/[pcre]/code/trunk/sljit/sljitLir.h
ViewVC logotype

Contents of /code/trunk/sljit/sljitLir.h

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1507 - (hide annotations) (download)
Tue Sep 30 06:35:20 2014 UTC (2 months, 2 weeks ago) by zherczeg
File MIME type: text/plain
File size: 53219 byte(s)
Support custom memory allocators in the JIT compiler.
1 ph10 662 /*
2     * Stack-less Just-In-Time compiler
3     *
4 ph10 836 * Copyright 2009-2012 Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
5 ph10 662 *
6     * Redistribution and use in source and binary forms, with or without modification, are
7     * permitted provided that the following conditions are met:
8     *
9     * 1. Redistributions of source code must retain the above copyright notice, this list of
10     * conditions and the following disclaimer.
11     *
12     * 2. Redistributions in binary form must reproduce the above copyright notice, this list
13     * of conditions and the following disclaimer in the documentation and/or other materials
14     * provided with the distribution.
15     *
16     * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
17     * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18     * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
19     * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20     * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
21     * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
22     * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23     * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
24     * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25     */
26    
27     #ifndef _SLJIT_LIR_H_
28     #define _SLJIT_LIR_H_
29    
30     /*
31     ------------------------------------------------------------------------
32     Stack-Less JIT compiler for multiple architectures (x86, ARM, PowerPC)
33     ------------------------------------------------------------------------
34    
35     Short description
36     Advantages:
37 zherczeg 1216 - The execution can be continued from any LIR instruction. In other
38     words, it is possible to jump to any label from anywhere, even from
39     a code fragment, which is compiled later, if both compiled code
40     shares the same context. See sljit_emit_enter for more details
41     - Supports self modifying code: target of (conditional) jump and call
42     instructions and some constant values can be dynamically modified
43     during runtime
44 ph10 662 - although it is not suggested to do it frequently
45 zherczeg 1216 - can be used for inline caching: save an important value once
46     in the instruction stream
47     - since this feature limits the optimization possibilities, a
48     special flag must be passed at compile time when these
49     instructions are emitted
50 ph10 662 - A fixed stack space can be allocated for local variables
51     - The compiler is thread-safe
52 zherczeg 951 - The compiler is highly configurable through preprocessor macros.
53     You can disable unneeded features (multithreading in single
54     threaded applications), and you can use your own system functions
55     (including memory allocators). See sljitConfig.h
56 ph10 662 Disadvantages:
57 zherczeg 1216 - No automatic register allocation, and temporary results are
58     not stored on the stack. (hence the name comes)
59 ph10 662 In practice:
60     - This approach is very effective for interpreters
61 zherczeg 880 - One of the saved registers typically points to a stack interface
62 zherczeg 1216 - It can jump to any exception handler anytime (even if it belongs
63     to another function)
64     - Hot paths can be modified during runtime reflecting the changes
65 ph10 662 of the fastest execution path of the dynamic language
66     - SLJIT supports complex memory addressing modes
67 zherczeg 1216 - mainly position and context independent code (except some cases)
68 zherczeg 742
69     For valgrind users:
70     - pass --smc-check=all argument to valgrind, since JIT is a "self-modifying code"
71 ph10 662 */
72    
73     #if !(defined SLJIT_NO_DEFAULT_CONFIG && SLJIT_NO_DEFAULT_CONFIG)
74     #include "sljitConfig.h"
75     #endif
76 zherczeg 839
77     /* The following header file defines useful macros for fine tuning
78 ph10 1325 sljit based code generators. They are listed in the beginning
79 zherczeg 839 of sljitConfigInternal.h */
80    
81 ph10 662 #include "sljitConfigInternal.h"
82    
83     /* --------------------------------------------------------------------- */
84     /* Error codes */
85     /* --------------------------------------------------------------------- */
86    
87     /* Indicates no error. */
88     #define SLJIT_SUCCESS 0
89     /* After the call of sljit_generate_code(), the error code of the compiler
90     is set to this value to avoid future sljit calls (in debug mode at least).
91     The complier should be freed after sljit_generate_code(). */
92     #define SLJIT_ERR_COMPILED 1
93     /* Cannot allocate non executable memory. */
94     #define SLJIT_ERR_ALLOC_FAILED 2
95     /* Cannot allocate executable memory.
96     Only for sljit_generate_code() */
97     #define SLJIT_ERR_EX_ALLOC_FAILED 3
98 zherczeg 1506 /* Return value for SLJIT_CONFIG_UNSUPPORTED placeholder architecture. */
99 ph10 662 #define SLJIT_ERR_UNSUPPORTED 4
100 zherczeg 1506 /* An ivalid argument is passed to any SLJIT function. */
101     #define SLJIT_ERR_BAD_ARGUMENT 5
102 ph10 662
103     /* --------------------------------------------------------------------- */
104     /* Registers */
105     /* --------------------------------------------------------------------- */
106    
107 zherczeg 1491 /*
108     Scratch (R) registers: registers whose may not preserve their values
109     across function calls.
110    
111     Saved (S) registers: registers whose preserve their values across
112     function calls.
113    
114     The scratch and saved register sets are overlap. The last scratch register
115     is the first saved register, the one before the last is the second saved
116     register, and so on.
117    
118     If an architecture provides two scratch and three saved registers,
119     its scratch and saved register sets are the following:
120    
121     R0 | [S4] | R0 and S4 represent the same physical register
122     R1 | [S3] | R1 and S3 represent the same physical register
123     [R2] | S2 | R2 and S2 represent the same physical register
124     [R3] | S1 | R3 and S1 represent the same physical register
125     [R4] | S0 | R4 and S0 represent the same physical register
126    
127     Note: SLJIT_NUMBER_OF_SCRATCH_REGISTERS would be 2 and
128     SLJIT_NUMBER_OF_SAVED_REGISTERS would be 3 for this architecture.
129    
130     Note: On all supported architectures SLJIT_NUMBER_OF_REGISTERS >= 10
131     and SLJIT_NUMBER_OF_SAVED_REGISTERS >= 5. However, 4 registers
132     are virtual on x86-32. See below.
133    
134     The purpose of this definition is convenience. Although a register
135     is either scratch register or saved register, SLJIT allows accessing
136     them from the other set. For example, four registers can be used as
137     scratch registers and the fifth one as saved register on the architecture
138     above. Of course the last two scratch registers (R2 and R3) from this
139     four will be saved on the stack, because they are defined as saved
140     registers in the application binary interface. Still R2 and R3 can be
141     used for referencing to these registers instead of S2 and S1, which
142     makes easier to write platform independent code. Scratch registers
143     can be saved registers in a similar way, but these extra saved
144     registers will not be preserved across function calls! Hence the
145     application must save them on those platforms, where the number of
146     saved registers is too low. This can be done by copy them onto
147     the stack and restore them after a function call.
148    
149     Note: To emphasize that registers assigned to R2-R4 are saved
150     registers, they are enclosed by square brackets. S3-S4
151     are marked in a similar way.
152    
153     Note: sljit_emit_enter and sljit_set_context defines whether a register
154     is S or R register. E.g: when 3 scratches and 1 saved is mapped
155     by sljit_emit_enter, the allowed register set will be: R0-R2 and
156     S0. Although S2 is mapped to the same position as R2, it does not
157     available in the current configuration. Furthermore the R3 (S1)
158     register does not available as well.
159     */
160    
161     /* When SLJIT_UNUSED is specified as destination, the result is discarded. */
162 ph10 662 #define SLJIT_UNUSED 0
163    
164 zherczeg 1491 /* Scratch registers. */
165     #define SLJIT_R0 1
166     #define SLJIT_R1 2
167     #define SLJIT_R2 3
168 zherczeg 1493 /* Note: on x86-32, R3 - R6 (same as S3 - S6) are emulated (they
169     are allocated on the stack). These registers are called virtual
170     and cannot be used for memory addressing (cannot be part of
171     any SLJIT_MEM1, SLJIT_MEM2 construct). There is no such
172     limitation on other CPUs. See sljit_get_register_index(). */
173 zherczeg 1491 #define SLJIT_R3 4
174     #define SLJIT_R4 5
175     #define SLJIT_R5 6
176     #define SLJIT_R6 7
177     #define SLJIT_R7 8
178     #define SLJIT_R8 9
179     #define SLJIT_R9 10
180     /* All R registers provided by the architecture can be accessed by SLJIT_R(i)
181     The i parameter must be >= 0 and < SLJIT_NUMBER_OF_REGISTERS. */
182     #define SLJIT_R(i) (1 + (i))
183 ph10 662
184 zherczeg 1491 /* Saved registers. */
185     #define SLJIT_S0 (SLJIT_NUMBER_OF_REGISTERS)
186     #define SLJIT_S1 (SLJIT_NUMBER_OF_REGISTERS - 1)
187     #define SLJIT_S2 (SLJIT_NUMBER_OF_REGISTERS - 2)
188 zherczeg 1493 /* Note: on x86-32, S3 - S6 (same as R3 - R6) are emulated (they
189     are allocated on the stack). These registers are called virtual
190     and cannot be used for memory addressing (cannot be part of
191     any SLJIT_MEM1, SLJIT_MEM2 construct). There is no such
192     limitation on other CPUs. See sljit_get_register_index(). */
193 zherczeg 1491 #define SLJIT_S3 (SLJIT_NUMBER_OF_REGISTERS - 3)
194     #define SLJIT_S4 (SLJIT_NUMBER_OF_REGISTERS - 4)
195     #define SLJIT_S5 (SLJIT_NUMBER_OF_REGISTERS - 5)
196     #define SLJIT_S6 (SLJIT_NUMBER_OF_REGISTERS - 6)
197     #define SLJIT_S7 (SLJIT_NUMBER_OF_REGISTERS - 7)
198     #define SLJIT_S8 (SLJIT_NUMBER_OF_REGISTERS - 8)
199     #define SLJIT_S9 (SLJIT_NUMBER_OF_REGISTERS - 9)
200     /* All S registers provided by the architecture can be accessed by SLJIT_S(i)
201     The i parameter must be >= 0 and < SLJIT_NUMBER_OF_SAVED_REGISTERS. */
202     #define SLJIT_S(i) (SLJIT_NUMBER_OF_REGISTERS - (i))
203 ph10 662
204 zherczeg 1491 /* Registers >= SLJIT_FIRST_SAVED_REG are saved registers. */
205     #define SLJIT_FIRST_SAVED_REG (SLJIT_S0 - SLJIT_NUMBER_OF_SAVED_REGISTERS + 1)
206 ph10 662
207 zherczeg 1491 /* The SLJIT_SP provides direct access to the linear stack space allocated by
208     sljit_emit_enter. It can only be used in the following form: SLJIT_MEM1(SLJIT_SP).
209     The immediate offset is extended by the relative stack offset automatically.
210     The sljit_get_local_base can be used to obtain the absolute offset. */
211     #define SLJIT_SP (SLJIT_NUMBER_OF_REGISTERS + 1)
212 ph10 662
213     /* Return with machine word. */
214    
215 zherczeg 1491 #define SLJIT_RETURN_REG SLJIT_R0
216 ph10 662
217 zherczeg 847 /* x86 prefers specific registers for special purposes. In case of shift
218 zherczeg 1491 by register it supports only SLJIT_R2 for shift argument
219 zherczeg 847 (which is the src2 argument of sljit_emit_op2). If another register is
220     used, sljit must exchange data between registers which cause a minor
221     slowdown. Other architectures has no such limitation. */
222 ph10 662
223 zherczeg 1491 #define SLJIT_PREF_SHIFT_REG SLJIT_R2
224 ph10 662
225     /* --------------------------------------------------------------------- */
226     /* Floating point registers */
227     /* --------------------------------------------------------------------- */
228    
229 zherczeg 1491 /* Each floating point register can store a double or single precision
230     value. The FR and FS register sets are overlap in the same way as R
231     and S register sets. See above. */
232    
233 ph10 662 /* Note: SLJIT_UNUSED as destination is not valid for floating point
234 zherczeg 1491 operations, since they cannot be used for setting flags. */
235 ph10 662
236 zherczeg 1491 /* Floating point scratch registers. */
237     #define SLJIT_FR0 1
238     #define SLJIT_FR1 2
239     #define SLJIT_FR2 3
240     #define SLJIT_FR3 4
241     #define SLJIT_FR4 5
242     #define SLJIT_FR5 6
243     /* All FR registers provided by the architecture can be accessed by SLJIT_FR(i)
244     The i parameter must be >= 0 and < SLJIT_NUMBER_OF_FLOAT_REGISTERS. */
245     #define SLJIT_FR(i) (1 + (i))
246 ph10 662
247 zherczeg 1491 /* Floating point saved registers. */
248     #define SLJIT_FS0 (SLJIT_NUMBER_OF_FLOAT_REGISTERS)
249     #define SLJIT_FS1 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 1)
250     #define SLJIT_FS2 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 2)
251     #define SLJIT_FS3 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 3)
252     #define SLJIT_FS4 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 4)
253     #define SLJIT_FS5 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 5)
254     /* All S registers provided by the architecture can be accessed by SLJIT_FS(i)
255     The i parameter must be >= 0 and < SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS. */
256     #define SLJIT_FS(i) (SLJIT_NUMBER_OF_FLOAT_REGISTERS - (i))
257 ph10 662
258 zherczeg 1491 /* Float registers >= SLJIT_FIRST_SAVED_FLOAT_REG are saved registers. */
259     #define SLJIT_FIRST_SAVED_FLOAT_REG (SLJIT_FS0 - SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS + 1)
260 zherczeg 1280
261 ph10 662 /* --------------------------------------------------------------------- */
262     /* Main structures and functions */
263     /* --------------------------------------------------------------------- */
264    
265 zherczeg 1499 /*
266     The following structures are private, and can be changed in the
267     future. Keeping them here allows code inlining.
268     */
269    
270 ph10 662 struct sljit_memory_fragment {
271     struct sljit_memory_fragment *next;
272     sljit_uw used_size;
273 zherczeg 1195 /* Must be aligned to sljit_sw. */
274 ph10 662 sljit_ub memory[1];
275     };
276    
277     struct sljit_label {
278     struct sljit_label *next;
279     sljit_uw addr;
280     /* The maximum size difference. */
281     sljit_uw size;
282     };
283    
284     struct sljit_jump {
285     struct sljit_jump *next;
286     sljit_uw addr;
287 zherczeg 1195 sljit_sw flags;
288 ph10 662 union {
289     sljit_uw target;
290     struct sljit_label* label;
291     } u;
292     };
293    
294     struct sljit_const {
295     struct sljit_const *next;
296     sljit_uw addr;
297     };
298    
299     struct sljit_compiler {
300 zherczeg 1195 sljit_si error;
301 zherczeg 1499 sljit_si options;
302 ph10 662
303     struct sljit_label *labels;
304     struct sljit_jump *jumps;
305     struct sljit_const *consts;
306     struct sljit_label *last_label;
307     struct sljit_jump *last_jump;
308     struct sljit_const *last_const;
309    
310 zherczeg 1507 void *allocator_data;
311 ph10 662 struct sljit_memory_fragment *buf;
312     struct sljit_memory_fragment *abuf;
313    
314 zherczeg 1491 /* Used scratch registers. */
315 zherczeg 1215 sljit_si scratches;
316 zherczeg 880 /* Used saved registers. */
317 zherczeg 1195 sljit_si saveds;
318 zherczeg 1491 /* Used float scratch registers. */
319     sljit_si fscratches;
320     /* Used float saved registers. */
321     sljit_si fsaveds;
322 ph10 662 /* Local stack size. */
323 zherczeg 1195 sljit_si local_size;
324 ph10 662 /* Code size. */
325     sljit_uw size;
326 ph10 836 /* For statistical purposes. */
327     sljit_uw executable_size;
328 ph10 662
329     #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
330 zherczeg 1195 sljit_si args;
331 ph10 662 #endif
332    
333     #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
334 zherczeg 1195 sljit_si mode32;
335 ph10 662 #endif
336    
337 zherczeg 1483 #if (defined SLJIT_CONFIG_X86 && SLJIT_CONFIG_X86)
338 zherczeg 1195 sljit_si flags_saved;
339 ph10 662 #endif
340    
341     #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
342     /* Constant pool handling. */
343     sljit_uw *cpool;
344     sljit_ub *cpool_unique;
345     sljit_uw cpool_diff;
346     sljit_uw cpool_fill;
347 zherczeg 880 /* Other members. */
348 ph10 662 /* Contains pointer, "ldr pc, [...]" pairs. */
349     sljit_uw patches;
350     #endif
351    
352     #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) || (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7)
353     /* Temporary fields. */
354     sljit_uw shift_imm;
355 zherczeg 1195 sljit_si cache_arg;
356     sljit_sw cache_argw;
357 ph10 662 #endif
358    
359     #if (defined SLJIT_CONFIG_ARM_THUMB2 && SLJIT_CONFIG_ARM_THUMB2)
360 zherczeg 1195 sljit_si cache_arg;
361     sljit_sw cache_argw;
362 ph10 662 #endif
363    
364 zherczeg 1453 #if (defined SLJIT_CONFIG_ARM_64 && SLJIT_CONFIG_ARM_64)
365     sljit_si cache_arg;
366     sljit_sw cache_argw;
367     #endif
368    
369 zherczeg 1483 #if (defined SLJIT_CONFIG_PPC && SLJIT_CONFIG_PPC)
370 zherczeg 1195 sljit_sw imm;
371     sljit_si cache_arg;
372     sljit_sw cache_argw;
373 ph10 662 #endif
374    
375 zherczeg 1483 #if (defined SLJIT_CONFIG_MIPS && SLJIT_CONFIG_MIPS)
376 zherczeg 1195 sljit_si delay_slot;
377     sljit_si cache_arg;
378     sljit_sw cache_argw;
379 ph10 662 #endif
380    
381 zherczeg 1149 #if (defined SLJIT_CONFIG_SPARC_32 && SLJIT_CONFIG_SPARC_32)
382 zherczeg 1195 sljit_si delay_slot;
383     sljit_si cache_arg;
384     sljit_sw cache_argw;
385 zherczeg 1149 #endif
386    
387 zherczeg 1378 #if (defined SLJIT_CONFIG_TILEGX && SLJIT_CONFIG_TILEGX)
388     sljit_si cache_arg;
389     sljit_sw cache_argw;
390     #endif
391    
392 ph10 662 #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
393     FILE* verbose;
394     #endif
395    
396 zherczeg 1506 #if (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) \
397     || (defined SLJIT_DEBUG && SLJIT_DEBUG)
398 zherczeg 955 /* Local size passed to the functions. */
399 zherczeg 1195 sljit_si logical_local_size;
400 zherczeg 955 #endif
401    
402 zherczeg 1506 #if (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) \
403     || (defined SLJIT_DEBUG && SLJIT_DEBUG) \
404     || (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
405 zherczeg 1195 sljit_si skip_checks;
406 ph10 662 #endif
407     };
408    
409     /* --------------------------------------------------------------------- */
410     /* Main functions */
411     /* --------------------------------------------------------------------- */
412    
413 zherczeg 1507 /* Creates an sljit compiler. The allocator_data is required by some
414     custom memory managers. This pointer is passed to SLJIT_MALLOC
415     and SLJIT_FREE macros. Most allocators (including the default
416     one) ignores this value, and it is recommended to pass NULL
417     as a dummy value for allocator_data.
418    
419 ph10 662 Returns NULL if failed. */
420 zherczeg 1507 SLJIT_API_FUNC_ATTRIBUTE struct sljit_compiler* sljit_create_compiler(void *allocator_data);
421 zherczeg 1216
422 zherczeg 1507 /* Frees everything except the compiled machine code. */
423 zherczeg 740 SLJIT_API_FUNC_ATTRIBUTE void sljit_free_compiler(struct sljit_compiler *compiler);
424 ph10 662
425 ph10 1325 /* Returns the current error code. If an error is occurred, future sljit
426 zherczeg 1216 calls which uses the same compiler argument returns early with the same
427     error code. Thus there is no need for checking the error after every
428     call, it is enough to do it before the code is compiled. Removing
429     these checks increases the performance of the compiling process. */
430 zherczeg 1195 static SLJIT_INLINE sljit_si sljit_get_compiler_error(struct sljit_compiler *compiler) { return compiler->error; }
431 ph10 662
432     /*
433     Allocate a small amount of memory. The size must be <= 64 bytes on 32 bit,
434 zherczeg 1216 and <= 128 bytes on 64 bit architectures. The memory area is owned by the
435     compiler, and freed by sljit_free_compiler. The returned pointer is
436     sizeof(sljit_sw) aligned. Excellent for allocating small blocks during
437     the compiling, and no need to worry about freeing them. The size is
438     enough to contain at most 16 pointers. If the size is outside of the range,
439     the function will return with NULL. However, this return value does not
440     indicate that there is no more memory (does not set the current error code
441     of the compiler to out-of-memory status).
442 ph10 662 */
443 zherczeg 1195 SLJIT_API_FUNC_ATTRIBUTE void* sljit_alloc_memory(struct sljit_compiler *compiler, sljit_si size);
444 ph10 662
445     #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
446     /* Passing NULL disables verbose. */
447 zherczeg 740 SLJIT_API_FUNC_ATTRIBUTE void sljit_compiler_verbose(struct sljit_compiler *compiler, FILE* verbose);
448 ph10 662 #endif
449    
450 zherczeg 740 SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler);
451     SLJIT_API_FUNC_ATTRIBUTE void sljit_free_code(void* code);
452 ph10 662
453 ph10 836 /*
454 zherczeg 1216 After the machine code generation is finished we can retrieve the allocated
455     executable memory size, although this area may not be fully filled with
456     instructions depending on some optimizations. This function is useful only
457     for statistical purposes.
458 ph10 836
459     Before a successful code generation, this function returns with 0.
460     */
461     static SLJIT_INLINE sljit_uw sljit_get_generated_code_size(struct sljit_compiler *compiler) { return compiler->executable_size; }
462    
463 zherczeg 1216 /* Instruction generation. Returns with any error code. If there is no
464     error, they return with SLJIT_SUCCESS. */
465 ph10 662
466     /*
467 zherczeg 1491 The executable code is a function call from the viewpoint of the C
468     language. The function calls must obey to the ABI (Application
469     Binary Interface) of the platform, which specify the purpose of
470     all machine registers and stack handling among other things. The
471     sljit_emit_enter function emits the necessary instructions for
472     setting up a new context for the executable code and moves function
473 zherczeg 1499 arguments to the saved registers. Furthermore the options argument
474 zherczeg 1506 can be used to pass configuration options to the compiler. The
475     available options are listed before sljit_emit_enter.
476 ph10 662
477 zherczeg 1499 The number of sljit_sw arguments passed to the generated function
478     are specified in the "args" parameter. The number of arguments must
479     be less than or equal to 3. The first argument goes to SLJIT_S0,
480     the second goes to SLJIT_S1 and so on. The register set used by
481     the function must be declared as well. The number of scratch and
482     saved registers used by the function must be passed to sljit_emit_enter.
483     Only R registers between R0 and "scratches" argument can be used
484     later. E.g. if "scratches" is set to 2, the register set will be
485     limited to R0 and R1. The S registers and the floating point
486     registers ("fscratches" and "fsaveds") are specified in a similar
487     way. The sljit_emit_enter is also capable of allocating a stack
488     space for local variables. The "local_size" argument contains the
489     size in bytes of this local area and its staring address is stored
490     in SLJIT_SP. The memory area between SLJIT_SP (inclusive) and
491     SLJIT_SP + local_size (exclusive) can be modified freely until
492     the function returns. The stack space is not initialized.
493    
494 zherczeg 1491 Note: the following conditions must met:
495     0 <= scratches <= SLJIT_NUMBER_OF_REGISTERS
496     0 <= saveds <= SLJIT_NUMBER_OF_REGISTERS
497     scratches + saveds <= SLJIT_NUMBER_OF_REGISTERS
498     0 <= fscratches <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
499     0 <= fsaveds <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
500     fscratches + fsaveds <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
501    
502 zherczeg 1216 Note: every call of sljit_emit_enter and sljit_set_context
503 zherczeg 1491 overwrites the previous context.
504     */
505 ph10 662
506 zherczeg 1506 /* The absolute address returned by sljit_get_local_base with
507     offset 0 is aligned to sljit_d. Otherwise it is aligned to sljit_uw. */
508     #define SLJIT_DOUBLE_ALIGNMENT 0x00000001
509    
510     /* The local_size must be >= 0 and <= SLJIT_MAX_LOCAL_SIZE. */
511 ph10 662 #define SLJIT_MAX_LOCAL_SIZE 65536
512    
513 zherczeg 1195 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_enter(struct sljit_compiler *compiler,
514 zherczeg 1499 sljit_si options, sljit_si args, sljit_si scratches, sljit_si saveds,
515 zherczeg 1491 sljit_si fscratches, sljit_si fsaveds, sljit_si local_size);
516 ph10 662
517 zherczeg 860 /* The machine code has a context (which contains the local stack space size,
518     number of used registers, etc.) which initialized by sljit_emit_enter. Several
519     functions (like sljit_emit_return) requres this context to be able to generate
520     the appropriate code. However, some code fragments (like inline cache) may have
521 zherczeg 1491 no normal entry point so their context is unknown for the compiler. Their context
522     can be provided to the compiler by the sljit_set_context function.
523 ph10 662
524 zherczeg 860 Note: every call of sljit_emit_enter and sljit_set_context overwrites
525     the previous context. */
526    
527 zherczeg 1506 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_set_context(struct sljit_compiler *compiler,
528 zherczeg 1499 sljit_si options, sljit_si args, sljit_si scratches, sljit_si saveds,
529 zherczeg 1491 sljit_si fscratches, sljit_si fsaveds, sljit_si local_size);
530 ph10 662
531 zherczeg 875 /* Return from machine code. The op argument can be SLJIT_UNUSED which means the
532     function does not return with anything or any opcode between SLJIT_MOV and
533 zherczeg 1182 SLJIT_MOV_P (see sljit_emit_op1). As for src and srcw they must be 0 if op
534 zherczeg 875 is SLJIT_UNUSED, otherwise see below the description about source and
535     destination arguments. */
536 zherczeg 1216
537 zherczeg 1195 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_return(struct sljit_compiler *compiler, sljit_si op,
538     sljit_si src, sljit_sw srcw);
539 ph10 662
540 zherczeg 1216 /* Fast calling mechanism for utility functions (see SLJIT_FAST_CALL). All registers and
541     even the stack frame is passed to the callee. The return address is preserved in
542     dst/dstw by sljit_emit_fast_enter (the type of the value stored by this function
543     is sljit_p), and sljit_emit_fast_return can use this as a return value later. */
544 ph10 662
545 zherczeg 1182 /* Note: only for sljit specific, non ABI compilant calls. Fast, since only a few machine
546     instructions are needed. Excellent for small uility functions, where saving registers
547     and setting up a new stack frame would cost too much performance. However, it is still
548     possible to return to the address of the caller (or anywhere else). */
549 ph10 662
550     /* Note: flags are not changed (unlike sljit_emit_enter / sljit_emit_return). */
551    
552     /* Note: although sljit_emit_fast_return could be replaced by an ijump, it is not suggested,
553     since many architectures do clever branch prediction on call / return instruction pairs. */
554    
555 zherczeg 1195 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw);
556     SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fast_return(struct sljit_compiler *compiler, sljit_si src, sljit_sw srcw);
557 ph10 662
558     /*
559     Source and destination values for arithmetical instructions
560     imm - a simple immediate value (cannot be used as a destination)
561     reg - any of the registers (immediate argument must be 0)
562     [imm] - absolute immediate memory address
563     [reg+imm] - indirect memory address
564     [reg+(reg<<imm)] - indirect indexed memory address (shift must be between 0 and 3)
565 zherczeg 1195 useful for (byte, half, int, sljit_sw) array access
566 ph10 662 (fully supported by both x86 and ARM architectures, and cheap operation on others)
567     */
568    
569     /*
570 zherczeg 847 IMPORATNT NOTE: memory access MUST be naturally aligned except
571     SLJIT_UNALIGNED macro is defined and its value is 1.
572    
573 ph10 662 length | alignment
574     ---------+-----------
575 zherczeg 1195 byte | 1 byte (any physical_address is accepted)
576     half | 2 byte (physical_address & 0x1 == 0)
577     int | 4 byte (physical_address & 0x3 == 0)
578     word | 4 byte if SLJIT_32BIT_ARCHITECTURE is defined and its value is 1
579 zherczeg 847 | 8 byte if SLJIT_64BIT_ARCHITECTURE is defined and its value is 1
580 zherczeg 1195 pointer | size of sljit_p type (4 byte on 32 bit machines, 4 or 8 byte
581     | on 64 bit machines)
582 ph10 662
583 zherczeg 1195 Note: Different architectures have different addressing limitations.
584     A single instruction is enough for the following addressing
585     modes. Other adrressing modes are emulated by instruction
586     sequences. This information could help to improve those code
587     generators which focuses only a few architectures.
588    
589 ph10 1325 x86: [reg+imm], -2^32+1 <= imm <= 2^32-1 (full address space on x86-32)
590 zherczeg 1195 [reg+(reg<<imm)] is supported
591     [imm], -2^32+1 <= imm <= 2^32-1 is supported
592     Write-back is not supported
593     arm: [reg+imm], -4095 <= imm <= 4095 or -255 <= imm <= 255 for signed
594     bytes, any halfs or floating point values)
595     [reg+(reg<<imm)] is supported
596     Write-back is supported
597     arm-t2: [reg+imm], -255 <= imm <= 4095
598     [reg+(reg<<imm)] is supported
599     Write back is supported only for [reg+imm], where -255 <= imm <= 255
600     ppc: [reg+imm], -65536 <= imm <= 65535. 64 bit loads/stores and 32 bit
601     signed load on 64 bit requires immediates divisible by 4.
602     [reg+imm] is not supported for signed 8 bit values.
603     [reg+reg] is supported
604     Write-back is supported except for one instruction: 32 bit signed
605     load with [reg+imm] addressing mode on 64 bit.
606     mips: [reg+imm], -65536 <= imm <= 65535
607     sparc: [reg+imm], -4096 <= imm <= 4095
608     [reg+reg] is supported
609 ph10 662 */
610    
611     /* Register output: simply the name of the register.
612     For destination, you can use SLJIT_UNUSED as well. */
613 zherczeg 1453 #define SLJIT_MEM 0x80
614 ph10 662 #define SLJIT_MEM0() (SLJIT_MEM)
615     #define SLJIT_MEM1(r1) (SLJIT_MEM | (r1))
616 zherczeg 1453 #define SLJIT_MEM2(r1, r2) (SLJIT_MEM | (r1) | ((r2) << 8))
617     #define SLJIT_IMM 0x40
618 ph10 662
619     /* Set 32 bit operation mode (I) on 64 bit CPUs. The flag is totally ignored on
620 zherczeg 1195 32 bit CPUs. If this flag is set for an arithmetic operation, it uses only the
621     lower 32 bit of the input register(s), and set the CPU status flags according
622     to the 32 bit result. The higher 32 bits are undefined for both the input and
623     output. However, the CPU might not ignore those higher 32 bits, like MIPS, which
624     expects it to be the sign extension of the lower 32 bit. All 32 bit operations
625     are undefined, if this condition is not fulfilled. Therefore, when SLJIT_INT_OP
626     is specified, all register arguments must be the result of other operations with
627     the same SLJIT_INT_OP flag. In other words, although a register can hold either
628     a 64 or 32 bit value, these values cannot be mixed. The only exceptions are
629 zherczeg 1460 SLJIT_IMOV and SLJIT_IMOVU (SLJIT_MOV_SI/SLJIT_MOVU_SI with SLJIT_INT_OP flag)
630     which can convert any source argument to SLJIT_INT_OP compatible result. This
631     conversion might be unnecessary on some CPUs like x86-64, since the upper 32
632     bit is always ignored. In this case SLJIT is clever enough to not generate any
633     instructions if the source and destination operands are the same registers.
634     Affects sljit_emit_op0, sljit_emit_op1 and sljit_emit_op2. */
635 ph10 662 #define SLJIT_INT_OP 0x100
636    
637 zherczeg 1195 /* Single precision mode (SP). This flag is similar to SLJIT_INT_OP, just
638     it applies to floating point registers (it is even the same bit). When
639     this flag is passed, the CPU performs single precision floating point
640     operations. Similar to SLJIT_INT_OP, all register arguments must be the
641     result of other floating point operations with this flag. Affects
642     sljit_emit_fop1, sljit_emit_fop2 and sljit_emit_fcmp. */
643     #define SLJIT_SINGLE_OP 0x100
644    
645 ph10 662 /* Common CPU status flags for all architectures (x86, ARM, PPC)
646     - carry flag
647     - overflow flag
648     - zero flag
649     - negative/positive flag (depends on arc)
650     On mips, these flags are emulated by software. */
651    
652     /* By default, the instructions may, or may not set the CPU status flags.
653     Forcing to set or keep status flags can be done with the following flags: */
654    
655     /* Note: sljit tries to emit the minimum number of instructions. Using these
656     flags can increase them, so use them wisely to avoid unnecessary code generation. */
657    
658     /* Set Equal (Zero) status flag (E). */
659     #define SLJIT_SET_E 0x0200
660 zherczeg 1460 /* Set unsigned status flag (U). */
661     #define SLJIT_SET_U 0x0400
662 ph10 662 /* Set signed status flag (S). */
663 zherczeg 1460 #define SLJIT_SET_S 0x0800
664 ph10 662 /* Set signed overflow flag (O). */
665     #define SLJIT_SET_O 0x1000
666     /* Set carry flag (C).
667     Note: Kinda unsigned overflow, but behaves differently on various cpus. */
668     #define SLJIT_SET_C 0x2000
669     /* Do not modify the flags (K).
670     Note: This flag cannot be combined with any other SLJIT_SET_* flag. */
671     #define SLJIT_KEEP_FLAGS 0x4000
672    
673     /* Notes:
674     - you cannot postpone conditional jump instructions except if noted that
675     the instruction does not set flags (See: SLJIT_KEEP_FLAGS).
676     - flag combinations: '|' means 'logical or'. */
677    
678 zherczeg 1499 /* Starting index of opcodes for sljit_emit_op0. */
679     #define SLJIT_OP0_BASE 0
680    
681 ph10 662 /* Flags: - (never set any flags)
682     Note: breakpoint instruction is not supported by all architectures (namely ppc)
683     It falls back to SLJIT_NOP in those cases. */
684 zherczeg 1499 #define SLJIT_BREAKPOINT (SLJIT_OP0_BASE + 0)
685 ph10 662 /* Flags: - (never set any flags)
686     Note: may or may not cause an extra cycle wait
687     it can even decrease the runtime in a few cases. */
688 zherczeg 1499 #define SLJIT_NOP (SLJIT_OP0_BASE + 1)
689 zherczeg 1195 /* Flags: - (may destroy flags)
690 zherczeg 1491 Unsigned multiplication of SLJIT_R0 and SLJIT_R1.
691     Result goes to SLJIT_R1:SLJIT_R0 (high:low) word */
692 zherczeg 1506 #define SLJIT_LUMUL (SLJIT_OP0_BASE + 2)
693 zherczeg 1195 /* Flags: - (may destroy flags)
694 zherczeg 1491 Signed multiplication of SLJIT_R0 and SLJIT_R1.
695     Result goes to SLJIT_R1:SLJIT_R0 (high:low) word */
696 zherczeg 1506 #define SLJIT_LSMUL (SLJIT_OP0_BASE + 3)
697 zherczeg 1195 /* Flags: I - (may destroy flags)
698 zherczeg 1491 Unsigned divide of the value in SLJIT_R0 by the value in SLJIT_R1.
699     The result is placed in SLJIT_R0 and the remainder goes to SLJIT_R1.
700     Note: if SLJIT_R1 contains 0, the behaviour is undefined. */
701 zherczeg 1506 #define SLJIT_LUDIV (SLJIT_OP0_BASE + 4)
702     #define SLJIT_ILUDIV (SLJIT_LUDIV | SLJIT_INT_OP)
703 zherczeg 1195 /* Flags: I - (may destroy flags)
704 zherczeg 1491 Signed divide of the value in SLJIT_R0 by the value in SLJIT_R1.
705     The result is placed in SLJIT_R0 and the remainder goes to SLJIT_R1.
706     Note: if SLJIT_R1 contains 0, the behaviour is undefined. */
707 zherczeg 1506 #define SLJIT_LSDIV (SLJIT_OP0_BASE + 5)
708     #define SLJIT_ILSDIV (SLJIT_LSDIV | SLJIT_INT_OP)
709 ph10 662
710 zherczeg 1195 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op0(struct sljit_compiler *compiler, sljit_si op);
711 ph10 662
712 zherczeg 1499 /* Starting index of opcodes for sljit_emit_op1. */
713     #define SLJIT_OP1_BASE 32
714    
715 ph10 662 /* Notes for MOV instructions:
716 zherczeg 1453 U = Mov with update (pre form). If source or destination defined as SLJIT_MEM1(r1)
717 ph10 662 or SLJIT_MEM2(r1, r2), r1 is increased by the sum of r2 and the constant argument
718     UB = unsigned byte (8 bit)
719     SB = signed byte (8 bit)
720 zherczeg 1182 UH = unsigned half (16 bit)
721     SH = signed half (16 bit)
722     UI = unsigned int (32 bit)
723     SI = signed int (32 bit)
724     P = pointer (sljit_p) size */
725 ph10 662
726     /* Flags: - (never set any flags) */
727 zherczeg 1499 #define SLJIT_MOV (SLJIT_OP1_BASE + 0)
728 zherczeg 1195 /* Flags: I - (never set any flags) */
729 zherczeg 1499 #define SLJIT_MOV_UB (SLJIT_OP1_BASE + 1)
730 zherczeg 1195 #define SLJIT_IMOV_UB (SLJIT_MOV_UB | SLJIT_INT_OP)
731     /* Flags: I - (never set any flags) */
732 zherczeg 1499 #define SLJIT_MOV_SB (SLJIT_OP1_BASE + 2)
733 zherczeg 1195 #define SLJIT_IMOV_SB (SLJIT_MOV_SB | SLJIT_INT_OP)
734     /* Flags: I - (never set any flags) */
735 zherczeg 1499 #define SLJIT_MOV_UH (SLJIT_OP1_BASE + 3)
736 zherczeg 1195 #define SLJIT_IMOV_UH (SLJIT_MOV_UH | SLJIT_INT_OP)
737     /* Flags: I - (never set any flags) */
738 zherczeg 1499 #define SLJIT_MOV_SH (SLJIT_OP1_BASE + 4)
739 zherczeg 1195 #define SLJIT_IMOV_SH (SLJIT_MOV_SH | SLJIT_INT_OP)
740     /* Flags: I - (never set any flags)
741     Note: see SLJIT_INT_OP for further details. */
742 zherczeg 1499 #define SLJIT_MOV_UI (SLJIT_OP1_BASE + 5)
743 zherczeg 1460 /* No SLJIT_INT_OP form, since it is the same as SLJIT_IMOV. */
744 zherczeg 1195 /* Flags: I - (never set any flags)
745     Note: see SLJIT_INT_OP for further details. */
746 zherczeg 1499 #define SLJIT_MOV_SI (SLJIT_OP1_BASE + 6)
747 zherczeg 1195 #define SLJIT_IMOV (SLJIT_MOV_SI | SLJIT_INT_OP)
748 ph10 662 /* Flags: - (never set any flags) */
749 zherczeg 1499 #define SLJIT_MOV_P (SLJIT_OP1_BASE + 7)
750 ph10 662 /* Flags: - (never set any flags) */
751 zherczeg 1499 #define SLJIT_MOVU (SLJIT_OP1_BASE + 8)
752 zherczeg 1195 /* Flags: I - (never set any flags) */
753 zherczeg 1499 #define SLJIT_MOVU_UB (SLJIT_OP1_BASE + 9)
754 zherczeg 1195 #define SLJIT_IMOVU_UB (SLJIT_MOVU_UB | SLJIT_INT_OP)
755     /* Flags: I - (never set any flags) */
756 zherczeg 1499 #define SLJIT_MOVU_SB (SLJIT_OP1_BASE + 10)
757 zherczeg 1195 #define SLJIT_IMOVU_SB (SLJIT_MOVU_SB | SLJIT_INT_OP)
758     /* Flags: I - (never set any flags) */
759 zherczeg 1499 #define SLJIT_MOVU_UH (SLJIT_OP1_BASE + 11)
760 zherczeg 1195 #define SLJIT_IMOVU_UH (SLJIT_MOVU_UH | SLJIT_INT_OP)
761     /* Flags: I - (never set any flags) */
762 zherczeg 1499 #define SLJIT_MOVU_SH (SLJIT_OP1_BASE + 12)
763 zherczeg 1195 #define SLJIT_IMOVU_SH (SLJIT_MOVU_SH | SLJIT_INT_OP)
764     /* Flags: I - (never set any flags)
765     Note: see SLJIT_INT_OP for further details. */
766 zherczeg 1499 #define SLJIT_MOVU_UI (SLJIT_OP1_BASE + 13)
767 zherczeg 1460 /* No SLJIT_INT_OP form, since it is the same as SLJIT_IMOVU. */
768 zherczeg 1195 /* Flags: I - (never set any flags)
769     Note: see SLJIT_INT_OP for further details. */
770 zherczeg 1499 #define SLJIT_MOVU_SI (SLJIT_OP1_BASE + 14)
771 zherczeg 1195 #define SLJIT_IMOVU (SLJIT_MOVU_SI | SLJIT_INT_OP)
772 zherczeg 1182 /* Flags: - (never set any flags) */
773 zherczeg 1499 #define SLJIT_MOVU_P (SLJIT_OP1_BASE + 15)
774 ph10 662 /* Flags: I | E | K */
775 zherczeg 1499 #define SLJIT_NOT (SLJIT_OP1_BASE + 16)
776 zherczeg 1195 #define SLJIT_INOT (SLJIT_NOT | SLJIT_INT_OP)
777 ph10 662 /* Flags: I | E | O | K */
778 zherczeg 1499 #define SLJIT_NEG (SLJIT_OP1_BASE + 17)
779 zherczeg 1195 #define SLJIT_INEG (SLJIT_NEG | SLJIT_INT_OP)
780 ph10 662 /* Count leading zeroes
781 zherczeg 1149 Flags: I | E | K
782     Important note! Sparc 32 does not support K flag, since
783     the required popc instruction is introduced only in sparc 64. */
784 zherczeg 1499 #define SLJIT_CLZ (SLJIT_OP1_BASE + 18)
785 zherczeg 1195 #define SLJIT_ICLZ (SLJIT_CLZ | SLJIT_INT_OP)
786 ph10 662
787 zherczeg 1195 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op1(struct sljit_compiler *compiler, sljit_si op,
788     sljit_si dst, sljit_sw dstw,
789     sljit_si src, sljit_sw srcw);
790 ph10 662
791 zherczeg 1499 /* Starting index of opcodes for sljit_emit_op2. */
792     #define SLJIT_OP2_BASE 96
793    
794 ph10 662 /* Flags: I | E | O | C | K */
795 zherczeg 1499 #define SLJIT_ADD (SLJIT_OP2_BASE + 0)
796 zherczeg 1195 #define SLJIT_IADD (SLJIT_ADD | SLJIT_INT_OP)
797 ph10 662 /* Flags: I | C | K */
798 zherczeg 1499 #define SLJIT_ADDC (SLJIT_OP2_BASE + 1)
799 zherczeg 1195 #define SLJIT_IADDC (SLJIT_ADDC | SLJIT_INT_OP)
800 zherczeg 1460 /* Flags: I | E | U | S | O | C | K */
801 zherczeg 1499 #define SLJIT_SUB (SLJIT_OP2_BASE + 2)
802 zherczeg 1195 #define SLJIT_ISUB (SLJIT_SUB | SLJIT_INT_OP)
803 ph10 662 /* Flags: I | C | K */
804 zherczeg 1499 #define SLJIT_SUBC (SLJIT_OP2_BASE + 3)
805 zherczeg 1195 #define SLJIT_ISUBC (SLJIT_SUBC | SLJIT_INT_OP)
806 zherczeg 860 /* Note: integer mul
807     Flags: I | O (see SLJIT_C_MUL_*) | K */
808 zherczeg 1499 #define SLJIT_MUL (SLJIT_OP2_BASE + 4)
809 zherczeg 1195 #define SLJIT_IMUL (SLJIT_MUL | SLJIT_INT_OP)
810 ph10 662 /* Flags: I | E | K */
811 zherczeg 1499 #define SLJIT_AND (SLJIT_OP2_BASE + 5)
812 zherczeg 1195 #define SLJIT_IAND (SLJIT_AND | SLJIT_INT_OP)
813 ph10 662 /* Flags: I | E | K */
814 zherczeg 1499 #define SLJIT_OR (SLJIT_OP2_BASE + 6)
815 zherczeg 1195 #define SLJIT_IOR (SLJIT_OR | SLJIT_INT_OP)
816 ph10 662 /* Flags: I | E | K */
817 zherczeg 1499 #define SLJIT_XOR (SLJIT_OP2_BASE + 7)
818 zherczeg 1195 #define SLJIT_IXOR (SLJIT_XOR | SLJIT_INT_OP)
819 zherczeg 860 /* Flags: I | E | K
820     Let bit_length be the length of the shift operation: 32 or 64.
821     If src2 is immediate, src2w is masked by (bit_length - 1).
822     Otherwise, if the content of src2 is outside the range from 0
823 zherczeg 1499 to bit_length - 1, the result is undefined. */
824     #define SLJIT_SHL (SLJIT_OP2_BASE + 8)
825 zherczeg 1195 #define SLJIT_ISHL (SLJIT_SHL | SLJIT_INT_OP)
826 zherczeg 860 /* Flags: I | E | K
827     Let bit_length be the length of the shift operation: 32 or 64.
828     If src2 is immediate, src2w is masked by (bit_length - 1).
829     Otherwise, if the content of src2 is outside the range from 0
830 zherczeg 1499 to bit_length - 1, the result is undefined. */
831     #define SLJIT_LSHR (SLJIT_OP2_BASE + 9)
832 zherczeg 1195 #define SLJIT_ILSHR (SLJIT_LSHR | SLJIT_INT_OP)
833 zherczeg 860 /* Flags: I | E | K
834     Let bit_length be the length of the shift operation: 32 or 64.
835     If src2 is immediate, src2w is masked by (bit_length - 1).
836     Otherwise, if the content of src2 is outside the range from 0
837 zherczeg 1499 to bit_length - 1, the result is undefined. */
838     #define SLJIT_ASHR (SLJIT_OP2_BASE + 10)
839 zherczeg 1195 #define SLJIT_IASHR (SLJIT_ASHR | SLJIT_INT_OP)
840 ph10 662
841 zherczeg 1195 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op2(struct sljit_compiler *compiler, sljit_si op,
842     sljit_si dst, sljit_sw dstw,
843     sljit_si src1, sljit_sw src1w,
844     sljit_si src2, sljit_sw src2w);
845 ph10 662
846 zherczeg 839 /* The following function is a helper function for sljit_emit_op_custom.
847 zherczeg 1493 It returns with the real machine register index ( >=0 ) of any SLJIT_R,
848     SLJIT_S and SLJIT_SP registers.
849 zherczeg 839
850 zherczeg 1493 Note: it returns with -1 for virtual registers (only on x86-32). */
851    
852 zherczeg 1195 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_get_register_index(sljit_si reg);
853 zherczeg 839
854 zherczeg 1280 /* The following function is a helper function for sljit_emit_op_custom.
855     It returns with the real machine register index of any SLJIT_FLOAT register.
856 zherczeg 1506
857 zherczeg 1493 Note: the index is always an even number on ARM (except ARM-64), MIPS, and SPARC. */
858 zherczeg 1280
859     SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_get_float_register_index(sljit_si reg);
860    
861 zherczeg 839 /* Any instruction can be inserted into the instruction stream by
862     sljit_emit_op_custom. It has a similar purpose as inline assembly.
863     The size parameter must match to the instruction size of the target
864     architecture:
865    
866     x86: 0 < size <= 15. The instruction argument can be byte aligned.
867     Thumb2: if size == 2, the instruction argument must be 2 byte aligned.
868     if size == 4, the instruction argument must be 4 byte aligned.
869     Otherwise: size must be 4 and instruction argument must be 4 byte aligned. */
870    
871 zherczeg 1195 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op_custom(struct sljit_compiler *compiler,
872     void *instruction, sljit_si size);
873 zherczeg 839
874     /* Returns with non-zero if fpu is available. */
875    
876 zherczeg 1195 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_is_fpu_available(void);
877 ph10 662
878 zherczeg 1499 /* Starting index of opcodes for sljit_emit_fop1. */
879     #define SLJIT_FOP1_BASE 128
880    
881 zherczeg 1195 /* Flags: SP - (never set any flags) */
882 zherczeg 1506 #define SLJIT_DMOV (SLJIT_FOP1_BASE + 0)
883     #define SLJIT_SMOV (SLJIT_DMOV | SLJIT_SINGLE_OP)
884 zherczeg 1483 /* Convert opcodes: CONV[DST_TYPE].FROM[SRC_TYPE]
885     SRC/DST TYPE can be: D - double, S - single, W - signed word, I - signed int
886     Rounding mode when the destination is W or I: round towards zero. */
887     /* Flags: SP - (never set any flags) */
888 zherczeg 1499 #define SLJIT_CONVD_FROMS (SLJIT_FOP1_BASE + 1)
889 zherczeg 1483 #define SLJIT_CONVS_FROMD (SLJIT_CONVD_FROMS | SLJIT_SINGLE_OP)
890     /* Flags: SP - (never set any flags) */
891 zherczeg 1499 #define SLJIT_CONVW_FROMD (SLJIT_FOP1_BASE + 2)
892 zherczeg 1483 #define SLJIT_CONVW_FROMS (SLJIT_CONVW_FROMD | SLJIT_SINGLE_OP)
893     /* Flags: SP - (never set any flags) */
894 zherczeg 1499 #define SLJIT_CONVI_FROMD (SLJIT_FOP1_BASE + 3)
895 zherczeg 1483 #define SLJIT_CONVI_FROMS (SLJIT_CONVI_FROMD | SLJIT_SINGLE_OP)
896     /* Flags: SP - (never set any flags) */
897 zherczeg 1499 #define SLJIT_CONVD_FROMW (SLJIT_FOP1_BASE + 4)
898 zherczeg 1483 #define SLJIT_CONVS_FROMW (SLJIT_CONVD_FROMW | SLJIT_SINGLE_OP)
899     /* Flags: SP - (never set any flags) */
900 zherczeg 1499 #define SLJIT_CONVD_FROMI (SLJIT_FOP1_BASE + 5)
901 zherczeg 1483 #define SLJIT_CONVS_FROMI (SLJIT_CONVD_FROMI | SLJIT_SINGLE_OP)
902     /* Note: dst is the left and src is the right operand for SLJIT_CMPD.
903     Note: NaN check is always performed. If SLJIT_C_FLOAT_UNORDERED flag
904     is set, the comparison result is unpredictable.
905     Flags: SP | E | S (see SLJIT_C_FLOAT_*) */
906 zherczeg 1506 #define SLJIT_DCMP (SLJIT_FOP1_BASE + 6)
907     #define SLJIT_SCMP (SLJIT_DCMP | SLJIT_SINGLE_OP)
908 zherczeg 1499 /* Flags: SP - (never set any flags) */
909 zherczeg 1506 #define SLJIT_DNEG (SLJIT_FOP1_BASE + 7)
910     #define SLJIT_SNEG (SLJIT_DNEG | SLJIT_SINGLE_OP)
911 zherczeg 1499 /* Flags: SP - (never set any flags) */
912 zherczeg 1506 #define SLJIT_DABS (SLJIT_FOP1_BASE + 8)
913     #define SLJIT_SABS (SLJIT_DABS | SLJIT_SINGLE_OP)
914 ph10 662
915 zherczeg 1195 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fop1(struct sljit_compiler *compiler, sljit_si op,
916     sljit_si dst, sljit_sw dstw,
917     sljit_si src, sljit_sw srcw);
918 ph10 662
919 zherczeg 1499 /* Starting index of opcodes for sljit_emit_fop2. */
920     #define SLJIT_FOP2_BASE 160
921    
922 zherczeg 1195 /* Flags: SP - (never set any flags) */
923 zherczeg 1506 #define SLJIT_DADD (SLJIT_FOP2_BASE + 0)
924     #define SLJIT_SADD (SLJIT_DADD | SLJIT_SINGLE_OP)
925 zherczeg 1195 /* Flags: SP - (never set any flags) */
926 zherczeg 1506 #define SLJIT_DSUB (SLJIT_FOP2_BASE + 1)
927     #define SLJIT_SSUB (SLJIT_DSUB | SLJIT_SINGLE_OP)
928 zherczeg 1195 /* Flags: SP - (never set any flags) */
929 zherczeg 1506 #define SLJIT_DMUL (SLJIT_FOP2_BASE + 2)
930     #define SLJIT_SMUL (SLJIT_DMUL | SLJIT_SINGLE_OP)
931 zherczeg 1195 /* Flags: SP - (never set any flags) */
932 zherczeg 1506 #define SLJIT_DDIV (SLJIT_FOP2_BASE + 3)
933     #define SLJIT_SDIV (SLJIT_DDIV | SLJIT_SINGLE_OP)
934 ph10 662
935 zherczeg 1195 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fop2(struct sljit_compiler *compiler, sljit_si op,
936     sljit_si dst, sljit_sw dstw,
937     sljit_si src1, sljit_sw src1w,
938     sljit_si src2, sljit_sw src2w);
939 ph10 662
940     /* Label and jump instructions. */
941    
942 zherczeg 740 SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler);
943 ph10 662
944 zherczeg 1506 /* Invert (negate) conditional type: xor (^) with 0x1 */
945 ph10 662
946 zherczeg 1506 /* Integer comparison types. */
947     #define SLJIT_EQUAL 0
948     #define SLJIT_I_EQUAL (SLJIT_EQUAL | SLJIT_INT_OP)
949     #define SLJIT_ZERO 0
950     #define SLJIT_I_ZERO (SLJIT_ZERO | SLJIT_INT_OP)
951     #define SLJIT_NOT_EQUAL 1
952     #define SLJIT_I_NOT_EQUAL (SLJIT_NOT_EQUAL | SLJIT_INT_OP)
953     #define SLJIT_NOT_ZERO 1
954     #define SLJIT_I_NOT_ZERO (SLJIT_NOT_ZERO | SLJIT_INT_OP)
955 ph10 662
956 zherczeg 1506 #define SLJIT_LESS 2
957     #define SLJIT_I_LESS (SLJIT_LESS | SLJIT_INT_OP)
958     #define SLJIT_GREATER_EQUAL 3
959     #define SLJIT_I_GREATER_EQUAL (SLJIT_GREATER_EQUAL | SLJIT_INT_OP)
960     #define SLJIT_GREATER 4
961     #define SLJIT_I_GREATER (SLJIT_GREATER | SLJIT_INT_OP)
962     #define SLJIT_LESS_EQUAL 5
963     #define SLJIT_I_LESS_EQUAL (SLJIT_LESS_EQUAL | SLJIT_INT_OP)
964     #define SLJIT_SIG_LESS 6
965     #define SLJIT_I_SIG_LESS (SLJIT_SIG_LESS | SLJIT_INT_OP)
966     #define SLJIT_SIG_GREATER_EQUAL 7
967     #define SLJIT_I_SIG_GREATER_EQUAL (SLJIT_SIG_GREATER_EQUAL | SLJIT_INT_OP)
968     #define SLJIT_SIG_GREATER 8
969     #define SLJIT_I_SIG_GREATER (SLJIT_SIG_GREATER | SLJIT_INT_OP)
970     #define SLJIT_SIG_LESS_EQUAL 9
971     #define SLJIT_I_SIG_LESS_EQUAL (SLJIT_SIG_LESS_EQUAL | SLJIT_INT_OP)
972 ph10 662
973 zherczeg 1506 #define SLJIT_OVERFLOW 10
974     #define SLJIT_I_OVERFLOW (SLJIT_OVERFLOW | SLJIT_INT_OP)
975     #define SLJIT_NOT_OVERFLOW 11
976     #define SLJIT_I_NOT_OVERFLOW (SLJIT_NOT_OVERFLOW | SLJIT_INT_OP)
977 ph10 662
978 zherczeg 1506 #define SLJIT_MUL_OVERFLOW 12
979     #define SLJIT_I_MUL_OVERFLOW (SLJIT_MUL_OVERFLOW | SLJIT_INT_OP)
980     #define SLJIT_MUL_NOT_OVERFLOW 13
981     #define SLJIT_I_MUL_NOT_OVERFLOW (SLJIT_MUL_NOT_OVERFLOW | SLJIT_INT_OP)
982 ph10 662
983 zherczeg 1506 /* Floating point comparison types. */
984     #define SLJIT_D_EQUAL 14
985     #define SLJIT_S_EQUAL (SLJIT_D_EQUAL | SLJIT_SINGLE_OP)
986     #define SLJIT_D_NOT_EQUAL 15
987     #define SLJIT_S_NOT_EQUAL (SLJIT_D_NOT_EQUAL | SLJIT_SINGLE_OP)
988     #define SLJIT_D_LESS 16
989     #define SLJIT_S_LESS (SLJIT_D_LESS | SLJIT_SINGLE_OP)
990     #define SLJIT_D_GREATER_EQUAL 17
991     #define SLJIT_S_GREATER_EQUAL (SLJIT_D_GREATER_EQUAL | SLJIT_SINGLE_OP)
992     #define SLJIT_D_GREATER 18
993     #define SLJIT_S_GREATER (SLJIT_D_GREATER | SLJIT_SINGLE_OP)
994     #define SLJIT_D_LESS_EQUAL 19
995     #define SLJIT_S_LESS_EQUAL (SLJIT_D_LESS_EQUAL | SLJIT_SINGLE_OP)
996     #define SLJIT_D_UNORDERED 20
997     #define SLJIT_S_UNORDERED (SLJIT_D_UNORDERED | SLJIT_SINGLE_OP)
998     #define SLJIT_D_ORDERED 21
999     #define SLJIT_S_ORDERED (SLJIT_D_ORDERED | SLJIT_SINGLE_OP)
1000    
1001     /* Unconditional jump types. */
1002 ph10 662 #define SLJIT_JUMP 22
1003 zherczeg 722 #define SLJIT_FAST_CALL 23
1004     #define SLJIT_CALL0 24
1005     #define SLJIT_CALL1 25
1006     #define SLJIT_CALL2 26
1007     #define SLJIT_CALL3 27
1008 ph10 662
1009     /* Fast calling method. See sljit_emit_fast_enter / sljit_emit_fast_return. */
1010    
1011     /* The target can be changed during runtime (see: sljit_set_jump_addr). */
1012     #define SLJIT_REWRITABLE_JUMP 0x1000
1013    
1014     /* Emit a jump instruction. The destination is not set, only the type of the jump.
1015 zherczeg 1506 type must be between SLJIT_EQUAL and SLJIT_CALL3
1016 ph10 662 type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1017     Flags: - (never set any flags) for both conditional and unconditional jumps.
1018     Flags: destroy all flags for calls. */
1019 zherczeg 1195 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, sljit_si type);
1020 ph10 662
1021 zherczeg 867 /* Basic arithmetic comparison. In most architectures it is implemented as
1022     an SLJIT_SUB operation (with SLJIT_UNUSED destination and setting
1023     appropriate flags) followed by a sljit_emit_jump. However some
1024 zherczeg 1506 architectures (i.e: ARM64 or MIPS) may employ special optimizations here.
1025     It is suggested to use this comparison form when appropriate.
1026     type must be between SLJIT_EQUAL and SLJIT_I_SIG_LESS_EQUAL
1027     type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1028 ph10 662 Flags: destroy flags. */
1029 zherczeg 1195 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_cmp(struct sljit_compiler *compiler, sljit_si type,
1030     sljit_si src1, sljit_sw src1w,
1031     sljit_si src2, sljit_sw src2w);
1032 ph10 662
1033 zherczeg 867 /* Basic floating point comparison. In most architectures it is implemented as
1034     an SLJIT_FCMP operation (setting appropriate flags) followed by a
1035     sljit_emit_jump. However some architectures (i.e: MIPS) may employ
1036     special optimizations here. It is suggested to use this comparison form
1037     when appropriate.
1038 zherczeg 1506 type must be between SLJIT_D_EQUAL and SLJIT_S_ORDERED
1039     type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1040 zherczeg 867 Flags: destroy flags.
1041     Note: if either operand is NaN, the behaviour is undefined for
1042 zherczeg 1506 types up to SLJIT_S_LESS_EQUAL. */
1043 zherczeg 1195 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_fcmp(struct sljit_compiler *compiler, sljit_si type,
1044     sljit_si src1, sljit_sw src1w,
1045     sljit_si src2, sljit_sw src2w);
1046 zherczeg 867
1047 ph10 662 /* Set the destination of the jump to this label. */
1048 zherczeg 740 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_label(struct sljit_jump *jump, struct sljit_label* label);
1049 zherczeg 1460 /* Set the destination address of the jump to this label. */
1050 zherczeg 740 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_target(struct sljit_jump *jump, sljit_uw target);
1051 ph10 662
1052     /* Call function or jump anywhere. Both direct and indirect form
1053     type must be between SLJIT_JUMP and SLJIT_CALL3
1054     Direct form: set src to SLJIT_IMM() and srcw to the address
1055     Indirect form: any other valid addressing mode
1056     Flags: - (never set any flags) for unconditional jumps.
1057     Flags: destroy all flags for calls. */
1058 zherczeg 1195 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_ijump(struct sljit_compiler *compiler, sljit_si type, sljit_si src, sljit_sw srcw);
1059 ph10 662
1060 zherczeg 1209 /* Perform the operation using the conditional flags as the second argument.
1061 zherczeg 1506 Type must always be between SLJIT_EQUAL and SLJIT_S_ORDERED. The value
1062     represented by the type is 1, if the condition represented by the type
1063 zherczeg 1209 is fulfilled, and 0 otherwise.
1064    
1065     If op == SLJIT_MOV, SLJIT_MOV_SI, SLJIT_MOV_UI:
1066     Set dst to the value represented by the type (0 or 1).
1067     Src must be SLJIT_UNUSED, and srcw must be 0
1068 ph10 662 Flags: - (never set any flags)
1069 zherczeg 1209 If op == SLJIT_OR, op == SLJIT_AND, op == SLJIT_XOR
1070     Performs the binary operation using src as the first, and the value
1071     represented by type as the second argument.
1072     Important note: only dst=src and dstw=srcw is supported at the moment!
1073 zherczeg 1203 Flags: I | E | K
1074 zherczeg 1209 Note: sljit_emit_op_flags does nothing, if dst is SLJIT_UNUSED (regardless of op). */
1075     SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_si op,
1076     sljit_si dst, sljit_sw dstw,
1077     sljit_si src, sljit_sw srcw,
1078     sljit_si type);
1079 ph10 662
1080 zherczeg 1491 /* Copies the base address of SLJIT_SP + offset to dst.
1081 zherczeg 955 Flags: - (never set any flags) */
1082 zherczeg 1195 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_get_local_base(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw, sljit_sw offset);
1083 zherczeg 955
1084 ph10 662 /* The constant can be changed runtime (see: sljit_set_const)
1085     Flags: - (never set any flags) */
1086 zherczeg 1195 SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw, sljit_sw init_value);
1087 ph10 662
1088     /* After the code generation the address for label, jump and const instructions
1089 zherczeg 1222 are computed. Since these structures are freed by sljit_free_compiler, the
1090 ph10 662 addresses must be preserved by the user program elsewere. */
1091     static SLJIT_INLINE sljit_uw sljit_get_label_addr(struct sljit_label *label) { return label->addr; }
1092     static SLJIT_INLINE sljit_uw sljit_get_jump_addr(struct sljit_jump *jump) { return jump->addr; }
1093     static SLJIT_INLINE sljit_uw sljit_get_const_addr(struct sljit_const *const_) { return const_->addr; }
1094    
1095     /* Only the address is required to rewrite the code. */
1096 zherczeg 740 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_addr);
1097 zherczeg 1195 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant);
1098 ph10 662
1099     /* --------------------------------------------------------------------- */
1100     /* Miscellaneous utility functions */
1101     /* --------------------------------------------------------------------- */
1102    
1103     #define SLJIT_MAJOR_VERSION 0
1104 zherczeg 1507 #define SLJIT_MINOR_VERSION 93
1105 ph10 662
1106 zherczeg 1222 /* Get the human readable name of the platform. Can be useful on platforms
1107 zherczeg 1216 like ARM, where ARM and Thumb2 functions can be mixed, and
1108     it is useful to know the type of the code generator. */
1109 zherczeg 740 SLJIT_API_FUNC_ATTRIBUTE SLJIT_CONST char* sljit_get_platform_name(void);
1110 ph10 662
1111 zherczeg 1222 /* Portable helper function to get an offset of a member. */
1112 zherczeg 1195 #define SLJIT_OFFSETOF(base, member) ((sljit_sw)(&((base*)0x10)->member) - 0x10)
1113 ph10 662
1114     #if (defined SLJIT_UTIL_GLOBAL_LOCK && SLJIT_UTIL_GLOBAL_LOCK)
1115     /* This global lock is useful to compile common functions. */
1116 zherczeg 740 SLJIT_API_FUNC_ATTRIBUTE void SLJIT_CALL sljit_grab_lock(void);
1117     SLJIT_API_FUNC_ATTRIBUTE void SLJIT_CALL sljit_release_lock(void);
1118 ph10 662 #endif
1119    
1120     #if (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK)
1121    
1122     /* The sljit_stack is a utiliy feature of sljit, which allocates a
1123     writable memory region between base (inclusive) and limit (exclusive).
1124     Both base and limit is a pointer, and base is always <= than limit.
1125     This feature uses the "address space reserve" feature
1126     of modern operating systems. Basically we don't need to allocate a
1127     huge memory block in one step for the worst case, we can start with
1128     a smaller chunk and extend it later. Since the address space is
1129     reserved, the data never copied to other regions, thus it is safe
1130     to store pointers here. */
1131    
1132     /* Note: The base field is aligned to PAGE_SIZE bytes (usually 4k or more).
1133     Note: stack growing should not happen in small steps: 4k, 16k or even
1134     bigger growth is better.
1135     Note: this structure may not be supported by all operating systems.
1136     Some kind of fallback mechanism is suggested when SLJIT_UTIL_STACK
1137     is not defined. */
1138    
1139     struct sljit_stack {
1140     /* User data, anything can be stored here.
1141     Starting with the same value as base. */
1142     sljit_uw top;
1143     /* These members are read only. */
1144     sljit_uw base;
1145     sljit_uw limit;
1146     sljit_uw max_limit;
1147     };
1148    
1149     /* Returns NULL if unsuccessful.
1150 zherczeg 1507 Note: limit and max_limit contains the size for stack allocation.
1151     Note: the top field is initialized to base.
1152     Note: see sljit_create_compiler for the explanation of allocator_data. */
1153     SLJIT_API_FUNC_ATTRIBUTE struct sljit_stack* SLJIT_CALL sljit_allocate_stack(sljit_uw limit, sljit_uw max_limit, void *allocator_data);
1154     SLJIT_API_FUNC_ATTRIBUTE void SLJIT_CALL sljit_free_stack(struct sljit_stack *stack, void *allocator_data);
1155 ph10 662
1156     /* Can be used to increase (allocate) or decrease (free) the memory area.
1157     Returns with a non-zero value if unsuccessful. If new_limit is greater than
1158     max_limit, it will fail. It is very easy to implement a stack data structure,
1159     since the growth ratio can be added to the current limit, and sljit_stack_resize
1160     will do all the necessary checks. The fields of the stack are not changed if
1161     sljit_stack_resize fails. */
1162 zherczeg 1507 SLJIT_API_FUNC_ATTRIBUTE sljit_sw SLJIT_CALL sljit_stack_resize(struct sljit_stack *stack, sljit_uw new_limit);
1163 ph10 662
1164     #endif /* (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK) */
1165    
1166     #if !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL)
1167    
1168     /* Get the entry address of a given function. */
1169 zherczeg 1195 #define SLJIT_FUNC_OFFSET(func_name) ((sljit_sw)func_name)
1170 ph10 662
1171     #else /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
1172    
1173     /* All JIT related code should be placed in the same context (library, binary, etc.). */
1174    
1175 zherczeg 1222 #define SLJIT_FUNC_OFFSET(func_name) (*(sljit_sw*)(void*)func_name)
1176 ph10 662
1177     /* For powerpc64, the function pointers point to a context descriptor. */
1178     struct sljit_function_context {
1179 zherczeg 1195 sljit_sw addr;
1180     sljit_sw r2;
1181     sljit_sw r11;
1182 ph10 662 };
1183    
1184     /* Fill the context arguments using the addr and the function.
1185     If func_ptr is NULL, it will not be set to the address of context
1186     If addr is NULL, the function address also comes from the func pointer. */
1187 zherczeg 1195 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_function_context(void** func_ptr, struct sljit_function_context* context, sljit_sw addr, void* func);
1188 ph10 662
1189     #endif /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
1190    
1191     #endif /* _SLJIT_LIR_H_ */

webmaster@exim.org
ViewVC Help
Powered by ViewVC 1.1.12