting index of opcodes for sljit_emit_fop2. */
905 #define SLJIT_FOP2_BASE 160
906
907 /* Flags: SP - (never set any flags) */
908 #define SLJIT_ADDD (SLJIT_FOP2_BASE + 0)
909 #define SLJIT_ADDS (SLJIT_ADDD | SLJIT_SINGLE_OP)
910 /* Flags: SP - (never set any flags) */
911 #define SLJIT_SUBD (SLJIT_FOP2_BASE + 1)
912 #define SLJIT_SUBS (SLJIT_SUBD | SLJIT_SINGLE_OP)
913 /* Flags: SP - (never set any flags) */
914 #define SLJIT_MULD (SLJIT_FOP2_BASE + 2)
915 #define SLJIT_MULS (SLJIT_MULD | SLJIT_SINGLE_OP)
916 /* Flags: SP - (never set any flags) */
917 #define SLJIT_DIVD (SLJIT_FOP2_BASE + 3)
918 #define SLJIT_DIVS (SLJIT_DIVD | SLJIT_SINGLE_OP)
919
920 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fop2(struct sljit_compiler *compiler, sljit_si op,
921 sljit_si dst, sljit_sw dstw,
922 sljit_si src1, sljit_sw src1w,
923 sljit_si src2, sljit_sw src2w);
924
925 /* Label and jump instructions. */
926
927 SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler);
928
929 /* Invert conditional instruction: xor (^) with 0x1 */
930 #define SLJIT_C_EQUAL 0
931 #define SLJIT_C_ZERO 0
932 #define SLJIT_C_NOT_EQUAL 1
933 #define SLJIT_C_NOT_ZERO 1
934
935 #define SLJIT_C_LESS 2
936 #define SLJIT_C_GREATER_EQUAL 3
937 #define SLJIT_C_GREATER 4
938 #define SLJIT_C_LESS_EQUAL 5
939 #define SLJIT_C_SIG_LESS 6
940 #define SLJIT_C_SIG_GREATER_EQUAL 7
941 #define SLJIT_C_SIG_GREATER 8
942 #define SLJIT_C_SIG_LESS_EQUAL 9
943
944 #define SLJIT_C_OVERFLOW 10
945 #define SLJIT_C_NOT_OVERFLOW 11
946
947 #define SLJIT_C_MUL_OVERFLOW 12
948 #define SLJIT_C_MUL_NOT_OVERFLOW 13
949
950 #define SLJIT_C_FLOAT_EQUAL 14
951 #define SLJIT_C_FLOAT_NOT_EQUAL 15
952 #define SLJIT_C_FLOAT_LESS 16
953 #define SLJIT_C_FLOAT_GREATER_EQUAL 17
954 #define SLJIT_C_FLOAT_GREATER 18
955 #define SLJIT_C_FLOAT_LESS_EQUAL 19
956 #define SLJIT_C_FLOAT_UNORDERED 20
957 #define SLJIT_C_FLOAT_ORDERED 21
958
959 #define SLJIT_JUMP 22
960 #define SLJIT_FAST_CALL 23
961 #define SLJIT_CALL0 24
962 #define SLJIT_CALL1 25
963 #define SLJIT_CALL2 26
964 #define SLJIT_CALL3 27
965
966 /* Fast calling method. See sljit_emit_fast_enter / sljit_emit_fast_return. */
967
968 /* The target can be changed during runtime (see: sljit_set_jump_addr). */
969 #define SLJIT_REWRITABLE_JUMP 0x1000
970
971 /* Emit a jump instruction. The destination is not set, only the type of the jump.
972 type must be between SLJIT_C_EQUAL and SLJIT_CALL3
973 type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
974 Flags: - (never set any flags) for both conditional and unconditional jumps.
975 Flags: destroy all flags for calls. */
976 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, sljit_si type);
977
978 /* Basic arithmetic comparison. In most architectures it is implemented as
979 an SLJIT_SUB operation (with SLJIT_UNUSED destination and setting
980 appropriate flags) followed by a sljit_emit_jump. However some
981 architectures (i.e: MIPS) may employ special optimizations here. It is
982 suggested to use this comparison form when appropriate.
983 type must be between SLJIT_C_EQUAL and SLJIT_C_SIG_LESS_EQUAL
984 type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP or SLJIT_INT_OP
985 Flags: destroy flags. */
986 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_cmp(struct sljit_compiler *compiler, sljit_si type,
987 sljit_si src1, sljit_sw src1w,
988 sljit_si src2, sljit_sw src2w);
989
990 /* Basic floating point comparison. In most architectures it is implemented as
991 an SLJIT_FCMP operation (setting appropriate flags) followed by a
992 sljit_emit_jump. However some architectures (i.e: MIPS) may employ
993 special optimizations here. It is suggested to use this comparison form
994 when appropriate.
995 type must be between SLJIT_C_FLOAT_EQUAL and SLJIT_C_FLOAT_ORDERED
996 type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP and SLJIT_SINGLE_OP
997 Flags: destroy flags.
998 Note: if either operand is NaN, the behaviour is undefined for
999 type <= SLJIT_C_FLOAT_LESS_EQUAL. */
1000 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_fcmp(struct sljit_compiler *compiler, sljit_si type,
1001 sljit_si src1, sljit_sw src1w,
1002 sljit_si src2, sljit_sw src2w);
1003
1004 /* Set the destination of the jump to this label. */
1005 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_label(struct sljit_jump *jump, struct sljit_label* label);
1006 /* Set the destination address of the jump to this label. */
1007 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_target(struct sljit_jump *jump, sljit_uw target);
1008
1009 /* Call function or jump anywhere. Both direct and indirect form
1010 type must be between SLJIT_JUMP and SLJIT_CALL3
1011 Direct form: set src to SLJIT_IMM() and srcw to the address
1012 Indirect form: any other valid addressing mode
1013 Flags: - (never set any flags) for unconditional jumps.
1014 Flags: destroy all flags for calls. */
1015 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_ijump(struct sljit_compiler *compiler, sljit_si type, sljit_si src, sljit_sw srcw);
1016
1017 /* Perform the operation using the conditional flags as the second argument.
1018 Type must always be between SLJIT_C_EQUAL and SLJIT_C_FLOAT_ORDERED. The
1019 value represented by the type is 1, if the condition represented by the type
1020 is fulfilled, and 0 otherwise.
1021
1022 If op == SLJIT_MOV, SLJIT_MOV_SI, SLJIT_MOV_UI:
1023 Set dst to the value represented by the type (0 or 1).
1024 Src must be SLJIT_UNUSED, and srcw must be 0
1025 Flags: - (never set any flags)
1026 If op == SLJIT_OR, op == SLJIT_AND, op == SLJIT_XOR
1027 Performs the binary operation using src as the first, and the value
1028 represented by type as the second argument.
1029 Important note: only dst=src and dstw=srcw is supported at the moment!
1030 Flags: I | E | K
1031 Note: sljit_emit_op_flags does nothing, if dst is SLJIT_UNUSED (regardless of op). */
1032 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_si op,
1033 sljit_si dst, sljit_sw dstw,
1034 sljit_si src, sljit_sw srcw,
1035 sljit_si type);
1036
1037 /* Copies the base address of SLJIT_SP + offset to dst.
1038 Flags: - (never set any flags) */
1039 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_get_local_base(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw, sljit_sw offset);
1040
1041 /* The constant can be changed runtime (see: sljit_set_const)
1042 Flags: - (never set any flags) */
1043 SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw, sljit_sw init_value);
1044
1045 /* After the code generation the address for label, jump and const instructions
1046 are computed. Since these structures are freed by sljit_free_compiler, the
1047 addresses must be preserved by the user program elsewere. */
1048 static SLJIT_INLINE sljit_uw sljit_get_label_addr(struct sljit_label *label) { return label->addr; }
1049 static SLJIT_INLINE sljit_uw sljit_get_jump_addr(struct sljit_jump *jump) { return jump->addr; }
1050 static SLJIT_INLINE sljit_uw sljit_get_const_addr(struct sljit_const *const_) { return const_->addr; }
1051
1052 /* Only the address is required to rewrite the code. */
1053 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_addr);
1054 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant);
1055
1056 /* --------------------------------------------------------------------- */
1057 /* Miscellaneous utility functions */
1058 /* --------------------------------------------------------------------- */
1059
1060 #define SLJIT_MAJOR_VERSION 0
1061 #define SLJIT_MINOR_VERSION 92
1062
1063 /* Get the human readable name of the platform. Can be useful on platforms
1064 like ARM, where ARM and Thumb2 functions can be mixed, and
1065 it is useful to know the type of the code generator. */
1066 SLJIT_API_FUNC_ATTRIBUTE SLJIT_CONST char* sljit_get_platform_name(void);
1067
1068 /* Portable helper function to get an offset of a member. */
1069 #define SLJIT_OFFSETOF(base, member) ((sljit_sw)(&((base*)0x10)->member) - 0x10)
1070
1071 #if (defined SLJIT_UTIL_GLOBAL_LOCK && SLJIT_UTIL_GLOBAL_LOCK)
1072 /* This global lock is useful to compile common functions. */
1073 SLJIT_API_FUNC_ATTRIBUTE void SLJIT_CALL sljit_grab_lock(void);
1074 SLJIT_API_FUNC_ATTRIBUTE void SLJIT_CALL sljit_release_lock(void);
1075 #endif
1076
1077 #if (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK)
1078
1079 /* The sljit_stack is a utiliy feature of sljit, which allocates a
1080 writable memory region between base (inclusive) and limit (exclusive).
1081 Both base and limit is a pointer, and base is always <= than limit.
1082 This feature uses the "address space reserve" feature
1083 of modern operating systems. Basically we don't need to allocate a
1084 huge memory block in one step for the worst case, we can start with
1085 a smaller chunk and extend it later. Since the address space is
1086 reserved, the data never copied to other regions, thus it is safe
1087 to store pointers here. */
1088
1089 /* Note: The base field is aligned to PAGE_SIZE bytes (usually 4k or more).
1090 Note: stack growing should not happen in small steps: 4k, 16k or even
1091 bigger growth is better.
1092 Note: this structure may not be supported by all operating systems.
1093 Some kind of fallback mechanism is suggested when SLJIT_UTIL_STACK
1094 is not defined. */
1095
1096 struct sljit_stack {
1097 /* User data, anything can be stored here.
1098 Starting with the same value as base. */
1099 sljit_uw top;
1100 /* These members are read only. */
1101 sljit_uw base;
1102 sljit_uw limit;
1103 sljit_uw max_limit;
1104 };
1105
1106 /* Returns NULL if unsuccessful.
1107 Note: limit and max_limit contains the size for stack allocation
1108 Note: the top field is initialized to base. */
1109 SLJIT_API_FUNC_ATTRIBUTE struct sljit_stack* SLJIT_CALL sljit_allocate_stack(sljit_uw limit, sljit_uw max_limit);
1110 SLJIT_API_FUNC_ATTRIBUTE void SLJIT_CALL sljit_free_stack(struct sljit_stack* stack);
1111
1112 /* Can be used to increase (allocate) or decrease (free) the memory area.
1113 Returns with a non-zero value if unsuccessful. If new_limit is greater than
1114 max_limit, it will fail. It is very easy to implement a stack data structure,
1115 since the growth ratio can be added to the current limit, and sljit_stack_resize
1116 will do all the necessary checks. The fields of the stack are not changed if
1117 sljit_stack_resize fails. */
1118 SLJIT_API_FUNC_ATTRIBUTE sljit_sw SLJIT_CALL sljit_stack_resize(struct sljit_stack* stack, sljit_uw new_limit);
1119
1120 #endif /* (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK) */
1121
1122 #if !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL)
1123
1124 /* Get the entry address of a given function. */
1125 #define SLJIT_FUNC_OFFSET(func_name) ((sljit_sw)func_name)
1126
1127 #else /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
1128
1129 /* All JIT related code should be placed in the same context (library, binary, etc.). */
1130
1131 #define SLJIT_FUNC_OFFSET(func_name) (*(sljit_sw*)(void*)func_name)
1132
1133 /* For powerpc64, the function pointers point to a context descriptor. */
1134 struct sljit_function_context {
1135 sljit_sw addr;
1136 sljit_sw r2;
1137 sljit_sw r11;
1138 };
1139
1140 /* Fill the context arguments using the addr and the function.
1141 If func_ptr is NULL, it will not be set to the address of context
1142 If addr is NULL, the function address also comes from the func pointer. */
1143 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_function_context(void** func_ptr, struct sljit_function_context* context, sljit_sw addr, void* func);
1144
1145 #endif /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
1146
1147 #endif /* _SLJIT_LIR_H_ */

webmaster@exim.org
ViewVC Help
Powered by ViewVC 1.1.12