/[pcre]/code/trunk/sljit/sljitLir.h
ViewVC logotype

Contents of /code/trunk/sljit/sljitLir.h

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1531 - (hide annotations) (download)
Fri Mar 6 07:44:16 2015 UTC (3 weeks, 4 days ago) by zherczeg
File MIME type: text/plain
File size: 53666 byte(s)
Minor JIT compiler update.
1 ph10 662 /*
2     * Stack-less Just-In-Time compiler
3     *
4 ph10 836 * Copyright 2009-2012 Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
5 ph10 662 *
6     * Redistribution and use in source and binary forms, with or without modification, are
7     * permitted provided that the following conditions are met:
8     *
9     * 1. Redistributions of source code must retain the above copyright notice, this list of
10     * conditions and the following disclaimer.
11     *
12     * 2. Redistributions in binary form must reproduce the above copyright notice, this list
13     * of conditions and the following disclaimer in the documentation and/or other materials
14     * provided with the distribution.
15     *
16     * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
17     * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18     * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
19     * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20     * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
21     * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
22     * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23     * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
24     * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25     */
26    
27     #ifndef _SLJIT_LIR_H_
28     #define _SLJIT_LIR_H_
29    
30     /*
31     ------------------------------------------------------------------------
32     Stack-Less JIT compiler for multiple architectures (x86, ARM, PowerPC)
33     ------------------------------------------------------------------------
34    
35     Short description
36     Advantages:
37 zherczeg 1216 - The execution can be continued from any LIR instruction. In other
38     words, it is possible to jump to any label from anywhere, even from
39     a code fragment, which is compiled later, if both compiled code
40     shares the same context. See sljit_emit_enter for more details
41     - Supports self modifying code: target of (conditional) jump and call
42     instructions and some constant values can be dynamically modified
43     during runtime
44 ph10 662 - although it is not suggested to do it frequently
45 zherczeg 1216 - can be used for inline caching: save an important value once
46     in the instruction stream
47     - since this feature limits the optimization possibilities, a
48     special flag must be passed at compile time when these
49     instructions are emitted
50 ph10 662 - A fixed stack space can be allocated for local variables
51     - The compiler is thread-safe
52 zherczeg 951 - The compiler is highly configurable through preprocessor macros.
53     You can disable unneeded features (multithreading in single
54     threaded applications), and you can use your own system functions
55     (including memory allocators). See sljitConfig.h
56 ph10 662 Disadvantages:
57 zherczeg 1216 - No automatic register allocation, and temporary results are
58     not stored on the stack. (hence the name comes)
59 ph10 662 In practice:
60     - This approach is very effective for interpreters
61 zherczeg 880 - One of the saved registers typically points to a stack interface
62 zherczeg 1216 - It can jump to any exception handler anytime (even if it belongs
63     to another function)
64     - Hot paths can be modified during runtime reflecting the changes
65 ph10 662 of the fastest execution path of the dynamic language
66     - SLJIT supports complex memory addressing modes
67 zherczeg 1216 - mainly position and context independent code (except some cases)
68 zherczeg 742
69     For valgrind users:
70     - pass --smc-check=all argument to valgrind, since JIT is a "self-modifying code"
71 ph10 662 */
72    
73     #if !(defined SLJIT_NO_DEFAULT_CONFIG && SLJIT_NO_DEFAULT_CONFIG)
74     #include "sljitConfig.h"
75     #endif
76 zherczeg 839
77     /* The following header file defines useful macros for fine tuning
78 ph10 1325 sljit based code generators. They are listed in the beginning
79 zherczeg 839 of sljitConfigInternal.h */
80    
81 ph10 662 #include "sljitConfigInternal.h"
82    
83     /* --------------------------------------------------------------------- */
84     /* Error codes */
85     /* --------------------------------------------------------------------- */
86    
87     /* Indicates no error. */
88     #define SLJIT_SUCCESS 0
89     /* After the call of sljit_generate_code(), the error code of the compiler
90     is set to this value to avoid future sljit calls (in debug mode at least).
91     The complier should be freed after sljit_generate_code(). */
92     #define SLJIT_ERR_COMPILED 1
93     /* Cannot allocate non executable memory. */
94     #define SLJIT_ERR_ALLOC_FAILED 2
95     /* Cannot allocate executable memory.
96     Only for sljit_generate_code() */
97     #define SLJIT_ERR_EX_ALLOC_FAILED 3
98 zherczeg 1506 /* Return value for SLJIT_CONFIG_UNSUPPORTED placeholder architecture. */
99 ph10 662 #define SLJIT_ERR_UNSUPPORTED 4
100 zherczeg 1506 /* An ivalid argument is passed to any SLJIT function. */
101     #define SLJIT_ERR_BAD_ARGUMENT 5
102 ph10 662
103     /* --------------------------------------------------------------------- */
104     /* Registers */
105     /* --------------------------------------------------------------------- */
106    
107 zherczeg 1491 /*
108     Scratch (R) registers: registers whose may not preserve their values
109     across function calls.
110    
111     Saved (S) registers: registers whose preserve their values across
112     function calls.
113    
114     The scratch and saved register sets are overlap. The last scratch register
115     is the first saved register, the one before the last is the second saved
116     register, and so on.
117    
118     If an architecture provides two scratch and three saved registers,
119     its scratch and saved register sets are the following:
120    
121     R0 | [S4] | R0 and S4 represent the same physical register
122     R1 | [S3] | R1 and S3 represent the same physical register
123     [R2] | S2 | R2 and S2 represent the same physical register
124     [R3] | S1 | R3 and S1 represent the same physical register
125     [R4] | S0 | R4 and S0 represent the same physical register
126    
127     Note: SLJIT_NUMBER_OF_SCRATCH_REGISTERS would be 2 and
128     SLJIT_NUMBER_OF_SAVED_REGISTERS would be 3 for this architecture.
129    
130     Note: On all supported architectures SLJIT_NUMBER_OF_REGISTERS >= 10
131     and SLJIT_NUMBER_OF_SAVED_REGISTERS >= 5. However, 4 registers
132     are virtual on x86-32. See below.
133    
134     The purpose of this definition is convenience. Although a register
135     is either scratch register or saved register, SLJIT allows accessing
136     them from the other set. For example, four registers can be used as
137     scratch registers and the fifth one as saved register on the architecture
138     above. Of course the last two scratch registers (R2 and R3) from this
139     four will be saved on the stack, because they are defined as saved
140     registers in the application binary interface. Still R2 and R3 can be
141     used for referencing to these registers instead of S2 and S1, which
142     makes easier to write platform independent code. Scratch registers
143     can be saved registers in a similar way, but these extra saved
144     registers will not be preserved across function calls! Hence the
145     application must save them on those platforms, where the number of
146     saved registers is too low. This can be done by copy them onto
147     the stack and restore them after a function call.
148    
149     Note: To emphasize that registers assigned to R2-R4 are saved
150     registers, they are enclosed by square brackets. S3-S4
151     are marked in a similar way.
152    
153     Note: sljit_emit_enter and sljit_set_context defines whether a register
154     is S or R register. E.g: when 3 scratches and 1 saved is mapped
155     by sljit_emit_enter, the allowed register set will be: R0-R2 and
156     S0. Although S2 is mapped to the same position as R2, it does not
157     available in the current configuration. Furthermore the R3 (S1)
158     register does not available as well.
159     */
160    
161     /* When SLJIT_UNUSED is specified as destination, the result is discarded. */
162 ph10 662 #define SLJIT_UNUSED 0
163    
164 zherczeg 1491 /* Scratch registers. */
165     #define SLJIT_R0 1
166     #define SLJIT_R1 2
167     #define SLJIT_R2 3
168 zherczeg 1493 /* Note: on x86-32, R3 - R6 (same as S3 - S6) are emulated (they
169     are allocated on the stack). These registers are called virtual
170     and cannot be used for memory addressing (cannot be part of
171     any SLJIT_MEM1, SLJIT_MEM2 construct). There is no such
172     limitation on other CPUs. See sljit_get_register_index(). */
173 zherczeg 1491 #define SLJIT_R3 4
174     #define SLJIT_R4 5
175     #define SLJIT_R5 6
176     #define SLJIT_R6 7
177     #define SLJIT_R7 8
178     #define SLJIT_R8 9
179     #define SLJIT_R9 10
180     /* All R registers provided by the architecture can be accessed by SLJIT_R(i)
181     The i parameter must be >= 0 and < SLJIT_NUMBER_OF_REGISTERS. */
182     #define SLJIT_R(i) (1 + (i))
183 ph10 662
184 zherczeg 1491 /* Saved registers. */
185     #define SLJIT_S0 (SLJIT_NUMBER_OF_REGISTERS)
186     #define SLJIT_S1 (SLJIT_NUMBER_OF_REGISTERS - 1)
187     #define SLJIT_S2 (SLJIT_NUMBER_OF_REGISTERS - 2)
188 zherczeg 1493 /* Note: on x86-32, S3 - S6 (same as R3 - R6) are emulated (they
189     are allocated on the stack). These registers are called virtual
190     and cannot be used for memory addressing (cannot be part of
191     any SLJIT_MEM1, SLJIT_MEM2 construct). There is no such
192     limitation on other CPUs. See sljit_get_register_index(). */
193 zherczeg 1491 #define SLJIT_S3 (SLJIT_NUMBER_OF_REGISTERS - 3)
194     #define SLJIT_S4 (SLJIT_NUMBER_OF_REGISTERS - 4)
195     #define SLJIT_S5 (SLJIT_NUMBER_OF_REGISTERS - 5)
196     #define SLJIT_S6 (SLJIT_NUMBER_OF_REGISTERS - 6)
197     #define SLJIT_S7 (SLJIT_NUMBER_OF_REGISTERS - 7)
198     #define SLJIT_S8 (SLJIT_NUMBER_OF_REGISTERS - 8)
199     #define SLJIT_S9 (SLJIT_NUMBER_OF_REGISTERS - 9)
200     /* All S registers provided by the architecture can be accessed by SLJIT_S(i)
201     The i parameter must be >= 0 and < SLJIT_NUMBER_OF_SAVED_REGISTERS. */
202     #define SLJIT_S(i) (SLJIT_NUMBER_OF_REGISTERS - (i))
203 ph10 662
204 zherczeg 1491 /* Registers >= SLJIT_FIRST_SAVED_REG are saved registers. */
205     #define SLJIT_FIRST_SAVED_REG (SLJIT_S0 - SLJIT_NUMBER_OF_SAVED_REGISTERS + 1)
206 ph10 662
207 zherczeg 1491 /* The SLJIT_SP provides direct access to the linear stack space allocated by
208     sljit_emit_enter. It can only be used in the following form: SLJIT_MEM1(SLJIT_SP).
209     The immediate offset is extended by the relative stack offset automatically.
210     The sljit_get_local_base can be used to obtain the absolute offset. */
211     #define SLJIT_SP (SLJIT_NUMBER_OF_REGISTERS + 1)
212 ph10 662
213     /* Return with machine word. */
214    
215 zherczeg 1491 #define SLJIT_RETURN_REG SLJIT_R0
216 ph10 662
217 zherczeg 847 /* x86 prefers specific registers for special purposes. In case of shift
218 zherczeg 1491 by register it supports only SLJIT_R2 for shift argument
219 zherczeg 847 (which is the src2 argument of sljit_emit_op2). If another register is
220     used, sljit must exchange data between registers which cause a minor
221     slowdown. Other architectures has no such limitation. */
222 ph10 662
223 zherczeg 1491 #define SLJIT_PREF_SHIFT_REG SLJIT_R2
224 ph10 662
225     /* --------------------------------------------------------------------- */
226     /* Floating point registers */
227     /* --------------------------------------------------------------------- */
228    
229 zherczeg 1491 /* Each floating point register can store a double or single precision
230     value. The FR and FS register sets are overlap in the same way as R
231     and S register sets. See above. */
232    
233 ph10 662 /* Note: SLJIT_UNUSED as destination is not valid for floating point
234 zherczeg 1491 operations, since they cannot be used for setting flags. */
235 ph10 662
236 zherczeg 1491 /* Floating point scratch registers. */
237     #define SLJIT_FR0 1
238     #define SLJIT_FR1 2
239     #define SLJIT_FR2 3
240     #define SLJIT_FR3 4
241     #define SLJIT_FR4 5
242     #define SLJIT_FR5 6
243     /* All FR registers provided by the architecture can be accessed by SLJIT_FR(i)
244     The i parameter must be >= 0 and < SLJIT_NUMBER_OF_FLOAT_REGISTERS. */
245     #define SLJIT_FR(i) (1 + (i))
246 ph10 662
247 zherczeg 1491 /* Floating point saved registers. */
248     #define SLJIT_FS0 (SLJIT_NUMBER_OF_FLOAT_REGISTERS)
249     #define SLJIT_FS1 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 1)
250     #define SLJIT_FS2 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 2)
251     #define SLJIT_FS3 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 3)
252     #define SLJIT_FS4 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 4)
253     #define SLJIT_FS5 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 5)
254     /* All S registers provided by the architecture can be accessed by SLJIT_FS(i)
255     The i parameter must be >= 0 and < SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS. */
256     #define SLJIT_FS(i) (SLJIT_NUMBER_OF_FLOAT_REGISTERS - (i))
257 ph10 662
258 zherczeg 1491 /* Float registers >= SLJIT_FIRST_SAVED_FLOAT_REG are saved registers. */
259     #define SLJIT_FIRST_SAVED_FLOAT_REG (SLJIT_FS0 - SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS + 1)
260 zherczeg 1280
261 ph10 662 /* --------------------------------------------------------------------- */
262     /* Main structures and functions */
263     /* --------------------------------------------------------------------- */
264    
265 zherczeg 1499 /*
266     The following structures are private, and can be changed in the
267     future. Keeping them here allows code inlining.
268     */
269    
270 ph10 662 struct sljit_memory_fragment {
271     struct sljit_memory_fragment *next;
272     sljit_uw used_size;
273 zherczeg 1195 /* Must be aligned to sljit_sw. */
274 ph10 662 sljit_ub memory[1];
275     };
276    
277     struct sljit_label {
278     struct sljit_label *next;
279     sljit_uw addr;
280     /* The maximum size difference. */
281     sljit_uw size;
282     };
283    
284     struct sljit_jump {
285     struct sljit_jump *next;
286     sljit_uw addr;
287 zherczeg 1195 sljit_sw flags;
288 ph10 662 union {
289     sljit_uw target;
290     struct sljit_label* label;
291     } u;
292     };
293    
294     struct sljit_const {
295     struct sljit_const *next;
296     sljit_uw addr;
297     };
298    
299     struct sljit_compiler {
300 zherczeg 1195 sljit_si error;
301 zherczeg 1499 sljit_si options;
302 ph10 662
303     struct sljit_label *labels;
304     struct sljit_jump *jumps;
305     struct sljit_const *consts;
306     struct sljit_label *last_label;
307     struct sljit_jump *last_jump;
308     struct sljit_const *last_const;
309    
310 zherczeg 1507 void *allocator_data;
311 ph10 662 struct sljit_memory_fragment *buf;
312     struct sljit_memory_fragment *abuf;
313    
314 zherczeg 1491 /* Used scratch registers. */
315 zherczeg 1215 sljit_si scratches;
316 zherczeg 880 /* Used saved registers. */
317 zherczeg 1195 sljit_si saveds;
318 zherczeg 1491 /* Used float scratch registers. */
319     sljit_si fscratches;
320     /* Used float saved registers. */
321     sljit_si fsaveds;
322 ph10 662 /* Local stack size. */
323 zherczeg 1195 sljit_si local_size;
324 ph10 662 /* Code size. */
325     sljit_uw size;
326 ph10 836 /* For statistical purposes. */
327     sljit_uw executable_size;
328 ph10 662
329     #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
330 zherczeg 1195 sljit_si args;
331 ph10 662 #endif
332    
333     #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
334 zherczeg 1195 sljit_si mode32;
335 ph10 662 #endif
336    
337 zherczeg 1483 #if (defined SLJIT_CONFIG_X86 && SLJIT_CONFIG_X86)
338 zherczeg 1195 sljit_si flags_saved;
339 ph10 662 #endif
340    
341     #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
342     /* Constant pool handling. */
343     sljit_uw *cpool;
344     sljit_ub *cpool_unique;
345     sljit_uw cpool_diff;
346     sljit_uw cpool_fill;
347 zherczeg 880 /* Other members. */
348 ph10 662 /* Contains pointer, "ldr pc, [...]" pairs. */
349     sljit_uw patches;
350     #endif
351    
352     #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) || (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7)
353     /* Temporary fields. */
354     sljit_uw shift_imm;
355 zherczeg 1195 sljit_si cache_arg;
356     sljit_sw cache_argw;
357 ph10 662 #endif
358    
359     #if (defined SLJIT_CONFIG_ARM_THUMB2 && SLJIT_CONFIG_ARM_THUMB2)
360 zherczeg 1195 sljit_si cache_arg;
361     sljit_sw cache_argw;
362 ph10 662 #endif
363    
364 zherczeg 1453 #if (defined SLJIT_CONFIG_ARM_64 && SLJIT_CONFIG_ARM_64)
365     sljit_si cache_arg;
366     sljit_sw cache_argw;
367     #endif
368    
369 zherczeg 1483 #if (defined SLJIT_CONFIG_PPC && SLJIT_CONFIG_PPC)
370 zherczeg 1195 sljit_sw imm;
371     sljit_si cache_arg;
372     sljit_sw cache_argw;
373 ph10 662 #endif
374    
375 zherczeg 1483 #if (defined SLJIT_CONFIG_MIPS && SLJIT_CONFIG_MIPS)
376 zherczeg 1195 sljit_si delay_slot;
377     sljit_si cache_arg;
378     sljit_sw cache_argw;
379 ph10 662 #endif
380    
381 zherczeg 1149 #if (defined SLJIT_CONFIG_SPARC_32 && SLJIT_CONFIG_SPARC_32)
382 zherczeg 1195 sljit_si delay_slot;
383     sljit_si cache_arg;
384     sljit_sw cache_argw;
385 zherczeg 1149 #endif
386    
387 zherczeg 1378 #if (defined SLJIT_CONFIG_TILEGX && SLJIT_CONFIG_TILEGX)
388     sljit_si cache_arg;
389     sljit_sw cache_argw;
390     #endif
391    
392 ph10 662 #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
393     FILE* verbose;
394     #endif
395    
396 zherczeg 1506 #if (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) \
397     || (defined SLJIT_DEBUG && SLJIT_DEBUG)
398 zherczeg 955 /* Local size passed to the functions. */
399 zherczeg 1195 sljit_si logical_local_size;
400 zherczeg 955 #endif
401    
402 zherczeg 1506 #if (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) \
403     || (defined SLJIT_DEBUG && SLJIT_DEBUG) \
404     || (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
405 zherczeg 1195 sljit_si skip_checks;
406 ph10 662 #endif
407     };
408    
409     /* --------------------------------------------------------------------- */
410     /* Main functions */
411     /* --------------------------------------------------------------------- */
412    
413 zherczeg 1507 /* Creates an sljit compiler. The allocator_data is required by some
414     custom memory managers. This pointer is passed to SLJIT_MALLOC
415     and SLJIT_FREE macros. Most allocators (including the default
416     one) ignores this value, and it is recommended to pass NULL
417     as a dummy value for allocator_data.
418    
419 ph10 662 Returns NULL if failed. */
420 zherczeg 1507 SLJIT_API_FUNC_ATTRIBUTE struct sljit_compiler* sljit_create_compiler(void *allocator_data);
421 zherczeg 1216
422 zherczeg 1507 /* Frees everything except the compiled machine code. */
423 zherczeg 740 SLJIT_API_FUNC_ATTRIBUTE void sljit_free_compiler(struct sljit_compiler *compiler);
424 ph10 662
425 ph10 1325 /* Returns the current error code. If an error is occurred, future sljit
426 zherczeg 1216 calls which uses the same compiler argument returns early with the same
427     error code. Thus there is no need for checking the error after every
428     call, it is enough to do it before the code is compiled. Removing
429     these checks increases the performance of the compiling process. */
430 zherczeg 1195 static SLJIT_INLINE sljit_si sljit_get_compiler_error(struct sljit_compiler *compiler) { return compiler->error; }
431 ph10 662
432 zherczeg 1531 /* Sets the compiler error code to SLJIT_ERR_ALLOC_FAILED except
433     if an error was detected before. After the error code is set
434     the compiler behaves as if the allocation failure happened
435     during an sljit function call. This can greatly simplify error
436     checking, since only the compiler status needs to be checked
437     after the compilation. */
438     SLJIT_API_FUNC_ATTRIBUTE void sljit_set_compiler_memory_error(struct sljit_compiler *compiler);
439 zherczeg 1530
440 ph10 662 /*
441     Allocate a small amount of memory. The size must be <= 64 bytes on 32 bit,
442 zherczeg 1216 and <= 128 bytes on 64 bit architectures. The memory area is owned by the
443     compiler, and freed by sljit_free_compiler. The returned pointer is
444     sizeof(sljit_sw) aligned. Excellent for allocating small blocks during
445     the compiling, and no need to worry about freeing them. The size is
446     enough to contain at most 16 pointers. If the size is outside of the range,
447     the function will return with NULL. However, this return value does not
448     indicate that there is no more memory (does not set the current error code
449     of the compiler to out-of-memory status).
450 ph10 662 */
451 zherczeg 1195 SLJIT_API_FUNC_ATTRIBUTE void* sljit_alloc_memory(struct sljit_compiler *compiler, sljit_si size);
452 ph10 662
453     #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
454     /* Passing NULL disables verbose. */
455 zherczeg 740 SLJIT_API_FUNC_ATTRIBUTE void sljit_compiler_verbose(struct sljit_compiler *compiler, FILE* verbose);
456 ph10 662 #endif
457    
458 zherczeg 740 SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler);
459     SLJIT_API_FUNC_ATTRIBUTE void sljit_free_code(void* code);
460 ph10 662
461 ph10 836 /*
462 zherczeg 1216 After the machine code generation is finished we can retrieve the allocated
463     executable memory size, although this area may not be fully filled with
464     instructions depending on some optimizations. This function is useful only
465     for statistical purposes.
466 ph10 836
467     Before a successful code generation, this function returns with 0.
468     */
469     static SLJIT_INLINE sljit_uw sljit_get_generated_code_size(struct sljit_compiler *compiler) { return compiler->executable_size; }
470    
471 zherczeg 1216 /* Instruction generation. Returns with any error code. If there is no
472     error, they return with SLJIT_SUCCESS. */
473 ph10 662
474     /*
475 zherczeg 1491 The executable code is a function call from the viewpoint of the C
476     language. The function calls must obey to the ABI (Application
477     Binary Interface) of the platform, which specify the purpose of
478     all machine registers and stack handling among other things. The
479     sljit_emit_enter function emits the necessary instructions for
480     setting up a new context for the executable code and moves function
481 zherczeg 1499 arguments to the saved registers. Furthermore the options argument
482 zherczeg 1506 can be used to pass configuration options to the compiler. The
483     available options are listed before sljit_emit_enter.
484 ph10 662
485 zherczeg 1499 The number of sljit_sw arguments passed to the generated function
486     are specified in the "args" parameter. The number of arguments must
487     be less than or equal to 3. The first argument goes to SLJIT_S0,
488     the second goes to SLJIT_S1 and so on. The register set used by
489     the function must be declared as well. The number of scratch and
490     saved registers used by the function must be passed to sljit_emit_enter.
491     Only R registers between R0 and "scratches" argument can be used
492     later. E.g. if "scratches" is set to 2, the register set will be
493     limited to R0 and R1. The S registers and the floating point
494     registers ("fscratches" and "fsaveds") are specified in a similar
495     way. The sljit_emit_enter is also capable of allocating a stack
496     space for local variables. The "local_size" argument contains the
497     size in bytes of this local area and its staring address is stored
498     in SLJIT_SP. The memory area between SLJIT_SP (inclusive) and
499     SLJIT_SP + local_size (exclusive) can be modified freely until
500     the function returns. The stack space is not initialized.
501    
502 zherczeg 1491 Note: the following conditions must met:
503     0 <= scratches <= SLJIT_NUMBER_OF_REGISTERS
504     0 <= saveds <= SLJIT_NUMBER_OF_REGISTERS
505     scratches + saveds <= SLJIT_NUMBER_OF_REGISTERS
506     0 <= fscratches <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
507     0 <= fsaveds <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
508     fscratches + fsaveds <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
509    
510 zherczeg 1216 Note: every call of sljit_emit_enter and sljit_set_context
511 zherczeg 1491 overwrites the previous context.
512     */
513 ph10 662
514 zherczeg 1506 /* The absolute address returned by sljit_get_local_base with
515     offset 0 is aligned to sljit_d. Otherwise it is aligned to sljit_uw. */
516     #define SLJIT_DOUBLE_ALIGNMENT 0x00000001
517    
518     /* The local_size must be >= 0 and <= SLJIT_MAX_LOCAL_SIZE. */
519 ph10 662 #define SLJIT_MAX_LOCAL_SIZE 65536
520    
521 zherczeg 1195 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_enter(struct sljit_compiler *compiler,
522 zherczeg 1499 sljit_si options, sljit_si args, sljit_si scratches, sljit_si saveds,
523 zherczeg 1491 sljit_si fscratches, sljit_si fsaveds, sljit_si local_size);
524 ph10 662
525 zherczeg 860 /* The machine code has a context (which contains the local stack space size,
526     number of used registers, etc.) which initialized by sljit_emit_enter. Several
527     functions (like sljit_emit_return) requres this context to be able to generate
528     the appropriate code. However, some code fragments (like inline cache) may have
529 zherczeg 1491 no normal entry point so their context is unknown for the compiler. Their context
530     can be provided to the compiler by the sljit_set_context function.
531 ph10 662
532 zherczeg 860 Note: every call of sljit_emit_enter and sljit_set_context overwrites
533     the previous context. */
534    
535 zherczeg 1506 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_set_context(struct sljit_compiler *compiler,
536 zherczeg 1499 sljit_si options, sljit_si args, sljit_si scratches, sljit_si saveds,
537 zherczeg 1491 sljit_si fscratches, sljit_si fsaveds, sljit_si local_size);
538 ph10 662
539 zherczeg 875 /* Return from machine code. The op argument can be SLJIT_UNUSED which means the
540     function does not return with anything or any opcode between SLJIT_MOV and
541 zherczeg 1182 SLJIT_MOV_P (see sljit_emit_op1). As for src and srcw they must be 0 if op
542 zherczeg 875 is SLJIT_UNUSED, otherwise see below the description about source and
543     destination arguments. */
544 zherczeg 1216
545 zherczeg 1195 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_return(struct sljit_compiler *compiler, sljit_si op,
546     sljit_si src, sljit_sw srcw);
547 ph10 662
548 zherczeg 1216 /* Fast calling mechanism for utility functions (see SLJIT_FAST_CALL). All registers and
549     even the stack frame is passed to the callee. The return address is preserved in
550     dst/dstw by sljit_emit_fast_enter (the type of the value stored by this function
551     is sljit_p), and sljit_emit_fast_return can use this as a return value later. */
552 ph10 662
553 zherczeg 1182 /* Note: only for sljit specific, non ABI compilant calls. Fast, since only a few machine
554     instructions are needed. Excellent for small uility functions, where saving registers
555     and setting up a new stack frame would cost too much performance. However, it is still
556     possible to return to the address of the caller (or anywhere else). */
557 ph10 662
558     /* Note: flags are not changed (unlike sljit_emit_enter / sljit_emit_return). */
559    
560     /* Note: although sljit_emit_fast_return could be replaced by an ijump, it is not suggested,
561     since many architectures do clever branch prediction on call / return instruction pairs. */
562    
563 zherczeg 1195 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw);
564     SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fast_return(struct sljit_compiler *compiler, sljit_si src, sljit_sw srcw);
565 ph10 662
566     /*
567     Source and destination values for arithmetical instructions
568     imm - a simple immediate value (cannot be used as a destination)
569     reg - any of the registers (immediate argument must be 0)
570     [imm] - absolute immediate memory address
571     [reg+imm] - indirect memory address
572     [reg+(reg<<imm)] - indirect indexed memory address (shift must be between 0 and 3)
573 zherczeg 1195 useful for (byte, half, int, sljit_sw) array access
574 ph10 662 (fully supported by both x86 and ARM architectures, and cheap operation on others)
575     */
576    
577     /*
578 zherczeg 847 IMPORATNT NOTE: memory access MUST be naturally aligned except
579     SLJIT_UNALIGNED macro is defined and its value is 1.
580    
581 ph10 662 length | alignment
582     ---------+-----------
583 zherczeg 1195 byte | 1 byte (any physical_address is accepted)
584     half | 2 byte (physical_address & 0x1 == 0)
585     int | 4 byte (physical_address & 0x3 == 0)
586     word | 4 byte if SLJIT_32BIT_ARCHITECTURE is defined and its value is 1
587 zherczeg 847 | 8 byte if SLJIT_64BIT_ARCHITECTURE is defined and its value is 1
588 zherczeg 1195 pointer | size of sljit_p type (4 byte on 32 bit machines, 4 or 8 byte
589     | on 64 bit machines)
590 ph10 662
591 zherczeg 1195 Note: Different architectures have different addressing limitations.
592     A single instruction is enough for the following addressing
593     modes. Other adrressing modes are emulated by instruction
594     sequences. This information could help to improve those code
595     generators which focuses only a few architectures.
596    
597 ph10 1325 x86: [reg+imm], -2^32+1 <= imm <= 2^32-1 (full address space on x86-32)
598 zherczeg 1195 [reg+(reg<<imm)] is supported
599     [imm], -2^32+1 <= imm <= 2^32-1 is supported
600     Write-back is not supported
601     arm: [reg+imm], -4095 <= imm <= 4095 or -255 <= imm <= 255 for signed
602     bytes, any halfs or floating point values)
603     [reg+(reg<<imm)] is supported
604     Write-back is supported
605     arm-t2: [reg+imm], -255 <= imm <= 4095
606     [reg+(reg<<imm)] is supported
607     Write back is supported only for [reg+imm], where -255 <= imm <= 255
608     ppc: [reg+imm], -65536 <= imm <= 65535. 64 bit loads/stores and 32 bit
609     signed load on 64 bit requires immediates divisible by 4.
610     [reg+imm] is not supported for signed 8 bit values.
611     [reg+reg] is supported
612     Write-back is supported except for one instruction: 32 bit signed
613     load with [reg+imm] addressing mode on 64 bit.
614     mips: [reg+imm], -65536 <= imm <= 65535
615     sparc: [reg+imm], -4096 <= imm <= 4095
616     [reg+reg] is supported
617 ph10 662 */
618    
619     /* Register output: simply the name of the register.
620     For destination, you can use SLJIT_UNUSED as well. */
621 zherczeg 1453 #define SLJIT_MEM 0x80
622 ph10 662 #define SLJIT_MEM0() (SLJIT_MEM)
623     #define SLJIT_MEM1(r1) (SLJIT_MEM | (r1))
624 zherczeg 1453 #define SLJIT_MEM2(r1, r2) (SLJIT_MEM | (r1) | ((r2) << 8))
625     #define SLJIT_IMM 0x40
626 ph10 662
627     /* Set 32 bit operation mode (I) on 64 bit CPUs. The flag is totally ignored on
628 zherczeg 1195 32 bit CPUs. If this flag is set for an arithmetic operation, it uses only the
629     lower 32 bit of the input register(s), and set the CPU status flags according
630     to the 32 bit result. The higher 32 bits are undefined for both the input and
631     output. However, the CPU might not ignore those higher 32 bits, like MIPS, which
632     expects it to be the sign extension of the lower 32 bit. All 32 bit operations
633     are undefined, if this condition is not fulfilled. Therefore, when SLJIT_INT_OP
634     is specified, all register arguments must be the result of other operations with
635     the same SLJIT_INT_OP flag. In other words, although a register can hold either
636     a 64 or 32 bit value, these values cannot be mixed. The only exceptions are
637 zherczeg 1460 SLJIT_IMOV and SLJIT_IMOVU (SLJIT_MOV_SI/SLJIT_MOVU_SI with SLJIT_INT_OP flag)
638     which can convert any source argument to SLJIT_INT_OP compatible result. This
639     conversion might be unnecessary on some CPUs like x86-64, since the upper 32
640     bit is always ignored. In this case SLJIT is clever enough to not generate any
641     instructions if the source and destination operands are the same registers.
642     Affects sljit_emit_op0, sljit_emit_op1 and sljit_emit_op2. */
643 ph10 662 #define SLJIT_INT_OP 0x100
644    
645 zherczeg 1195 /* Single precision mode (SP). This flag is similar to SLJIT_INT_OP, just
646     it applies to floating point registers (it is even the same bit). When
647     this flag is passed, the CPU performs single precision floating point
648     operations. Similar to SLJIT_INT_OP, all register arguments must be the
649     result of other floating point operations with this flag. Affects
650     sljit_emit_fop1, sljit_emit_fop2 and sljit_emit_fcmp. */
651     #define SLJIT_SINGLE_OP 0x100
652    
653 ph10 662 /* Common CPU status flags for all architectures (x86, ARM, PPC)
654     - carry flag
655     - overflow flag
656     - zero flag
657     - negative/positive flag (depends on arc)
658     On mips, these flags are emulated by software. */
659    
660     /* By default, the instructions may, or may not set the CPU status flags.
661     Forcing to set or keep status flags can be done with the following flags: */
662    
663     /* Note: sljit tries to emit the minimum number of instructions. Using these
664     flags can increase them, so use them wisely to avoid unnecessary code generation. */
665    
666     /* Set Equal (Zero) status flag (E). */
667     #define SLJIT_SET_E 0x0200
668 zherczeg 1460 /* Set unsigned status flag (U). */
669     #define SLJIT_SET_U 0x0400
670 ph10 662 /* Set signed status flag (S). */
671 zherczeg 1460 #define SLJIT_SET_S 0x0800
672 ph10 662 /* Set signed overflow flag (O). */
673     #define SLJIT_SET_O 0x1000
674     /* Set carry flag (C).
675     Note: Kinda unsigned overflow, but behaves differently on various cpus. */
676     #define SLJIT_SET_C 0x2000
677     /* Do not modify the flags (K).
678     Note: This flag cannot be combined with any other SLJIT_SET_* flag. */
679     #define SLJIT_KEEP_FLAGS 0x4000
680    
681     /* Notes:
682     - you cannot postpone conditional jump instructions except if noted that
683     the instruction does not set flags (See: SLJIT_KEEP_FLAGS).
684     - flag combinations: '|' means 'logical or'. */
685    
686 zherczeg 1499 /* Starting index of opcodes for sljit_emit_op0. */
687     #define SLJIT_OP0_BASE 0
688    
689 ph10 662 /* Flags: - (never set any flags)
690     Note: breakpoint instruction is not supported by all architectures (namely ppc)
691     It falls back to SLJIT_NOP in those cases. */
692 zherczeg 1499 #define SLJIT_BREAKPOINT (SLJIT_OP0_BASE + 0)
693 ph10 662 /* Flags: - (never set any flags)
694     Note: may or may not cause an extra cycle wait
695     it can even decrease the runtime in a few cases. */
696 zherczeg 1499 #define SLJIT_NOP (SLJIT_OP0_BASE + 1)
697 zherczeg 1195 /* Flags: - (may destroy flags)
698 zherczeg 1491 Unsigned multiplication of SLJIT_R0 and SLJIT_R1.
699     Result goes to SLJIT_R1:SLJIT_R0 (high:low) word */
700 zherczeg 1506 #define SLJIT_LUMUL (SLJIT_OP0_BASE + 2)
701 zherczeg 1195 /* Flags: - (may destroy flags)
702 zherczeg 1491 Signed multiplication of SLJIT_R0 and SLJIT_R1.
703     Result goes to SLJIT_R1:SLJIT_R0 (high:low) word */
704 zherczeg 1506 #define SLJIT_LSMUL (SLJIT_OP0_BASE + 3)
705 zherczeg 1195 /* Flags: I - (may destroy flags)
706 zherczeg 1491 Unsigned divide of the value in SLJIT_R0 by the value in SLJIT_R1.
707     The result is placed in SLJIT_R0 and the remainder goes to SLJIT_R1.
708     Note: if SLJIT_R1 contains 0, the behaviour is undefined. */
709 zherczeg 1506 #define SLJIT_LUDIV (SLJIT_OP0_BASE + 4)
710     #define SLJIT_ILUDIV (SLJIT_LUDIV | SLJIT_INT_OP)
711 zherczeg 1195 /* Flags: I - (may destroy flags)
712 zherczeg 1491 Signed divide of the value in SLJIT_R0 by the value in SLJIT_R1.
713     The result is placed in SLJIT_R0 and the remainder goes to SLJIT_R1.
714     Note: if SLJIT_R1 contains 0, the behaviour is undefined. */
715 zherczeg 1506 #define SLJIT_LSDIV (SLJIT_OP0_BASE + 5)
716     #define SLJIT_ILSDIV (SLJIT_LSDIV | SLJIT_INT_OP)
717 ph10 662
718 zherczeg 1195 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op0(struct sljit_compiler *compiler, sljit_si op);
719 ph10 662
720 zherczeg 1499 /* Starting index of opcodes for sljit_emit_op1. */
721     #define SLJIT_OP1_BASE 32
722    
723 ph10 662 /* Notes for MOV instructions:
724 zherczeg 1453 U = Mov with update (pre form). If source or destination defined as SLJIT_MEM1(r1)
725 ph10 662 or SLJIT_MEM2(r1, r2), r1 is increased by the sum of r2 and the constant argument
726     UB = unsigned byte (8 bit)
727     SB = signed byte (8 bit)
728 zherczeg 1182 UH = unsigned half (16 bit)
729     SH = signed half (16 bit)
730     UI = unsigned int (32 bit)
731     SI = signed int (32 bit)
732     P = pointer (sljit_p) size */
733 ph10 662
734     /* Flags: - (never set any flags) */
735 zherczeg 1499 #define SLJIT_MOV (SLJIT_OP1_BASE + 0)
736 zherczeg 1195 /* Flags: I - (never set any flags) */
737 zherczeg 1499 #define SLJIT_MOV_UB (SLJIT_OP1_BASE + 1)
738 zherczeg 1195 #define SLJIT_IMOV_UB (SLJIT_MOV_UB | SLJIT_INT_OP)
739     /* Flags: I - (never set any flags) */
740 zherczeg 1499 #define SLJIT_MOV_SB (SLJIT_OP1_BASE + 2)
741 zherczeg 1195 #define SLJIT_IMOV_SB (SLJIT_MOV_SB | SLJIT_INT_OP)
742     /* Flags: I - (never set any flags) */
743 zherczeg 1499 #define SLJIT_MOV_UH (SLJIT_OP1_BASE + 3)
744 zherczeg 1195 #define SLJIT_IMOV_UH (SLJIT_MOV_UH | SLJIT_INT_OP)
745     /* Flags: I - (never set any flags) */
746 zherczeg 1499 #define SLJIT_MOV_SH (SLJIT_OP1_BASE + 4)
747 zherczeg 1195 #define SLJIT_IMOV_SH (SLJIT_MOV_SH | SLJIT_INT_OP)
748     /* Flags: I - (never set any flags)
749     Note: see SLJIT_INT_OP for further details. */
750 zherczeg 1499 #define SLJIT_MOV_UI (SLJIT_OP1_BASE + 5)
751 zherczeg 1460 /* No SLJIT_INT_OP form, since it is the same as SLJIT_IMOV. */
752 zherczeg 1195 /* Flags: I - (never set any flags)
753     Note: see SLJIT_INT_OP for further details. */
754 zherczeg 1499 #define SLJIT_MOV_SI (SLJIT_OP1_BASE + 6)
755 zherczeg 1195 #define SLJIT_IMOV (SLJIT_MOV_SI | SLJIT_INT_OP)
756 ph10 662 /* Flags: - (never set any flags) */
757 zherczeg 1499 #define SLJIT_MOV_P (SLJIT_OP1_BASE + 7)
758 ph10 662 /* Flags: - (never set any flags) */
759 zherczeg 1499 #define SLJIT_MOVU (SLJIT_OP1_BASE + 8)
760 zherczeg 1195 /* Flags: I - (never set any flags) */
761 zherczeg 1499 #define SLJIT_MOVU_UB (SLJIT_OP1_BASE + 9)
762 zherczeg 1195 #define SLJIT_IMOVU_UB (SLJIT_MOVU_UB | SLJIT_INT_OP)
763     /* Flags: I - (never set any flags) */
764 zherczeg 1499 #define SLJIT_MOVU_SB (SLJIT_OP1_BASE + 10)
765 zherczeg 1195 #define SLJIT_IMOVU_SB (SLJIT_MOVU_SB | SLJIT_INT_OP)
766     /* Flags: I - (never set any flags) */
767 zherczeg 1499 #define SLJIT_MOVU_UH (SLJIT_OP1_BASE + 11)
768 zherczeg 1195 #define SLJIT_IMOVU_UH (SLJIT_MOVU_UH | SLJIT_INT_OP)
769     /* Flags: I - (never set any flags) */
770 zherczeg 1499 #define SLJIT_MOVU_SH (SLJIT_OP1_BASE + 12)
771 zherczeg 1195 #define SLJIT_IMOVU_SH (SLJIT_MOVU_SH | SLJIT_INT_OP)
772     /* Flags: I - (never set any flags)
773     Note: see SLJIT_INT_OP for further details. */
774 zherczeg 1499 #define SLJIT_MOVU_UI (SLJIT_OP1_BASE + 13)
775 zherczeg 1460 /* No SLJIT_INT_OP form, since it is the same as SLJIT_IMOVU. */
776 zherczeg 1195 /* Flags: I - (never set any flags)
777     Note: see SLJIT_INT_OP for further details. */
778 zherczeg 1499 #define SLJIT_MOVU_SI (SLJIT_OP1_BASE + 14)
779 zherczeg 1195 #define SLJIT_IMOVU (SLJIT_MOVU_SI | SLJIT_INT_OP)
780 zherczeg 1182 /* Flags: - (never set any flags) */
781 zherczeg 1499 #define SLJIT_MOVU_P (SLJIT_OP1_BASE + 15)
782 ph10 662 /* Flags: I | E | K */
783 zherczeg 1499 #define SLJIT_NOT (SLJIT_OP1_BASE + 16)
784 zherczeg 1195 #define SLJIT_INOT (SLJIT_NOT | SLJIT_INT_OP)
785 ph10 662 /* Flags: I | E | O | K */
786 zherczeg 1499 #define SLJIT_NEG (SLJIT_OP1_BASE + 17)
787 zherczeg 1195 #define SLJIT_INEG (SLJIT_NEG | SLJIT_INT_OP)
788 ph10 662 /* Count leading zeroes
789 zherczeg 1149 Flags: I | E | K
790     Important note! Sparc 32 does not support K flag, since
791     the required popc instruction is introduced only in sparc 64. */
792 zherczeg 1499 #define SLJIT_CLZ (SLJIT_OP1_BASE + 18)
793 zherczeg 1195 #define SLJIT_ICLZ (SLJIT_CLZ | SLJIT_INT_OP)
794 ph10 662
795 zherczeg 1195 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op1(struct sljit_compiler *compiler, sljit_si op,
796     sljit_si dst, sljit_sw dstw,
797     sljit_si src, sljit_sw srcw);
798 ph10 662
799 zherczeg 1499 /* Starting index of opcodes for sljit_emit_op2. */
800     #define SLJIT_OP2_BASE 96
801    
802 ph10 662 /* Flags: I | E | O | C | K */
803 zherczeg 1499 #define SLJIT_ADD (SLJIT_OP2_BASE + 0)
804 zherczeg 1195 #define SLJIT_IADD (SLJIT_ADD | SLJIT_INT_OP)
805 ph10 662 /* Flags: I | C | K */
806 zherczeg 1499 #define SLJIT_ADDC (SLJIT_OP2_BASE + 1)
807 zherczeg 1195 #define SLJIT_IADDC (SLJIT_ADDC | SLJIT_INT_OP)
808 zherczeg 1460 /* Flags: I | E | U | S | O | C | K */
809 zherczeg 1499 #define SLJIT_SUB (SLJIT_OP2_BASE + 2)
810 zherczeg 1195 #define SLJIT_ISUB (SLJIT_SUB | SLJIT_INT_OP)
811 ph10 662 /* Flags: I | C | K */
812 zherczeg 1499 #define SLJIT_SUBC (SLJIT_OP2_BASE + 3)
813 zherczeg 1195 #define SLJIT_ISUBC (SLJIT_SUBC | SLJIT_INT_OP)
814 zherczeg 860 /* Note: integer mul
815     Flags: I | O (see SLJIT_C_MUL_*) | K */
816 zherczeg 1499 #define SLJIT_MUL (SLJIT_OP2_BASE + 4)
817 zherczeg 1195 #define SLJIT_IMUL (SLJIT_MUL | SLJIT_INT_OP)
818 ph10 662 /* Flags: I | E | K */
819 zherczeg 1499 #define SLJIT_AND (SLJIT_OP2_BASE + 5)
820 zherczeg 1195 #define SLJIT_IAND (SLJIT_AND | SLJIT_INT_OP)
821 ph10 662 /* Flags: I | E | K */
822 zherczeg 1499 #define SLJIT_OR (SLJIT_OP2_BASE + 6)
823 zherczeg 1195 #define SLJIT_IOR (SLJIT_OR | SLJIT_INT_OP)
824 ph10 662 /* Flags: I | E | K */
825 zherczeg 1499 #define SLJIT_XOR (SLJIT_OP2_BASE + 7)
826 zherczeg 1195 #define SLJIT_IXOR (SLJIT_XOR | SLJIT_INT_OP)
827 zherczeg 860 /* Flags: I | E | K
828     Let bit_length be the length of the shift operation: 32 or 64.
829     If src2 is immediate, src2w is masked by (bit_length - 1).
830     Otherwise, if the content of src2 is outside the range from 0
831 zherczeg 1499 to bit_length - 1, the result is undefined. */
832     #define SLJIT_SHL (SLJIT_OP2_BASE + 8)
833 zherczeg 1195 #define SLJIT_ISHL (SLJIT_SHL | SLJIT_INT_OP)
834 zherczeg 860 /* Flags: I | E | K
835     Let bit_length be the length of the shift operation: 32 or 64.
836     If src2 is immediate, src2w is masked by (bit_length - 1).
837     Otherwise, if the content of src2 is outside the range from 0
838 zherczeg 1499 to bit_length - 1, the result is undefined. */
839     #define SLJIT_LSHR (SLJIT_OP2_BASE + 9)
840 zherczeg 1195 #define SLJIT_ILSHR (SLJIT_LSHR | SLJIT_INT_OP)
841 zherczeg 860 /* Flags: I | E | K
842     Let bit_length be the length of the shift operation: 32 or 64.
843     If src2 is immediate, src2w is masked by (bit_length - 1).
844     Otherwise, if the content of src2 is outside the range from 0
845 zherczeg 1499 to bit_length - 1, the result is undefined. */
846     #define SLJIT_ASHR (SLJIT_OP2_BASE + 10)
847 zherczeg 1195 #define SLJIT_IASHR (SLJIT_ASHR | SLJIT_INT_OP)
848 ph10 662
849 zherczeg 1195 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op2(struct sljit_compiler *compiler, sljit_si op,
850     sljit_si dst, sljit_sw dstw,
851     sljit_si src1, sljit_sw src1w,
852     sljit_si src2, sljit_sw src2w);
853 ph10 662
854 zherczeg 839 /* The following function is a helper function for sljit_emit_op_custom.
855 zherczeg 1493 It returns with the real machine register index ( >=0 ) of any SLJIT_R,
856     SLJIT_S and SLJIT_SP registers.
857 zherczeg 839
858 zherczeg 1493 Note: it returns with -1 for virtual registers (only on x86-32). */
859    
860 zherczeg 1195 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_get_register_index(sljit_si reg);
861 zherczeg 839
862 zherczeg 1280 /* The following function is a helper function for sljit_emit_op_custom.
863     It returns with the real machine register index of any SLJIT_FLOAT register.
864 zherczeg 1506
865 zherczeg 1493 Note: the index is always an even number on ARM (except ARM-64), MIPS, and SPARC. */
866 zherczeg 1280
867     SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_get_float_register_index(sljit_si reg);
868    
869 zherczeg 839 /* Any instruction can be inserted into the instruction stream by
870     sljit_emit_op_custom. It has a similar purpose as inline assembly.
871     The size parameter must match to the instruction size of the target
872     architecture:
873    
874     x86: 0 < size <= 15. The instruction argument can be byte aligned.
875     Thumb2: if size == 2, the instruction argument must be 2 byte aligned.
876     if size == 4, the instruction argument must be 4 byte aligned.
877     Otherwise: size must be 4 and instruction argument must be 4 byte aligned. */
878    
879 zherczeg 1195 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op_custom(struct sljit_compiler *compiler,
880     void *instruction, sljit_si size);
881 zherczeg 839
882     /* Returns with non-zero if fpu is available. */
883    
884 zherczeg 1195 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_is_fpu_available(void);
885 ph10 662
886 zherczeg 1499 /* Starting index of opcodes for sljit_emit_fop1. */
887     #define SLJIT_FOP1_BASE 128
888    
889 zherczeg 1195 /* Flags: SP - (never set any flags) */
890 zherczeg 1506 #define SLJIT_DMOV (SLJIT_FOP1_BASE + 0)
891     #define SLJIT_SMOV (SLJIT_DMOV | SLJIT_SINGLE_OP)
892 zherczeg 1483 /* Convert opcodes: CONV[DST_TYPE].FROM[SRC_TYPE]
893     SRC/DST TYPE can be: D - double, S - single, W - signed word, I - signed int
894     Rounding mode when the destination is W or I: round towards zero. */
895     /* Flags: SP - (never set any flags) */
896 zherczeg 1499 #define SLJIT_CONVD_FROMS (SLJIT_FOP1_BASE + 1)
897 zherczeg 1483 #define SLJIT_CONVS_FROMD (SLJIT_CONVD_FROMS | SLJIT_SINGLE_OP)
898     /* Flags: SP - (never set any flags) */
899 zherczeg 1499 #define SLJIT_CONVW_FROMD (SLJIT_FOP1_BASE + 2)
900 zherczeg 1483 #define SLJIT_CONVW_FROMS (SLJIT_CONVW_FROMD | SLJIT_SINGLE_OP)
901     /* Flags: SP - (never set any flags) */
902 zherczeg 1499 #define SLJIT_CONVI_FROMD (SLJIT_FOP1_BASE + 3)
903 zherczeg 1483 #define SLJIT_CONVI_FROMS (SLJIT_CONVI_FROMD | SLJIT_SINGLE_OP)
904     /* Flags: SP - (never set any flags) */
905 zherczeg 1499 #define SLJIT_CONVD_FROMW (SLJIT_FOP1_BASE + 4)
906 zherczeg 1483 #define SLJIT_CONVS_FROMW (SLJIT_CONVD_FROMW | SLJIT_SINGLE_OP)
907     /* Flags: SP - (never set any flags) */
908 zherczeg 1499 #define SLJIT_CONVD_FROMI (SLJIT_FOP1_BASE + 5)
909 zherczeg 1483 #define SLJIT_CONVS_FROMI (SLJIT_CONVD_FROMI | SLJIT_SINGLE_OP)
910     /* Note: dst is the left and src is the right operand for SLJIT_CMPD.
911     Note: NaN check is always performed. If SLJIT_C_FLOAT_UNORDERED flag
912     is set, the comparison result is unpredictable.
913     Flags: SP | E | S (see SLJIT_C_FLOAT_*) */
914 zherczeg 1506 #define SLJIT_DCMP (SLJIT_FOP1_BASE + 6)
915     #define SLJIT_SCMP (SLJIT_DCMP | SLJIT_SINGLE_OP)
916 zherczeg 1499 /* Flags: SP - (never set any flags) */
917 zherczeg 1506 #define SLJIT_DNEG (SLJIT_FOP1_BASE + 7)
918     #define SLJIT_SNEG (SLJIT_DNEG | SLJIT_SINGLE_OP)
919 zherczeg 1499 /* Flags: SP - (never set any flags) */
920 zherczeg 1506 #define SLJIT_DABS (SLJIT_FOP1_BASE + 8)
921     #define SLJIT_SABS (SLJIT_DABS | SLJIT_SINGLE_OP)
922 ph10 662
923 zherczeg 1195 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fop1(struct sljit_compiler *compiler, sljit_si op,
924     sljit_si dst, sljit_sw dstw,
925     sljit_si src, sljit_sw srcw);
926 ph10 662
927 zherczeg 1499 /* Starting index of opcodes for sljit_emit_fop2. */
928     #define SLJIT_FOP2_BASE 160
929    
930 zherczeg 1195 /* Flags: SP - (never set any flags) */
931 zherczeg 1506 #define SLJIT_DADD (SLJIT_FOP2_BASE + 0)
932     #define SLJIT_SADD (SLJIT_DADD | SLJIT_SINGLE_OP)
933 zherczeg 1195 /* Flags: SP - (never set any flags) */
934 zherczeg 1506 #define SLJIT_DSUB (SLJIT_FOP2_BASE + 1)
935     #define SLJIT_SSUB (SLJIT_DSUB | SLJIT_SINGLE_OP)
936 zherczeg 1195 /* Flags: SP - (never set any flags) */
937 zherczeg 1506 #define SLJIT_DMUL (SLJIT_FOP2_BASE + 2)
938     #define SLJIT_SMUL (SLJIT_DMUL | SLJIT_SINGLE_OP)
939 zherczeg 1195 /* Flags: SP - (never set any flags) */
940 zherczeg 1506 #define SLJIT_DDIV (SLJIT_FOP2_BASE + 3)
941     #define SLJIT_SDIV (SLJIT_DDIV | SLJIT_SINGLE_OP)
942 ph10 662
943 zherczeg 1195 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fop2(struct sljit_compiler *compiler, sljit_si op,
944     sljit_si dst, sljit_sw dstw,
945     sljit_si src1, sljit_sw src1w,
946     sljit_si src2, sljit_sw src2w);
947 ph10 662
948     /* Label and jump instructions. */
949    
950 zherczeg 740 SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler);
951 ph10 662
952 zherczeg 1506 /* Invert (negate) conditional type: xor (^) with 0x1 */
953 ph10 662
954 zherczeg 1506 /* Integer comparison types. */
955     #define SLJIT_EQUAL 0
956     #define SLJIT_I_EQUAL (SLJIT_EQUAL | SLJIT_INT_OP)
957     #define SLJIT_ZERO 0
958     #define SLJIT_I_ZERO (SLJIT_ZERO | SLJIT_INT_OP)
959     #define SLJIT_NOT_EQUAL 1
960     #define SLJIT_I_NOT_EQUAL (SLJIT_NOT_EQUAL | SLJIT_INT_OP)
961     #define SLJIT_NOT_ZERO 1
962     #define SLJIT_I_NOT_ZERO (SLJIT_NOT_ZERO | SLJIT_INT_OP)
963 ph10 662
964 zherczeg 1506 #define SLJIT_LESS 2
965     #define SLJIT_I_LESS (SLJIT_LESS | SLJIT_INT_OP)
966     #define SLJIT_GREATER_EQUAL 3
967     #define SLJIT_I_GREATER_EQUAL (SLJIT_GREATER_EQUAL | SLJIT_INT_OP)
968     #define SLJIT_GREATER 4
969     #define SLJIT_I_GREATER (SLJIT_GREATER | SLJIT_INT_OP)
970     #define SLJIT_LESS_EQUAL 5
971     #define SLJIT_I_LESS_EQUAL (SLJIT_LESS_EQUAL | SLJIT_INT_OP)
972     #define SLJIT_SIG_LESS 6
973     #define SLJIT_I_SIG_LESS (SLJIT_SIG_LESS | SLJIT_INT_OP)
974     #define SLJIT_SIG_GREATER_EQUAL 7
975     #define SLJIT_I_SIG_GREATER_EQUAL (SLJIT_SIG_GREATER_EQUAL | SLJIT_INT_OP)
976     #define SLJIT_SIG_GREATER 8
977     #define SLJIT_I_SIG_GREATER (SLJIT_SIG_GREATER | SLJIT_INT_OP)
978     #define SLJIT_SIG_LESS_EQUAL 9
979     #define SLJIT_I_SIG_LESS_EQUAL (SLJIT_SIG_LESS_EQUAL | SLJIT_INT_OP)
980 ph10 662
981 zherczeg 1506 #define SLJIT_OVERFLOW 10
982     #define SLJIT_I_OVERFLOW (SLJIT_OVERFLOW | SLJIT_INT_OP)
983     #define SLJIT_NOT_OVERFLOW 11
984     #define SLJIT_I_NOT_OVERFLOW (SLJIT_NOT_OVERFLOW | SLJIT_INT_OP)
985 ph10 662
986 zherczeg 1506 #define SLJIT_MUL_OVERFLOW 12
987     #define SLJIT_I_MUL_OVERFLOW (SLJIT_MUL_OVERFLOW | SLJIT_INT_OP)
988     #define SLJIT_MUL_NOT_OVERFLOW 13
989     #define SLJIT_I_MUL_NOT_OVERFLOW (SLJIT_MUL_NOT_OVERFLOW | SLJIT_INT_OP)
990 ph10 662
991 zherczeg 1506 /* Floating point comparison types. */
992     #define SLJIT_D_EQUAL 14
993     #define SLJIT_S_EQUAL (SLJIT_D_EQUAL | SLJIT_SINGLE_OP)
994     #define SLJIT_D_NOT_EQUAL 15
995     #define SLJIT_S_NOT_EQUAL (SLJIT_D_NOT_EQUAL | SLJIT_SINGLE_OP)
996     #define SLJIT_D_LESS 16
997     #define SLJIT_S_LESS (SLJIT_D_LESS | SLJIT_SINGLE_OP)
998     #define SLJIT_D_GREATER_EQUAL 17
999     #define SLJIT_S_GREATER_EQUAL (SLJIT_D_GREATER_EQUAL | SLJIT_SINGLE_OP)
1000     #define SLJIT_D_GREATER 18
1001     #define SLJIT_S_GREATER (SLJIT_D_GREATER | SLJIT_SINGLE_OP)
1002     #define SLJIT_D_LESS_EQUAL 19
1003     #define SLJIT_S_LESS_EQUAL (SLJIT_D_LESS_EQUAL | SLJIT_SINGLE_OP)
1004     #define SLJIT_D_UNORDERED 20
1005     #define SLJIT_S_UNORDERED (SLJIT_D_UNORDERED | SLJIT_SINGLE_OP)
1006     #define SLJIT_D_ORDERED 21
1007     #define SLJIT_S_ORDERED (SLJIT_D_ORDERED | SLJIT_SINGLE_OP)
1008    
1009     /* Unconditional jump types. */
1010 ph10 662 #define SLJIT_JUMP 22
1011 zherczeg 722 #define SLJIT_FAST_CALL 23
1012     #define SLJIT_CALL0 24
1013     #define SLJIT_CALL1 25
1014     #define SLJIT_CALL2 26
1015     #define SLJIT_CALL3 27
1016 ph10 662
1017     /* Fast calling method. See sljit_emit_fast_enter / sljit_emit_fast_return. */
1018    
1019     /* The target can be changed during runtime (see: sljit_set_jump_addr). */
1020     #define SLJIT_REWRITABLE_JUMP 0x1000
1021    
1022     /* Emit a jump instruction. The destination is not set, only the type of the jump.
1023 zherczeg 1506 type must be between SLJIT_EQUAL and SLJIT_CALL3
1024 ph10 662 type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1025     Flags: - (never set any flags) for both conditional and unconditional jumps.
1026     Flags: destroy all flags for calls. */
1027 zherczeg 1195 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, sljit_si type);
1028 ph10 662
1029 zherczeg 867 /* Basic arithmetic comparison. In most architectures it is implemented as
1030     an SLJIT_SUB operation (with SLJIT_UNUSED destination and setting
1031     appropriate flags) followed by a sljit_emit_jump. However some
1032 zherczeg 1506 architectures (i.e: ARM64 or MIPS) may employ special optimizations here.
1033     It is suggested to use this comparison form when appropriate.
1034     type must be between SLJIT_EQUAL and SLJIT_I_SIG_LESS_EQUAL
1035     type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1036 ph10 662 Flags: destroy flags. */
1037 zherczeg 1195 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_cmp(struct sljit_compiler *compiler, sljit_si type,
1038     sljit_si src1, sljit_sw src1w,
1039     sljit_si src2, sljit_sw src2w);
1040 ph10 662
1041 zherczeg 867 /* Basic floating point comparison. In most architectures it is implemented as
1042     an SLJIT_FCMP operation (setting appropriate flags) followed by a
1043     sljit_emit_jump. However some architectures (i.e: MIPS) may employ
1044     special optimizations here. It is suggested to use this comparison form
1045     when appropriate.
1046 zherczeg 1506 type must be between SLJIT_D_EQUAL and SLJIT_S_ORDERED
1047     type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1048 zherczeg 867 Flags: destroy flags.
1049     Note: if either operand is NaN, the behaviour is undefined for
1050 zherczeg 1506 types up to SLJIT_S_LESS_EQUAL. */
1051 zherczeg 1195 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_fcmp(struct sljit_compiler *compiler, sljit_si type,
1052     sljit_si src1, sljit_sw src1w,
1053     sljit_si src2, sljit_sw src2w);
1054 zherczeg 867
1055 ph10 662 /* Set the destination of the jump to this label. */
1056 zherczeg 740 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_label(struct sljit_jump *jump, struct sljit_label* label);
1057 zherczeg 1460 /* Set the destination address of the jump to this label. */
1058 zherczeg 740 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_target(struct sljit_jump *jump, sljit_uw target);
1059 ph10 662
1060     /* Call function or jump anywhere. Both direct and indirect form
1061     type must be between SLJIT_JUMP and SLJIT_CALL3
1062     Direct form: set src to SLJIT_IMM() and srcw to the address
1063     Indirect form: any other valid addressing mode
1064     Flags: - (never set any flags) for unconditional jumps.
1065     Flags: destroy all flags for calls. */
1066 zherczeg 1195 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_ijump(struct sljit_compiler *compiler, sljit_si type, sljit_si src, sljit_sw srcw);
1067 ph10 662
1068 zherczeg 1209 /* Perform the operation using the conditional flags as the second argument.
1069 zherczeg 1506 Type must always be between SLJIT_EQUAL and SLJIT_S_ORDERED. The value
1070     represented by the type is 1, if the condition represented by the type
1071 zherczeg 1209 is fulfilled, and 0 otherwise.
1072    
1073     If op == SLJIT_MOV, SLJIT_MOV_SI, SLJIT_MOV_UI:
1074     Set dst to the value represented by the type (0 or 1).
1075     Src must be SLJIT_UNUSED, and srcw must be 0
1076 ph10 662 Flags: - (never set any flags)
1077 zherczeg 1209 If op == SLJIT_OR, op == SLJIT_AND, op == SLJIT_XOR
1078     Performs the binary operation using src as the first, and the value
1079     represented by type as the second argument.
1080     Important note: only dst=src and dstw=srcw is supported at the moment!
1081 zherczeg 1203 Flags: I | E | K
1082 zherczeg 1209 Note: sljit_emit_op_flags does nothing, if dst is SLJIT_UNUSED (regardless of op). */
1083     SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_si op,
1084     sljit_si dst, sljit_sw dstw,
1085     sljit_si src, sljit_sw srcw,
1086     sljit_si type);
1087 ph10 662
1088 zherczeg 1491 /* Copies the base address of SLJIT_SP + offset to dst.
1089 zherczeg 955 Flags: - (never set any flags) */
1090 zherczeg 1195 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_get_local_base(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw, sljit_sw offset);
1091 zherczeg 955
1092 ph10 662 /* The constant can be changed runtime (see: sljit_set_const)
1093     Flags: - (never set any flags) */
1094 zherczeg 1195 SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw, sljit_sw init_value);
1095 ph10 662
1096     /* After the code generation the address for label, jump and const instructions
1097 zherczeg 1222 are computed. Since these structures are freed by sljit_free_compiler, the
1098 ph10 662 addresses must be preserved by the user program elsewere. */
1099     static SLJIT_INLINE sljit_uw sljit_get_label_addr(struct sljit_label *label) { return label->addr; }
1100     static SLJIT_INLINE sljit_uw sljit_get_jump_addr(struct sljit_jump *jump) { return jump->addr; }
1101     static SLJIT_INLINE sljit_uw sljit_get_const_addr(struct sljit_const *const_) { return const_->addr; }
1102    
1103     /* Only the address is required to rewrite the code. */
1104 zherczeg 740 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_addr);
1105 zherczeg 1195 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant);
1106 ph10 662
1107     /* --------------------------------------------------------------------- */
1108     /* Miscellaneous utility functions */
1109     /* --------------------------------------------------------------------- */
1110    
1111     #define SLJIT_MAJOR_VERSION 0
1112 zherczeg 1507 #define SLJIT_MINOR_VERSION 93
1113 ph10 662
1114 zherczeg 1222 /* Get the human readable name of the platform. Can be useful on platforms
1115 zherczeg 1216 like ARM, where ARM and Thumb2 functions can be mixed, and
1116     it is useful to know the type of the code generator. */
1117 zherczeg 740 SLJIT_API_FUNC_ATTRIBUTE SLJIT_CONST char* sljit_get_platform_name(void);
1118 ph10 662
1119 zherczeg 1222 /* Portable helper function to get an offset of a member. */
1120 zherczeg 1195 #define SLJIT_OFFSETOF(base, member) ((sljit_sw)(&((base*)0x10)->member) - 0x10)
1121 ph10 662
1122     #if (defined SLJIT_UTIL_GLOBAL_LOCK && SLJIT_UTIL_GLOBAL_LOCK)
1123     /* This global lock is useful to compile common functions. */
1124 zherczeg 740 SLJIT_API_FUNC_ATTRIBUTE void SLJIT_CALL sljit_grab_lock(void);
1125     SLJIT_API_FUNC_ATTRIBUTE void SLJIT_CALL sljit_release_lock(void);
1126 ph10 662 #endif
1127    
1128     #if (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK)
1129    
1130     /* The sljit_stack is a utiliy feature of sljit, which allocates a
1131     writable memory region between base (inclusive) and limit (exclusive).
1132     Both base and limit is a pointer, and base is always <= than limit.
1133     This feature uses the "address space reserve" feature
1134     of modern operating systems. Basically we don't need to allocate a
1135     huge memory block in one step for the worst case, we can start with
1136     a smaller chunk and extend it later. Since the address space is
1137     reserved, the data never copied to other regions, thus it is safe
1138     to store pointers here. */
1139    
1140     /* Note: The base field is aligned to PAGE_SIZE bytes (usually 4k or more).
1141     Note: stack growing should not happen in small steps: 4k, 16k or even
1142     bigger growth is better.
1143     Note: this structure may not be supported by all operating systems.
1144     Some kind of fallback mechanism is suggested when SLJIT_UTIL_STACK
1145     is not defined. */
1146    
1147     struct sljit_stack {
1148     /* User data, anything can be stored here.
1149     Starting with the same value as base. */
1150     sljit_uw top;
1151     /* These members are read only. */
1152     sljit_uw base;
1153     sljit_uw limit;
1154     sljit_uw max_limit;
1155     };
1156    
1157     /* Returns NULL if unsuccessful.
1158 zherczeg 1507 Note: limit and max_limit contains the size for stack allocation.
1159     Note: the top field is initialized to base.
1160     Note: see sljit_create_compiler for the explanation of allocator_data. */
1161     SLJIT_API_FUNC_ATTRIBUTE struct sljit_stack* SLJIT_CALL sljit_allocate_stack(sljit_uw limit, sljit_uw max_limit, void *allocator_data);
1162     SLJIT_API_FUNC_ATTRIBUTE void SLJIT_CALL sljit_free_stack(struct sljit_stack *stack, void *allocator_data);
1163 ph10 662
1164     /* Can be used to increase (allocate) or decrease (free) the memory area.
1165     Returns with a non-zero value if unsuccessful. If new_limit is greater than
1166     max_limit, it will fail. It is very easy to implement a stack data structure,
1167     since the growth ratio can be added to the current limit, and sljit_stack_resize
1168     will do all the necessary checks. The fields of the stack are not changed if
1169     sljit_stack_resize fails. */
1170 zherczeg 1507 SLJIT_API_FUNC_ATTRIBUTE sljit_sw SLJIT_CALL sljit_stack_resize(struct sljit_stack *stack, sljit_uw new_limit);
1171 ph10 662
1172     #endif /* (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK) */
1173    
1174     #if !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL)
1175    
1176     /* Get the entry address of a given function. */
1177 zherczeg 1195 #define SLJIT_FUNC_OFFSET(func_name) ((sljit_sw)func_name)
1178 ph10 662
1179     #else /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
1180    
1181     /* All JIT related code should be placed in the same context (library, binary, etc.). */
1182    
1183 zherczeg 1222 #define SLJIT_FUNC_OFFSET(func_name) (*(sljit_sw*)(void*)func_name)
1184 ph10 662
1185     /* For powerpc64, the function pointers point to a context descriptor. */
1186     struct sljit_function_context {
1187 zherczeg 1195 sljit_sw addr;
1188     sljit_sw r2;
1189     sljit_sw r11;
1190 ph10 662 };
1191    
1192     /* Fill the context arguments using the addr and the function.
1193     If func_ptr is NULL, it will not be set to the address of context
1194     If addr is NULL, the function address also comes from the func pointer. */
1195 zherczeg 1195 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_function_context(void** func_ptr, struct sljit_function_context* context, sljit_sw addr, void* func);
1196 ph10 662
1197     #endif /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
1198    
1199     #endif /* _SLJIT_LIR_H_ */

webmaster@exim.org
ViewVC Help
Powered by ViewVC 1.1.12