/[pcre]/code/trunk/pcre_compile.c
ViewVC logotype

Contents of /code/trunk/pcre_compile.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 544 - (show annotations) (download)
Tue Jun 15 17:20:55 2010 UTC (4 years, 4 months ago) by ph10
File MIME type: text/plain
File size: 233022 byte(s)
Fix forward reference in the presence of (?#( (open parens in comment).

1 /*************************************************
2 * Perl-Compatible Regular Expressions *
3 *************************************************/
4
5 /* PCRE is a library of functions to support regular expressions whose syntax
6 and semantics are as close as possible to those of the Perl 5 language.
7
8 Written by Philip Hazel
9 Copyright (c) 1997-2010 University of Cambridge
10
11 -----------------------------------------------------------------------------
12 Redistribution and use in source and binary forms, with or without
13 modification, are permitted provided that the following conditions are met:
14
15 * Redistributions of source code must retain the above copyright notice,
16 this list of conditions and the following disclaimer.
17
18 * Redistributions in binary form must reproduce the above copyright
19 notice, this list of conditions and the following disclaimer in the
20 documentation and/or other materials provided with the distribution.
21
22 * Neither the name of the University of Cambridge nor the names of its
23 contributors may be used to endorse or promote products derived from
24 this software without specific prior written permission.
25
26 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
27 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
30 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 POSSIBILITY OF SUCH DAMAGE.
37 -----------------------------------------------------------------------------
38 */
39
40
41 /* This module contains the external function pcre_compile(), along with
42 supporting internal functions that are not used by other modules. */
43
44
45 #ifdef HAVE_CONFIG_H
46 #include "config.h"
47 #endif
48
49 #define NLBLOCK cd /* Block containing newline information */
50 #define PSSTART start_pattern /* Field containing processed string start */
51 #define PSEND end_pattern /* Field containing processed string end */
52
53 #include "pcre_internal.h"
54
55
56 /* When PCRE_DEBUG is defined, we need the pcre_printint() function, which is
57 also used by pcretest. PCRE_DEBUG is not defined when building a production
58 library. */
59
60 #ifdef PCRE_DEBUG
61 #include "pcre_printint.src"
62 #endif
63
64
65 /* Macro for setting individual bits in class bitmaps. */
66
67 #define SETBIT(a,b) a[b/8] |= (1 << (b%8))
68
69 /* Maximum length value to check against when making sure that the integer that
70 holds the compiled pattern length does not overflow. We make it a bit less than
71 INT_MAX to allow for adding in group terminating bytes, so that we don't have
72 to check them every time. */
73
74 #define OFLOW_MAX (INT_MAX - 20)
75
76
77 /*************************************************
78 * Code parameters and static tables *
79 *************************************************/
80
81 /* This value specifies the size of stack workspace that is used during the
82 first pre-compile phase that determines how much memory is required. The regex
83 is partly compiled into this space, but the compiled parts are discarded as
84 soon as they can be, so that hopefully there will never be an overrun. The code
85 does, however, check for an overrun. The largest amount I've seen used is 218,
86 so this number is very generous.
87
88 The same workspace is used during the second, actual compile phase for
89 remembering forward references to groups so that they can be filled in at the
90 end. Each entry in this list occupies LINK_SIZE bytes, so even when LINK_SIZE
91 is 4 there is plenty of room. */
92
93 #define COMPILE_WORK_SIZE (4096)
94
95 /* The overrun tests check for a slightly smaller size so that they detect the
96 overrun before it actually does run off the end of the data block. */
97
98 #define WORK_SIZE_CHECK (COMPILE_WORK_SIZE - 100)
99
100
101 /* Table for handling escaped characters in the range '0'-'z'. Positive returns
102 are simple data values; negative values are for special things like \d and so
103 on. Zero means further processing is needed (for things like \x), or the escape
104 is invalid. */
105
106 #ifndef EBCDIC
107
108 /* This is the "normal" table for ASCII systems or for EBCDIC systems running
109 in UTF-8 mode. */
110
111 static const short int escapes[] = {
112 0, 0,
113 0, 0,
114 0, 0,
115 0, 0,
116 0, 0,
117 CHAR_COLON, CHAR_SEMICOLON,
118 CHAR_LESS_THAN_SIGN, CHAR_EQUALS_SIGN,
119 CHAR_GREATER_THAN_SIGN, CHAR_QUESTION_MARK,
120 CHAR_COMMERCIAL_AT, -ESC_A,
121 -ESC_B, -ESC_C,
122 -ESC_D, -ESC_E,
123 0, -ESC_G,
124 -ESC_H, 0,
125 0, -ESC_K,
126 0, 0,
127 -ESC_N, 0,
128 -ESC_P, -ESC_Q,
129 -ESC_R, -ESC_S,
130 0, 0,
131 -ESC_V, -ESC_W,
132 -ESC_X, 0,
133 -ESC_Z, CHAR_LEFT_SQUARE_BRACKET,
134 CHAR_BACKSLASH, CHAR_RIGHT_SQUARE_BRACKET,
135 CHAR_CIRCUMFLEX_ACCENT, CHAR_UNDERSCORE,
136 CHAR_GRAVE_ACCENT, 7,
137 -ESC_b, 0,
138 -ESC_d, ESC_e,
139 ESC_f, 0,
140 -ESC_h, 0,
141 0, -ESC_k,
142 0, 0,
143 ESC_n, 0,
144 -ESC_p, 0,
145 ESC_r, -ESC_s,
146 ESC_tee, 0,
147 -ESC_v, -ESC_w,
148 0, 0,
149 -ESC_z
150 };
151
152 #else
153
154 /* This is the "abnormal" table for EBCDIC systems without UTF-8 support. */
155
156 static const short int escapes[] = {
157 /* 48 */ 0, 0, 0, '.', '<', '(', '+', '|',
158 /* 50 */ '&', 0, 0, 0, 0, 0, 0, 0,
159 /* 58 */ 0, 0, '!', '$', '*', ')', ';', '~',
160 /* 60 */ '-', '/', 0, 0, 0, 0, 0, 0,
161 /* 68 */ 0, 0, '|', ',', '%', '_', '>', '?',
162 /* 70 */ 0, 0, 0, 0, 0, 0, 0, 0,
163 /* 78 */ 0, '`', ':', '#', '@', '\'', '=', '"',
164 /* 80 */ 0, 7, -ESC_b, 0, -ESC_d, ESC_e, ESC_f, 0,
165 /* 88 */-ESC_h, 0, 0, '{', 0, 0, 0, 0,
166 /* 90 */ 0, 0, -ESC_k, 'l', 0, ESC_n, 0, -ESC_p,
167 /* 98 */ 0, ESC_r, 0, '}', 0, 0, 0, 0,
168 /* A0 */ 0, '~', -ESC_s, ESC_tee, 0,-ESC_v, -ESC_w, 0,
169 /* A8 */ 0,-ESC_z, 0, 0, 0, '[', 0, 0,
170 /* B0 */ 0, 0, 0, 0, 0, 0, 0, 0,
171 /* B8 */ 0, 0, 0, 0, 0, ']', '=', '-',
172 /* C0 */ '{',-ESC_A, -ESC_B, -ESC_C, -ESC_D,-ESC_E, 0, -ESC_G,
173 /* C8 */-ESC_H, 0, 0, 0, 0, 0, 0, 0,
174 /* D0 */ '}', 0, -ESC_K, 0, 0,-ESC_N, 0, -ESC_P,
175 /* D8 */-ESC_Q,-ESC_R, 0, 0, 0, 0, 0, 0,
176 /* E0 */ '\\', 0, -ESC_S, 0, 0,-ESC_V, -ESC_W, -ESC_X,
177 /* E8 */ 0,-ESC_Z, 0, 0, 0, 0, 0, 0,
178 /* F0 */ 0, 0, 0, 0, 0, 0, 0, 0,
179 /* F8 */ 0, 0, 0, 0, 0, 0, 0, 0
180 };
181 #endif
182
183
184 /* Table of special "verbs" like (*PRUNE). This is a short table, so it is
185 searched linearly. Put all the names into a single string, in order to reduce
186 the number of relocations when a shared library is dynamically linked. The
187 string is built from string macros so that it works in UTF-8 mode on EBCDIC
188 platforms. */
189
190 typedef struct verbitem {
191 int len; /* Length of verb name */
192 int op; /* Op when no arg, or -1 if arg mandatory */
193 int op_arg; /* Op when arg present, or -1 if not allowed */
194 } verbitem;
195
196 static const char verbnames[] =
197 "\0" /* Empty name is a shorthand for MARK */
198 STRING_MARK0
199 STRING_ACCEPT0
200 STRING_COMMIT0
201 STRING_F0
202 STRING_FAIL0
203 STRING_PRUNE0
204 STRING_SKIP0
205 STRING_THEN;
206
207 static const verbitem verbs[] = {
208 { 0, -1, OP_MARK },
209 { 4, -1, OP_MARK },
210 { 6, OP_ACCEPT, -1 },
211 { 6, OP_COMMIT, -1 },
212 { 1, OP_FAIL, -1 },
213 { 4, OP_FAIL, -1 },
214 { 5, OP_PRUNE, OP_PRUNE_ARG },
215 { 4, OP_SKIP, OP_SKIP_ARG },
216 { 4, OP_THEN, OP_THEN_ARG }
217 };
218
219 static const int verbcount = sizeof(verbs)/sizeof(verbitem);
220
221
222 /* Tables of names of POSIX character classes and their lengths. The names are
223 now all in a single string, to reduce the number of relocations when a shared
224 library is dynamically loaded. The list of lengths is terminated by a zero
225 length entry. The first three must be alpha, lower, upper, as this is assumed
226 for handling case independence. */
227
228 static const char posix_names[] =
229 STRING_alpha0 STRING_lower0 STRING_upper0 STRING_alnum0
230 STRING_ascii0 STRING_blank0 STRING_cntrl0 STRING_digit0
231 STRING_graph0 STRING_print0 STRING_punct0 STRING_space0
232 STRING_word0 STRING_xdigit;
233
234 static const uschar posix_name_lengths[] = {
235 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 6, 0 };
236
237 /* Table of class bit maps for each POSIX class. Each class is formed from a
238 base map, with an optional addition or removal of another map. Then, for some
239 classes, there is some additional tweaking: for [:blank:] the vertical space
240 characters are removed, and for [:alpha:] and [:alnum:] the underscore
241 character is removed. The triples in the table consist of the base map offset,
242 second map offset or -1 if no second map, and a non-negative value for map
243 addition or a negative value for map subtraction (if there are two maps). The
244 absolute value of the third field has these meanings: 0 => no tweaking, 1 =>
245 remove vertical space characters, 2 => remove underscore. */
246
247 static const int posix_class_maps[] = {
248 cbit_word, cbit_digit, -2, /* alpha */
249 cbit_lower, -1, 0, /* lower */
250 cbit_upper, -1, 0, /* upper */
251 cbit_word, -1, 2, /* alnum - word without underscore */
252 cbit_print, cbit_cntrl, 0, /* ascii */
253 cbit_space, -1, 1, /* blank - a GNU extension */
254 cbit_cntrl, -1, 0, /* cntrl */
255 cbit_digit, -1, 0, /* digit */
256 cbit_graph, -1, 0, /* graph */
257 cbit_print, -1, 0, /* print */
258 cbit_punct, -1, 0, /* punct */
259 cbit_space, -1, 0, /* space */
260 cbit_word, -1, 0, /* word - a Perl extension */
261 cbit_xdigit,-1, 0 /* xdigit */
262 };
263
264 /* Table of substitutes for \d etc when PCRE_UCP is set. The POSIX class
265 substitutes must be in the order of the names, defined above, and there are
266 both positive and negative cases. NULL means no substitute. */
267
268 #ifdef SUPPORT_UCP
269 static const uschar *substitutes[] = {
270 (uschar *)"\\P{Nd}", /* \D */
271 (uschar *)"\\p{Nd}", /* \d */
272 (uschar *)"\\P{Xsp}", /* \S */ /* NOTE: Xsp is Perl space */
273 (uschar *)"\\p{Xsp}", /* \s */
274 (uschar *)"\\P{Xwd}", /* \W */
275 (uschar *)"\\p{Xwd}" /* \w */
276 };
277
278 static const uschar *posix_substitutes[] = {
279 (uschar *)"\\p{L}", /* alpha */
280 (uschar *)"\\p{Ll}", /* lower */
281 (uschar *)"\\p{Lu}", /* upper */
282 (uschar *)"\\p{Xan}", /* alnum */
283 NULL, /* ascii */
284 (uschar *)"\\h", /* blank */
285 NULL, /* cntrl */
286 (uschar *)"\\p{Nd}", /* digit */
287 NULL, /* graph */
288 NULL, /* print */
289 NULL, /* punct */
290 (uschar *)"\\p{Xps}", /* space */ /* NOTE: Xps is POSIX space */
291 (uschar *)"\\p{Xwd}", /* word */
292 NULL, /* xdigit */
293 /* Negated cases */
294 (uschar *)"\\P{L}", /* ^alpha */
295 (uschar *)"\\P{Ll}", /* ^lower */
296 (uschar *)"\\P{Lu}", /* ^upper */
297 (uschar *)"\\P{Xan}", /* ^alnum */
298 NULL, /* ^ascii */
299 (uschar *)"\\H", /* ^blank */
300 NULL, /* ^cntrl */
301 (uschar *)"\\P{Nd}", /* ^digit */
302 NULL, /* ^graph */
303 NULL, /* ^print */
304 NULL, /* ^punct */
305 (uschar *)"\\P{Xps}", /* ^space */ /* NOTE: Xps is POSIX space */
306 (uschar *)"\\P{Xwd}", /* ^word */
307 NULL /* ^xdigit */
308 };
309 #define POSIX_SUBSIZE (sizeof(posix_substitutes)/sizeof(uschar *))
310 #endif
311
312 #define STRING(a) # a
313 #define XSTRING(s) STRING(s)
314
315 /* The texts of compile-time error messages. These are "char *" because they
316 are passed to the outside world. Do not ever re-use any error number, because
317 they are documented. Always add a new error instead. Messages marked DEAD below
318 are no longer used. This used to be a table of strings, but in order to reduce
319 the number of relocations needed when a shared library is loaded dynamically,
320 it is now one long string. We cannot use a table of offsets, because the
321 lengths of inserts such as XSTRING(MAX_NAME_SIZE) are not known. Instead, we
322 simply count through to the one we want - this isn't a performance issue
323 because these strings are used only when there is a compilation error.
324
325 Each substring ends with \0 to insert a null character. This includes the final
326 substring, so that the whole string ends with \0\0, which can be detected when
327 counting through. */
328
329 static const char error_texts[] =
330 "no error\0"
331 "\\ at end of pattern\0"
332 "\\c at end of pattern\0"
333 "unrecognized character follows \\\0"
334 "numbers out of order in {} quantifier\0"
335 /* 5 */
336 "number too big in {} quantifier\0"
337 "missing terminating ] for character class\0"
338 "invalid escape sequence in character class\0"
339 "range out of order in character class\0"
340 "nothing to repeat\0"
341 /* 10 */
342 "operand of unlimited repeat could match the empty string\0" /** DEAD **/
343 "internal error: unexpected repeat\0"
344 "unrecognized character after (? or (?-\0"
345 "POSIX named classes are supported only within a class\0"
346 "missing )\0"
347 /* 15 */
348 "reference to non-existent subpattern\0"
349 "erroffset passed as NULL\0"
350 "unknown option bit(s) set\0"
351 "missing ) after comment\0"
352 "parentheses nested too deeply\0" /** DEAD **/
353 /* 20 */
354 "regular expression is too large\0"
355 "failed to get memory\0"
356 "unmatched parentheses\0"
357 "internal error: code overflow\0"
358 "unrecognized character after (?<\0"
359 /* 25 */
360 "lookbehind assertion is not fixed length\0"
361 "malformed number or name after (?(\0"
362 "conditional group contains more than two branches\0"
363 "assertion expected after (?(\0"
364 "(?R or (?[+-]digits must be followed by )\0"
365 /* 30 */
366 "unknown POSIX class name\0"
367 "POSIX collating elements are not supported\0"
368 "this version of PCRE is not compiled with PCRE_UTF8 support\0"
369 "spare error\0" /** DEAD **/
370 "character value in \\x{...} sequence is too large\0"
371 /* 35 */
372 "invalid condition (?(0)\0"
373 "\\C not allowed in lookbehind assertion\0"
374 "PCRE does not support \\L, \\l, \\N{name}, \\U, or \\u\0"
375 "number after (?C is > 255\0"
376 "closing ) for (?C expected\0"
377 /* 40 */
378 "recursive call could loop indefinitely\0"
379 "unrecognized character after (?P\0"
380 "syntax error in subpattern name (missing terminator)\0"
381 "two named subpatterns have the same name\0"
382 "invalid UTF-8 string\0"
383 /* 45 */
384 "support for \\P, \\p, and \\X has not been compiled\0"
385 "malformed \\P or \\p sequence\0"
386 "unknown property name after \\P or \\p\0"
387 "subpattern name is too long (maximum " XSTRING(MAX_NAME_SIZE) " characters)\0"
388 "too many named subpatterns (maximum " XSTRING(MAX_NAME_COUNT) ")\0"
389 /* 50 */
390 "repeated subpattern is too long\0" /** DEAD **/
391 "octal value is greater than \\377 (not in UTF-8 mode)\0"
392 "internal error: overran compiling workspace\0"
393 "internal error: previously-checked referenced subpattern not found\0"
394 "DEFINE group contains more than one branch\0"
395 /* 55 */
396 "repeating a DEFINE group is not allowed\0"
397 "inconsistent NEWLINE options\0"
398 "\\g is not followed by a braced, angle-bracketed, or quoted name/number or by a plain number\0"
399 "a numbered reference must not be zero\0"
400 "an argument is not allowed for (*ACCEPT), (*FAIL), or (*COMMIT)\0"
401 /* 60 */
402 "(*VERB) not recognized\0"
403 "number is too big\0"
404 "subpattern name expected\0"
405 "digit expected after (?+\0"
406 "] is an invalid data character in JavaScript compatibility mode\0"
407 /* 65 */
408 "different names for subpatterns of the same number are not allowed\0"
409 "(*MARK) must have an argument\0"
410 "this version of PCRE is not compiled with PCRE_UCP support\0"
411 ;
412
413 /* Table to identify digits and hex digits. This is used when compiling
414 patterns. Note that the tables in chartables are dependent on the locale, and
415 may mark arbitrary characters as digits - but the PCRE compiling code expects
416 to handle only 0-9, a-z, and A-Z as digits when compiling. That is why we have
417 a private table here. It costs 256 bytes, but it is a lot faster than doing
418 character value tests (at least in some simple cases I timed), and in some
419 applications one wants PCRE to compile efficiently as well as match
420 efficiently.
421
422 For convenience, we use the same bit definitions as in chartables:
423
424 0x04 decimal digit
425 0x08 hexadecimal digit
426
427 Then we can use ctype_digit and ctype_xdigit in the code. */
428
429 #ifndef EBCDIC
430
431 /* This is the "normal" case, for ASCII systems, and EBCDIC systems running in
432 UTF-8 mode. */
433
434 static const unsigned char digitab[] =
435 {
436 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 0- 7 */
437 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 8- 15 */
438 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 16- 23 */
439 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */
440 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - ' */
441 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ( - / */
442 0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c, /* 0 - 7 */
443 0x0c,0x0c,0x00,0x00,0x00,0x00,0x00,0x00, /* 8 - ? */
444 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* @ - G */
445 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* H - O */
446 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* P - W */
447 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* X - _ */
448 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* ` - g */
449 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* h - o */
450 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* p - w */
451 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* x -127 */
452 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 128-135 */
453 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 136-143 */
454 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 144-151 */
455 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 152-159 */
456 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 160-167 */
457 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 168-175 */
458 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 176-183 */
459 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 184-191 */
460 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 192-199 */
461 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 200-207 */
462 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 208-215 */
463 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 216-223 */
464 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 224-231 */
465 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 232-239 */
466 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 240-247 */
467 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};/* 248-255 */
468
469 #else
470
471 /* This is the "abnormal" case, for EBCDIC systems not running in UTF-8 mode. */
472
473 static const unsigned char digitab[] =
474 {
475 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 0- 7 0 */
476 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 8- 15 */
477 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 16- 23 10 */
478 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */
479 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 32- 39 20 */
480 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 40- 47 */
481 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 48- 55 30 */
482 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 56- 63 */
483 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - 71 40 */
484 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 72- | */
485 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* & - 87 50 */
486 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 88- 95 */
487 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - -103 60 */
488 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 104- ? */
489 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 112-119 70 */
490 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 120- " */
491 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* 128- g 80 */
492 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* h -143 */
493 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 144- p 90 */
494 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* q -159 */
495 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 160- x A0 */
496 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* y -175 */
497 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ^ -183 B0 */
498 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 184-191 */
499 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* { - G C0 */
500 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* H -207 */
501 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* } - P D0 */
502 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* Q -223 */
503 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* \ - X E0 */
504 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* Y -239 */
505 0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c, /* 0 - 7 F0 */
506 0x0c,0x0c,0x00,0x00,0x00,0x00,0x00,0x00};/* 8 -255 */
507
508 static const unsigned char ebcdic_chartab[] = { /* chartable partial dup */
509 0x80,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 0- 7 */
510 0x00,0x00,0x00,0x00,0x01,0x01,0x00,0x00, /* 8- 15 */
511 0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 16- 23 */
512 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */
513 0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 32- 39 */
514 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 40- 47 */
515 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 48- 55 */
516 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 56- 63 */
517 0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - 71 */
518 0x00,0x00,0x00,0x80,0x00,0x80,0x80,0x80, /* 72- | */
519 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* & - 87 */
520 0x00,0x00,0x00,0x80,0x80,0x80,0x00,0x00, /* 88- 95 */
521 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - -103 */
522 0x00,0x00,0x00,0x00,0x00,0x10,0x00,0x80, /* 104- ? */
523 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 112-119 */
524 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 120- " */
525 0x00,0x1a,0x1a,0x1a,0x1a,0x1a,0x1a,0x12, /* 128- g */
526 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* h -143 */
527 0x00,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* 144- p */
528 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* q -159 */
529 0x00,0x00,0x12,0x12,0x12,0x12,0x12,0x12, /* 160- x */
530 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* y -175 */
531 0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ^ -183 */
532 0x00,0x00,0x80,0x00,0x00,0x00,0x00,0x00, /* 184-191 */
533 0x80,0x1a,0x1a,0x1a,0x1a,0x1a,0x1a,0x12, /* { - G */
534 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* H -207 */
535 0x00,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* } - P */
536 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* Q -223 */
537 0x00,0x00,0x12,0x12,0x12,0x12,0x12,0x12, /* \ - X */
538 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* Y -239 */
539 0x1c,0x1c,0x1c,0x1c,0x1c,0x1c,0x1c,0x1c, /* 0 - 7 */
540 0x1c,0x1c,0x00,0x00,0x00,0x00,0x00,0x00};/* 8 -255 */
541 #endif
542
543
544 /* Definition to allow mutual recursion */
545
546 static BOOL
547 compile_regex(int, int, uschar **, const uschar **, int *, BOOL, BOOL, int,
548 int *, int *, branch_chain *, compile_data *, int *);
549
550
551
552 /*************************************************
553 * Find an error text *
554 *************************************************/
555
556 /* The error texts are now all in one long string, to save on relocations. As
557 some of the text is of unknown length, we can't use a table of offsets.
558 Instead, just count through the strings. This is not a performance issue
559 because it happens only when there has been a compilation error.
560
561 Argument: the error number
562 Returns: pointer to the error string
563 */
564
565 static const char *
566 find_error_text(int n)
567 {
568 const char *s = error_texts;
569 for (; n > 0; n--)
570 {
571 while (*s++ != 0) {};
572 if (*s == 0) return "Error text not found (please report)";
573 }
574 return s;
575 }
576
577
578 /*************************************************
579 * Handle escapes *
580 *************************************************/
581
582 /* This function is called when a \ has been encountered. It either returns a
583 positive value for a simple escape such as \n, or a negative value which
584 encodes one of the more complicated things such as \d. A backreference to group
585 n is returned as -(ESC_REF + n); ESC_REF is the highest ESC_xxx macro. When
586 UTF-8 is enabled, a positive value greater than 255 may be returned. On entry,
587 ptr is pointing at the \. On exit, it is on the final character of the escape
588 sequence.
589
590 Arguments:
591 ptrptr points to the pattern position pointer
592 errorcodeptr points to the errorcode variable
593 bracount number of previous extracting brackets
594 options the options bits
595 isclass TRUE if inside a character class
596
597 Returns: zero or positive => a data character
598 negative => a special escape sequence
599 on error, errorcodeptr is set
600 */
601
602 static int
603 check_escape(const uschar **ptrptr, int *errorcodeptr, int bracount,
604 int options, BOOL isclass)
605 {
606 BOOL utf8 = (options & PCRE_UTF8) != 0;
607 const uschar *ptr = *ptrptr + 1;
608 int c, i;
609
610 GETCHARINCTEST(c, ptr); /* Get character value, increment pointer */
611 ptr--; /* Set pointer back to the last byte */
612
613 /* If backslash is at the end of the pattern, it's an error. */
614
615 if (c == 0) *errorcodeptr = ERR1;
616
617 /* Non-alphanumerics are literals. For digits or letters, do an initial lookup
618 in a table. A non-zero result is something that can be returned immediately.
619 Otherwise further processing may be required. */
620
621 #ifndef EBCDIC /* ASCII/UTF-8 coding */
622 else if (c < CHAR_0 || c > CHAR_z) {} /* Not alphanumeric */
623 else if ((i = escapes[c - CHAR_0]) != 0) c = i;
624
625 #else /* EBCDIC coding */
626 else if (c < 'a' || (ebcdic_chartab[c] & 0x0E) == 0) {} /* Not alphanumeric */
627 else if ((i = escapes[c - 0x48]) != 0) c = i;
628 #endif
629
630 /* Escapes that need further processing, or are illegal. */
631
632 else
633 {
634 const uschar *oldptr;
635 BOOL braced, negated;
636
637 switch (c)
638 {
639 /* A number of Perl escapes are not handled by PCRE. We give an explicit
640 error. */
641
642 case CHAR_l:
643 case CHAR_L:
644 case CHAR_u:
645 case CHAR_U:
646 *errorcodeptr = ERR37;
647 break;
648
649 /* \g must be followed by one of a number of specific things:
650
651 (1) A number, either plain or braced. If positive, it is an absolute
652 backreference. If negative, it is a relative backreference. This is a Perl
653 5.10 feature.
654
655 (2) Perl 5.10 also supports \g{name} as a reference to a named group. This
656 is part of Perl's movement towards a unified syntax for back references. As
657 this is synonymous with \k{name}, we fudge it up by pretending it really
658 was \k.
659
660 (3) For Oniguruma compatibility we also support \g followed by a name or a
661 number either in angle brackets or in single quotes. However, these are
662 (possibly recursive) subroutine calls, _not_ backreferences. Just return
663 the -ESC_g code (cf \k). */
664
665 case CHAR_g:
666 if (ptr[1] == CHAR_LESS_THAN_SIGN || ptr[1] == CHAR_APOSTROPHE)
667 {
668 c = -ESC_g;
669 break;
670 }
671
672 /* Handle the Perl-compatible cases */
673
674 if (ptr[1] == CHAR_LEFT_CURLY_BRACKET)
675 {
676 const uschar *p;
677 for (p = ptr+2; *p != 0 && *p != CHAR_RIGHT_CURLY_BRACKET; p++)
678 if (*p != CHAR_MINUS && (digitab[*p] & ctype_digit) == 0) break;
679 if (*p != 0 && *p != CHAR_RIGHT_CURLY_BRACKET)
680 {
681 c = -ESC_k;
682 break;
683 }
684 braced = TRUE;
685 ptr++;
686 }
687 else braced = FALSE;
688
689 if (ptr[1] == CHAR_MINUS)
690 {
691 negated = TRUE;
692 ptr++;
693 }
694 else negated = FALSE;
695
696 c = 0;
697 while ((digitab[ptr[1]] & ctype_digit) != 0)
698 c = c * 10 + *(++ptr) - CHAR_0;
699
700 if (c < 0) /* Integer overflow */
701 {
702 *errorcodeptr = ERR61;
703 break;
704 }
705
706 if (braced && *(++ptr) != CHAR_RIGHT_CURLY_BRACKET)
707 {
708 *errorcodeptr = ERR57;
709 break;
710 }
711
712 if (c == 0)
713 {
714 *errorcodeptr = ERR58;
715 break;
716 }
717
718 if (negated)
719 {
720 if (c > bracount)
721 {
722 *errorcodeptr = ERR15;
723 break;
724 }
725 c = bracount - (c - 1);
726 }
727
728 c = -(ESC_REF + c);
729 break;
730
731 /* The handling of escape sequences consisting of a string of digits
732 starting with one that is not zero is not straightforward. By experiment,
733 the way Perl works seems to be as follows:
734
735 Outside a character class, the digits are read as a decimal number. If the
736 number is less than 10, or if there are that many previous extracting
737 left brackets, then it is a back reference. Otherwise, up to three octal
738 digits are read to form an escaped byte. Thus \123 is likely to be octal
739 123 (cf \0123, which is octal 012 followed by the literal 3). If the octal
740 value is greater than 377, the least significant 8 bits are taken. Inside a
741 character class, \ followed by a digit is always an octal number. */
742
743 case CHAR_1: case CHAR_2: case CHAR_3: case CHAR_4: case CHAR_5:
744 case CHAR_6: case CHAR_7: case CHAR_8: case CHAR_9:
745
746 if (!isclass)
747 {
748 oldptr = ptr;
749 c -= CHAR_0;
750 while ((digitab[ptr[1]] & ctype_digit) != 0)
751 c = c * 10 + *(++ptr) - CHAR_0;
752 if (c < 0) /* Integer overflow */
753 {
754 *errorcodeptr = ERR61;
755 break;
756 }
757 if (c < 10 || c <= bracount)
758 {
759 c = -(ESC_REF + c);
760 break;
761 }
762 ptr = oldptr; /* Put the pointer back and fall through */
763 }
764
765 /* Handle an octal number following \. If the first digit is 8 or 9, Perl
766 generates a binary zero byte and treats the digit as a following literal.
767 Thus we have to pull back the pointer by one. */
768
769 if ((c = *ptr) >= CHAR_8)
770 {
771 ptr--;
772 c = 0;
773 break;
774 }
775
776 /* \0 always starts an octal number, but we may drop through to here with a
777 larger first octal digit. The original code used just to take the least
778 significant 8 bits of octal numbers (I think this is what early Perls used
779 to do). Nowadays we allow for larger numbers in UTF-8 mode, but no more
780 than 3 octal digits. */
781
782 case CHAR_0:
783 c -= CHAR_0;
784 while(i++ < 2 && ptr[1] >= CHAR_0 && ptr[1] <= CHAR_7)
785 c = c * 8 + *(++ptr) - CHAR_0;
786 if (!utf8 && c > 255) *errorcodeptr = ERR51;
787 break;
788
789 /* \x is complicated. \x{ddd} is a character number which can be greater
790 than 0xff in utf8 mode, but only if the ddd are hex digits. If not, { is
791 treated as a data character. */
792
793 case CHAR_x:
794 if (ptr[1] == CHAR_LEFT_CURLY_BRACKET)
795 {
796 const uschar *pt = ptr + 2;
797 int count = 0;
798
799 c = 0;
800 while ((digitab[*pt] & ctype_xdigit) != 0)
801 {
802 register int cc = *pt++;
803 if (c == 0 && cc == CHAR_0) continue; /* Leading zeroes */
804 count++;
805
806 #ifndef EBCDIC /* ASCII/UTF-8 coding */
807 if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */
808 c = (c << 4) + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10));
809 #else /* EBCDIC coding */
810 if (cc >= CHAR_a && cc <= CHAR_z) cc += 64; /* Convert to upper case */
811 c = (c << 4) + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10));
812 #endif
813 }
814
815 if (*pt == CHAR_RIGHT_CURLY_BRACKET)
816 {
817 if (c < 0 || count > (utf8? 8 : 2)) *errorcodeptr = ERR34;
818 ptr = pt;
819 break;
820 }
821
822 /* If the sequence of hex digits does not end with '}', then we don't
823 recognize this construct; fall through to the normal \x handling. */
824 }
825
826 /* Read just a single-byte hex-defined char */
827
828 c = 0;
829 while (i++ < 2 && (digitab[ptr[1]] & ctype_xdigit) != 0)
830 {
831 int cc; /* Some compilers don't like */
832 cc = *(++ptr); /* ++ in initializers */
833 #ifndef EBCDIC /* ASCII/UTF-8 coding */
834 if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */
835 c = c * 16 + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10));
836 #else /* EBCDIC coding */
837 if (cc <= CHAR_z) cc += 64; /* Convert to upper case */
838 c = c * 16 + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10));
839 #endif
840 }
841 break;
842
843 /* For \c, a following letter is upper-cased; then the 0x40 bit is flipped.
844 This coding is ASCII-specific, but then the whole concept of \cx is
845 ASCII-specific. (However, an EBCDIC equivalent has now been added.) */
846
847 case CHAR_c:
848 c = *(++ptr);
849 if (c == 0)
850 {
851 *errorcodeptr = ERR2;
852 break;
853 }
854
855 #ifndef EBCDIC /* ASCII/UTF-8 coding */
856 if (c >= CHAR_a && c <= CHAR_z) c -= 32;
857 c ^= 0x40;
858 #else /* EBCDIC coding */
859 if (c >= CHAR_a && c <= CHAR_z) c += 64;
860 c ^= 0xC0;
861 #endif
862 break;
863
864 /* PCRE_EXTRA enables extensions to Perl in the matter of escapes. Any
865 other alphanumeric following \ is an error if PCRE_EXTRA was set;
866 otherwise, for Perl compatibility, it is a literal. This code looks a bit
867 odd, but there used to be some cases other than the default, and there may
868 be again in future, so I haven't "optimized" it. */
869
870 default:
871 if ((options & PCRE_EXTRA) != 0) switch(c)
872 {
873 default:
874 *errorcodeptr = ERR3;
875 break;
876 }
877 break;
878 }
879 }
880
881 /* Perl supports \N{name} for character names, as well as plain \N for "not
882 newline". PCRE does not support \N{name}. */
883
884 if (c == -ESC_N && ptr[1] == CHAR_LEFT_CURLY_BRACKET)
885 *errorcodeptr = ERR37;
886
887 /* If PCRE_UCP is set, we change the values for \d etc. */
888
889 if ((options & PCRE_UCP) != 0 && c <= -ESC_D && c >= -ESC_w)
890 c -= (ESC_DU - ESC_D);
891
892 /* Set the pointer to the final character before returning. */
893
894 *ptrptr = ptr;
895 return c;
896 }
897
898
899
900 #ifdef SUPPORT_UCP
901 /*************************************************
902 * Handle \P and \p *
903 *************************************************/
904
905 /* This function is called after \P or \p has been encountered, provided that
906 PCRE is compiled with support for Unicode properties. On entry, ptrptr is
907 pointing at the P or p. On exit, it is pointing at the final character of the
908 escape sequence.
909
910 Argument:
911 ptrptr points to the pattern position pointer
912 negptr points to a boolean that is set TRUE for negation else FALSE
913 dptr points to an int that is set to the detailed property value
914 errorcodeptr points to the error code variable
915
916 Returns: type value from ucp_type_table, or -1 for an invalid type
917 */
918
919 static int
920 get_ucp(const uschar **ptrptr, BOOL *negptr, int *dptr, int *errorcodeptr)
921 {
922 int c, i, bot, top;
923 const uschar *ptr = *ptrptr;
924 char name[32];
925
926 c = *(++ptr);
927 if (c == 0) goto ERROR_RETURN;
928
929 *negptr = FALSE;
930
931 /* \P or \p can be followed by a name in {}, optionally preceded by ^ for
932 negation. */
933
934 if (c == CHAR_LEFT_CURLY_BRACKET)
935 {
936 if (ptr[1] == CHAR_CIRCUMFLEX_ACCENT)
937 {
938 *negptr = TRUE;
939 ptr++;
940 }
941 for (i = 0; i < (int)sizeof(name) - 1; i++)
942 {
943 c = *(++ptr);
944 if (c == 0) goto ERROR_RETURN;
945 if (c == CHAR_RIGHT_CURLY_BRACKET) break;
946 name[i] = c;
947 }
948 if (c != CHAR_RIGHT_CURLY_BRACKET) goto ERROR_RETURN;
949 name[i] = 0;
950 }
951
952 /* Otherwise there is just one following character */
953
954 else
955 {
956 name[0] = c;
957 name[1] = 0;
958 }
959
960 *ptrptr = ptr;
961
962 /* Search for a recognized property name using binary chop */
963
964 bot = 0;
965 top = _pcre_utt_size;
966
967 while (bot < top)
968 {
969 i = (bot + top) >> 1;
970 c = strcmp(name, _pcre_utt_names + _pcre_utt[i].name_offset);
971 if (c == 0)
972 {
973 *dptr = _pcre_utt[i].value;
974 return _pcre_utt[i].type;
975 }
976 if (c > 0) bot = i + 1; else top = i;
977 }
978
979 *errorcodeptr = ERR47;
980 *ptrptr = ptr;
981 return -1;
982
983 ERROR_RETURN:
984 *errorcodeptr = ERR46;
985 *ptrptr = ptr;
986 return -1;
987 }
988 #endif
989
990
991
992
993 /*************************************************
994 * Check for counted repeat *
995 *************************************************/
996
997 /* This function is called when a '{' is encountered in a place where it might
998 start a quantifier. It looks ahead to see if it really is a quantifier or not.
999 It is only a quantifier if it is one of the forms {ddd} {ddd,} or {ddd,ddd}
1000 where the ddds are digits.
1001
1002 Arguments:
1003 p pointer to the first char after '{'
1004
1005 Returns: TRUE or FALSE
1006 */
1007
1008 static BOOL
1009 is_counted_repeat(const uschar *p)
1010 {
1011 if ((digitab[*p++] & ctype_digit) == 0) return FALSE;
1012 while ((digitab[*p] & ctype_digit) != 0) p++;
1013 if (*p == CHAR_RIGHT_CURLY_BRACKET) return TRUE;
1014
1015 if (*p++ != CHAR_COMMA) return FALSE;
1016 if (*p == CHAR_RIGHT_CURLY_BRACKET) return TRUE;
1017
1018 if ((digitab[*p++] & ctype_digit) == 0) return FALSE;
1019 while ((digitab[*p] & ctype_digit) != 0) p++;
1020
1021 return (*p == CHAR_RIGHT_CURLY_BRACKET);
1022 }
1023
1024
1025
1026 /*************************************************
1027 * Read repeat counts *
1028 *************************************************/
1029
1030 /* Read an item of the form {n,m} and return the values. This is called only
1031 after is_counted_repeat() has confirmed that a repeat-count quantifier exists,
1032 so the syntax is guaranteed to be correct, but we need to check the values.
1033
1034 Arguments:
1035 p pointer to first char after '{'
1036 minp pointer to int for min
1037 maxp pointer to int for max
1038 returned as -1 if no max
1039 errorcodeptr points to error code variable
1040
1041 Returns: pointer to '}' on success;
1042 current ptr on error, with errorcodeptr set non-zero
1043 */
1044
1045 static const uschar *
1046 read_repeat_counts(const uschar *p, int *minp, int *maxp, int *errorcodeptr)
1047 {
1048 int min = 0;
1049 int max = -1;
1050
1051 /* Read the minimum value and do a paranoid check: a negative value indicates
1052 an integer overflow. */
1053
1054 while ((digitab[*p] & ctype_digit) != 0) min = min * 10 + *p++ - CHAR_0;
1055 if (min < 0 || min > 65535)
1056 {
1057 *errorcodeptr = ERR5;
1058 return p;
1059 }
1060
1061 /* Read the maximum value if there is one, and again do a paranoid on its size.
1062 Also, max must not be less than min. */
1063
1064 if (*p == CHAR_RIGHT_CURLY_BRACKET) max = min; else
1065 {
1066 if (*(++p) != CHAR_RIGHT_CURLY_BRACKET)
1067 {
1068 max = 0;
1069 while((digitab[*p] & ctype_digit) != 0) max = max * 10 + *p++ - CHAR_0;
1070 if (max < 0 || max > 65535)
1071 {
1072 *errorcodeptr = ERR5;
1073 return p;
1074 }
1075 if (max < min)
1076 {
1077 *errorcodeptr = ERR4;
1078 return p;
1079 }
1080 }
1081 }
1082
1083 /* Fill in the required variables, and pass back the pointer to the terminating
1084 '}'. */
1085
1086 *minp = min;
1087 *maxp = max;
1088 return p;
1089 }
1090
1091
1092
1093 /*************************************************
1094 * Subroutine for finding forward reference *
1095 *************************************************/
1096
1097 /* This recursive function is called only from find_parens() below. The
1098 top-level call starts at the beginning of the pattern. All other calls must
1099 start at a parenthesis. It scans along a pattern's text looking for capturing
1100 subpatterns, and counting them. If it finds a named pattern that matches the
1101 name it is given, it returns its number. Alternatively, if the name is NULL, it
1102 returns when it reaches a given numbered subpattern. We know that if (?P< is
1103 encountered, the name will be terminated by '>' because that is checked in the
1104 first pass. Recursion is used to keep track of subpatterns that reset the
1105 capturing group numbers - the (?| feature.
1106
1107 Arguments:
1108 ptrptr address of the current character pointer (updated)
1109 cd compile background data
1110 name name to seek, or NULL if seeking a numbered subpattern
1111 lorn name length, or subpattern number if name is NULL
1112 xmode TRUE if we are in /x mode
1113 count pointer to the current capturing subpattern number (updated)
1114
1115 Returns: the number of the named subpattern, or -1 if not found
1116 */
1117
1118 static int
1119 find_parens_sub(uschar **ptrptr, compile_data *cd, const uschar *name, int lorn,
1120 BOOL xmode, int *count)
1121 {
1122 uschar *ptr = *ptrptr;
1123 int start_count = *count;
1124 int hwm_count = start_count;
1125 BOOL dup_parens = FALSE;
1126
1127 /* If the first character is a parenthesis, check on the type of group we are
1128 dealing with. The very first call may not start with a parenthesis. */
1129
1130 if (ptr[0] == CHAR_LEFT_PARENTHESIS)
1131 {
1132 /* Handle specials such as (*SKIP) or (*UTF8) etc. */
1133
1134 if (ptr[1] == CHAR_ASTERISK) ptr += 2;
1135
1136 /* Handle a normal, unnamed capturing parenthesis. */
1137
1138 else if (ptr[1] != CHAR_QUESTION_MARK)
1139 {
1140 *count += 1;
1141 if (name == NULL && *count == lorn) return *count;
1142 ptr++;
1143 }
1144
1145 /* All cases now have (? at the start. Remember when we are in a group
1146 where the parenthesis numbers are duplicated. */
1147
1148 else if (ptr[2] == CHAR_VERTICAL_LINE)
1149 {
1150 ptr += 3;
1151 dup_parens = TRUE;
1152 }
1153
1154 /* Handle comments; all characters are allowed until a ket is reached. */
1155
1156 else if (ptr[2] == CHAR_NUMBER_SIGN)
1157 {
1158 for (ptr += 3; *ptr != 0; ptr++) if (*ptr == CHAR_RIGHT_PARENTHESIS) break;
1159 goto FAIL_EXIT;
1160 }
1161
1162 /* Handle a condition. If it is an assertion, just carry on so that it
1163 is processed as normal. If not, skip to the closing parenthesis of the
1164 condition (there can't be any nested parens). */
1165
1166 else if (ptr[2] == CHAR_LEFT_PARENTHESIS)
1167 {
1168 ptr += 2;
1169 if (ptr[1] != CHAR_QUESTION_MARK)
1170 {
1171 while (*ptr != 0 && *ptr != CHAR_RIGHT_PARENTHESIS) ptr++;
1172 if (*ptr != 0) ptr++;
1173 }
1174 }
1175
1176 /* Start with (? but not a condition. */
1177
1178 else
1179 {
1180 ptr += 2;
1181 if (*ptr == CHAR_P) ptr++; /* Allow optional P */
1182
1183 /* We have to disambiguate (?<! and (?<= from (?<name> for named groups */
1184
1185 if ((*ptr == CHAR_LESS_THAN_SIGN && ptr[1] != CHAR_EXCLAMATION_MARK &&
1186 ptr[1] != CHAR_EQUALS_SIGN) || *ptr == CHAR_APOSTROPHE)
1187 {
1188 int term;
1189 const uschar *thisname;
1190 *count += 1;
1191 if (name == NULL && *count == lorn) return *count;
1192 term = *ptr++;
1193 if (term == CHAR_LESS_THAN_SIGN) term = CHAR_GREATER_THAN_SIGN;
1194 thisname = ptr;
1195 while (*ptr != term) ptr++;
1196 if (name != NULL && lorn == ptr - thisname &&
1197 strncmp((const char *)name, (const char *)thisname, lorn) == 0)
1198 return *count;
1199 term++;
1200 }
1201 }
1202 }
1203
1204 /* Past any initial parenthesis handling, scan for parentheses or vertical
1205 bars. */
1206
1207 for (; *ptr != 0; ptr++)
1208 {
1209 /* Skip over backslashed characters and also entire \Q...\E */
1210
1211 if (*ptr == CHAR_BACKSLASH)
1212 {
1213 if (*(++ptr) == 0) goto FAIL_EXIT;
1214 if (*ptr == CHAR_Q) for (;;)
1215 {
1216 while (*(++ptr) != 0 && *ptr != CHAR_BACKSLASH) {};
1217 if (*ptr == 0) goto FAIL_EXIT;
1218 if (*(++ptr) == CHAR_E) break;
1219 }
1220 continue;
1221 }
1222
1223 /* Skip over character classes; this logic must be similar to the way they
1224 are handled for real. If the first character is '^', skip it. Also, if the
1225 first few characters (either before or after ^) are \Q\E or \E we skip them
1226 too. This makes for compatibility with Perl. Note the use of STR macros to
1227 encode "Q\\E" so that it works in UTF-8 on EBCDIC platforms. */
1228
1229 if (*ptr == CHAR_LEFT_SQUARE_BRACKET)
1230 {
1231 BOOL negate_class = FALSE;
1232 for (;;)
1233 {
1234 if (ptr[1] == CHAR_BACKSLASH)
1235 {
1236 if (ptr[2] == CHAR_E)
1237 ptr+= 2;
1238 else if (strncmp((const char *)ptr+2,
1239 STR_Q STR_BACKSLASH STR_E, 3) == 0)
1240 ptr += 4;
1241 else
1242 break;
1243 }
1244 else if (!negate_class && ptr[1] == CHAR_CIRCUMFLEX_ACCENT)
1245 {
1246 negate_class = TRUE;
1247 ptr++;
1248 }
1249 else break;
1250 }
1251
1252 /* If the next character is ']', it is a data character that must be
1253 skipped, except in JavaScript compatibility mode. */
1254
1255 if (ptr[1] == CHAR_RIGHT_SQUARE_BRACKET &&
1256 (cd->external_options & PCRE_JAVASCRIPT_COMPAT) == 0)
1257 ptr++;
1258
1259 while (*(++ptr) != CHAR_RIGHT_SQUARE_BRACKET)
1260 {
1261 if (*ptr == 0) return -1;
1262 if (*ptr == CHAR_BACKSLASH)
1263 {
1264 if (*(++ptr) == 0) goto FAIL_EXIT;
1265 if (*ptr == CHAR_Q) for (;;)
1266 {
1267 while (*(++ptr) != 0 && *ptr != CHAR_BACKSLASH) {};
1268 if (*ptr == 0) goto FAIL_EXIT;
1269 if (*(++ptr) == CHAR_E) break;
1270 }
1271 continue;
1272 }
1273 }
1274 continue;
1275 }
1276
1277 /* Skip comments in /x mode */
1278
1279 if (xmode && *ptr == CHAR_NUMBER_SIGN)
1280 {
1281 while (*(++ptr) != 0 && *ptr != CHAR_NL) {};
1282 if (*ptr == 0) goto FAIL_EXIT;
1283 continue;
1284 }
1285
1286 /* Check for the special metacharacters */
1287
1288 if (*ptr == CHAR_LEFT_PARENTHESIS)
1289 {
1290 int rc = find_parens_sub(&ptr, cd, name, lorn, xmode, count);
1291 if (rc > 0) return rc;
1292 if (*ptr == 0) goto FAIL_EXIT;
1293 }
1294
1295 else if (*ptr == CHAR_RIGHT_PARENTHESIS)
1296 {
1297 if (dup_parens && *count < hwm_count) *count = hwm_count;
1298 goto FAIL_EXIT;
1299 }
1300
1301 else if (*ptr == CHAR_VERTICAL_LINE && dup_parens)
1302 {
1303 if (*count > hwm_count) hwm_count = *count;
1304 *count = start_count;
1305 }
1306 }
1307
1308 FAIL_EXIT:
1309 *ptrptr = ptr;
1310 return -1;
1311 }
1312
1313
1314
1315
1316 /*************************************************
1317 * Find forward referenced subpattern *
1318 *************************************************/
1319
1320 /* This function scans along a pattern's text looking for capturing
1321 subpatterns, and counting them. If it finds a named pattern that matches the
1322 name it is given, it returns its number. Alternatively, if the name is NULL, it
1323 returns when it reaches a given numbered subpattern. This is used for forward
1324 references to subpatterns. We used to be able to start this scan from the
1325 current compiling point, using the current count value from cd->bracount, and
1326 do it all in a single loop, but the addition of the possibility of duplicate
1327 subpattern numbers means that we have to scan from the very start, in order to
1328 take account of such duplicates, and to use a recursive function to keep track
1329 of the different types of group.
1330
1331 Arguments:
1332 cd compile background data
1333 name name to seek, or NULL if seeking a numbered subpattern
1334 lorn name length, or subpattern number if name is NULL
1335 xmode TRUE if we are in /x mode
1336
1337 Returns: the number of the found subpattern, or -1 if not found
1338 */
1339
1340 static int
1341 find_parens(compile_data *cd, const uschar *name, int lorn, BOOL xmode)
1342 {
1343 uschar *ptr = (uschar *)cd->start_pattern;
1344 int count = 0;
1345 int rc;
1346
1347 /* If the pattern does not start with an opening parenthesis, the first call
1348 to find_parens_sub() will scan right to the end (if necessary). However, if it
1349 does start with a parenthesis, find_parens_sub() will return when it hits the
1350 matching closing parens. That is why we have to have a loop. */
1351
1352 for (;;)
1353 {
1354 rc = find_parens_sub(&ptr, cd, name, lorn, xmode, &count);
1355 if (rc > 0 || *ptr++ == 0) break;
1356 }
1357
1358 return rc;
1359 }
1360
1361
1362
1363
1364 /*************************************************
1365 * Find first significant op code *
1366 *************************************************/
1367
1368 /* This is called by several functions that scan a compiled expression looking
1369 for a fixed first character, or an anchoring op code etc. It skips over things
1370 that do not influence this. For some calls, a change of option is important.
1371 For some calls, it makes sense to skip negative forward and all backward
1372 assertions, and also the \b assertion; for others it does not.
1373
1374 Arguments:
1375 code pointer to the start of the group
1376 options pointer to external options
1377 optbit the option bit whose changing is significant, or
1378 zero if none are
1379 skipassert TRUE if certain assertions are to be skipped
1380
1381 Returns: pointer to the first significant opcode
1382 */
1383
1384 static const uschar*
1385 first_significant_code(const uschar *code, int *options, int optbit,
1386 BOOL skipassert)
1387 {
1388 for (;;)
1389 {
1390 switch ((int)*code)
1391 {
1392 case OP_OPT:
1393 if (optbit > 0 && ((int)code[1] & optbit) != (*options & optbit))
1394 *options = (int)code[1];
1395 code += 2;
1396 break;
1397
1398 case OP_ASSERT_NOT:
1399 case OP_ASSERTBACK:
1400 case OP_ASSERTBACK_NOT:
1401 if (!skipassert) return code;
1402 do code += GET(code, 1); while (*code == OP_ALT);
1403 code += _pcre_OP_lengths[*code];
1404 break;
1405
1406 case OP_WORD_BOUNDARY:
1407 case OP_NOT_WORD_BOUNDARY:
1408 if (!skipassert) return code;
1409 /* Fall through */
1410
1411 case OP_CALLOUT:
1412 case OP_CREF:
1413 case OP_NCREF:
1414 case OP_RREF:
1415 case OP_NRREF:
1416 case OP_DEF:
1417 code += _pcre_OP_lengths[*code];
1418 break;
1419
1420 default:
1421 return code;
1422 }
1423 }
1424 /* Control never reaches here */
1425 }
1426
1427
1428
1429
1430 /*************************************************
1431 * Find the fixed length of a branch *
1432 *************************************************/
1433
1434 /* Scan a branch and compute the fixed length of subject that will match it,
1435 if the length is fixed. This is needed for dealing with backward assertions.
1436 In UTF8 mode, the result is in characters rather than bytes. The branch is
1437 temporarily terminated with OP_END when this function is called.
1438
1439 This function is called when a backward assertion is encountered, so that if it
1440 fails, the error message can point to the correct place in the pattern.
1441 However, we cannot do this when the assertion contains subroutine calls,
1442 because they can be forward references. We solve this by remembering this case
1443 and doing the check at the end; a flag specifies which mode we are running in.
1444
1445 Arguments:
1446 code points to the start of the pattern (the bracket)
1447 options the compiling options
1448 atend TRUE if called when the pattern is complete
1449 cd the "compile data" structure
1450
1451 Returns: the fixed length,
1452 or -1 if there is no fixed length,
1453 or -2 if \C was encountered
1454 or -3 if an OP_RECURSE item was encountered and atend is FALSE
1455 */
1456
1457 static int
1458 find_fixedlength(uschar *code, int options, BOOL atend, compile_data *cd)
1459 {
1460 int length = -1;
1461
1462 register int branchlength = 0;
1463 register uschar *cc = code + 1 + LINK_SIZE;
1464
1465 /* Scan along the opcodes for this branch. If we get to the end of the
1466 branch, check the length against that of the other branches. */
1467
1468 for (;;)
1469 {
1470 int d;
1471 uschar *ce, *cs;
1472 register int op = *cc;
1473 switch (op)
1474 {
1475 case OP_CBRA:
1476 case OP_BRA:
1477 case OP_ONCE:
1478 case OP_COND:
1479 d = find_fixedlength(cc + ((op == OP_CBRA)? 2:0), options, atend, cd);
1480 if (d < 0) return d;
1481 branchlength += d;
1482 do cc += GET(cc, 1); while (*cc == OP_ALT);
1483 cc += 1 + LINK_SIZE;
1484 break;
1485
1486 /* Reached end of a branch; if it's a ket it is the end of a nested
1487 call. If it's ALT it is an alternation in a nested call. If it is
1488 END it's the end of the outer call. All can be handled by the same code. */
1489
1490 case OP_ALT:
1491 case OP_KET:
1492 case OP_KETRMAX:
1493 case OP_KETRMIN:
1494 case OP_END:
1495 if (length < 0) length = branchlength;
1496 else if (length != branchlength) return -1;
1497 if (*cc != OP_ALT) return length;
1498 cc += 1 + LINK_SIZE;
1499 branchlength = 0;
1500 break;
1501
1502 /* A true recursion implies not fixed length, but a subroutine call may
1503 be OK. If the subroutine is a forward reference, we can't deal with
1504 it until the end of the pattern, so return -3. */
1505
1506 case OP_RECURSE:
1507 if (!atend) return -3;
1508 cs = ce = (uschar *)cd->start_code + GET(cc, 1); /* Start subpattern */
1509 do ce += GET(ce, 1); while (*ce == OP_ALT); /* End subpattern */
1510 if (cc > cs && cc < ce) return -1; /* Recursion */
1511 d = find_fixedlength(cs + 2, options, atend, cd);
1512 if (d < 0) return d;
1513 branchlength += d;
1514 cc += 1 + LINK_SIZE;
1515 break;
1516
1517 /* Skip over assertive subpatterns */
1518
1519 case OP_ASSERT:
1520 case OP_ASSERT_NOT:
1521 case OP_ASSERTBACK:
1522 case OP_ASSERTBACK_NOT:
1523 do cc += GET(cc, 1); while (*cc == OP_ALT);
1524 /* Fall through */
1525
1526 /* Skip over things that don't match chars */
1527
1528 case OP_REVERSE:
1529 case OP_CREF:
1530 case OP_NCREF:
1531 case OP_RREF:
1532 case OP_NRREF:
1533 case OP_DEF:
1534 case OP_OPT:
1535 case OP_CALLOUT:
1536 case OP_SOD:
1537 case OP_SOM:
1538 case OP_SET_SOM:
1539 case OP_EOD:
1540 case OP_EODN:
1541 case OP_CIRC:
1542 case OP_DOLL:
1543 case OP_NOT_WORD_BOUNDARY:
1544 case OP_WORD_BOUNDARY:
1545 cc += _pcre_OP_lengths[*cc];
1546 break;
1547
1548 /* Handle literal characters */
1549
1550 case OP_CHAR:
1551 case OP_CHARNC:
1552 case OP_NOT:
1553 branchlength++;
1554 cc += 2;
1555 #ifdef SUPPORT_UTF8
1556 if ((options & PCRE_UTF8) != 0 && cc[-1] >= 0xc0)
1557 cc += _pcre_utf8_table4[cc[-1] & 0x3f];
1558 #endif
1559 break;
1560
1561 /* Handle exact repetitions. The count is already in characters, but we
1562 need to skip over a multibyte character in UTF8 mode. */
1563
1564 case OP_EXACT:
1565 branchlength += GET2(cc,1);
1566 cc += 4;
1567 #ifdef SUPPORT_UTF8
1568 if ((options & PCRE_UTF8) != 0 && cc[-1] >= 0xc0)
1569 cc += _pcre_utf8_table4[cc[-1] & 0x3f];
1570 #endif
1571 break;
1572
1573 case OP_TYPEEXACT:
1574 branchlength += GET2(cc,1);
1575 if (cc[3] == OP_PROP || cc[3] == OP_NOTPROP) cc += 2;
1576 cc += 4;
1577 break;
1578
1579 /* Handle single-char matchers */
1580
1581 case OP_PROP:
1582 case OP_NOTPROP:
1583 cc += 2;
1584 /* Fall through */
1585
1586 case OP_NOT_DIGIT:
1587 case OP_DIGIT:
1588 case OP_NOT_WHITESPACE:
1589 case OP_WHITESPACE:
1590 case OP_NOT_WORDCHAR:
1591 case OP_WORDCHAR:
1592 case OP_ANY:
1593 case OP_ALLANY:
1594 branchlength++;
1595 cc++;
1596 break;
1597
1598 /* The single-byte matcher isn't allowed */
1599
1600 case OP_ANYBYTE:
1601 return -2;
1602
1603 /* Check a class for variable quantification */
1604
1605 #ifdef SUPPORT_UTF8
1606 case OP_XCLASS:
1607 cc += GET(cc, 1) - 33;
1608 /* Fall through */
1609 #endif
1610
1611 case OP_CLASS:
1612 case OP_NCLASS:
1613 cc += 33;
1614
1615 switch (*cc)
1616 {
1617 case OP_CRSTAR:
1618 case OP_CRMINSTAR:
1619 case OP_CRQUERY:
1620 case OP_CRMINQUERY:
1621 return -1;
1622
1623 case OP_CRRANGE:
1624 case OP_CRMINRANGE:
1625 if (GET2(cc,1) != GET2(cc,3)) return -1;
1626 branchlength += GET2(cc,1);
1627 cc += 5;
1628 break;
1629
1630 default:
1631 branchlength++;
1632 }
1633 break;
1634
1635 /* Anything else is variable length */
1636
1637 default:
1638 return -1;
1639 }
1640 }
1641 /* Control never gets here */
1642 }
1643
1644
1645
1646
1647 /*************************************************
1648 * Scan compiled regex for specific bracket *
1649 *************************************************/
1650
1651 /* This little function scans through a compiled pattern until it finds a
1652 capturing bracket with the given number, or, if the number is negative, an
1653 instance of OP_REVERSE for a lookbehind. The function is global in the C sense
1654 so that it can be called from pcre_study() when finding the minimum matching
1655 length.
1656
1657 Arguments:
1658 code points to start of expression
1659 utf8 TRUE in UTF-8 mode
1660 number the required bracket number or negative to find a lookbehind
1661
1662 Returns: pointer to the opcode for the bracket, or NULL if not found
1663 */
1664
1665 const uschar *
1666 _pcre_find_bracket(const uschar *code, BOOL utf8, int number)
1667 {
1668 for (;;)
1669 {
1670 register int c = *code;
1671 if (c == OP_END) return NULL;
1672
1673 /* XCLASS is used for classes that cannot be represented just by a bit
1674 map. This includes negated single high-valued characters. The length in
1675 the table is zero; the actual length is stored in the compiled code. */
1676
1677 if (c == OP_XCLASS) code += GET(code, 1);
1678
1679 /* Handle recursion */
1680
1681 else if (c == OP_REVERSE)
1682 {
1683 if (number < 0) return (uschar *)code;
1684 code += _pcre_OP_lengths[c];
1685 }
1686
1687 /* Handle capturing bracket */
1688
1689 else if (c == OP_CBRA)
1690 {
1691 int n = GET2(code, 1+LINK_SIZE);
1692 if (n == number) return (uschar *)code;
1693 code += _pcre_OP_lengths[c];
1694 }
1695
1696 /* Otherwise, we can get the item's length from the table, except that for
1697 repeated character types, we have to test for \p and \P, which have an extra
1698 two bytes of parameters, and for MARK/PRUNE/SKIP/THEN with an argument, we
1699 must add in its length. */
1700
1701 else
1702 {
1703 switch(c)
1704 {
1705 case OP_TYPESTAR:
1706 case OP_TYPEMINSTAR:
1707 case OP_TYPEPLUS:
1708 case OP_TYPEMINPLUS:
1709 case OP_TYPEQUERY:
1710 case OP_TYPEMINQUERY:
1711 case OP_TYPEPOSSTAR:
1712 case OP_TYPEPOSPLUS:
1713 case OP_TYPEPOSQUERY:
1714 if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2;
1715 break;
1716
1717 case OP_TYPEUPTO:
1718 case OP_TYPEMINUPTO:
1719 case OP_TYPEEXACT:
1720 case OP_TYPEPOSUPTO:
1721 if (code[3] == OP_PROP || code[3] == OP_NOTPROP) code += 2;
1722 break;
1723
1724 case OP_MARK:
1725 case OP_PRUNE_ARG:
1726 case OP_SKIP_ARG:
1727 case OP_THEN_ARG:
1728 code += code[1];
1729 break;
1730 }
1731
1732 /* Add in the fixed length from the table */
1733
1734 code += _pcre_OP_lengths[c];
1735
1736 /* In UTF-8 mode, opcodes that are followed by a character may be followed by
1737 a multi-byte character. The length in the table is a minimum, so we have to
1738 arrange to skip the extra bytes. */
1739
1740 #ifdef SUPPORT_UTF8
1741 if (utf8) switch(c)
1742 {
1743 case OP_CHAR:
1744 case OP_CHARNC:
1745 case OP_EXACT:
1746 case OP_UPTO:
1747 case OP_MINUPTO:
1748 case OP_POSUPTO:
1749 case OP_STAR:
1750 case OP_MINSTAR:
1751 case OP_POSSTAR:
1752 case OP_PLUS:
1753 case OP_MINPLUS:
1754 case OP_POSPLUS:
1755 case OP_QUERY:
1756 case OP_MINQUERY:
1757 case OP_POSQUERY:
1758 if (code[-1] >= 0xc0) code += _pcre_utf8_table4[code[-1] & 0x3f];
1759 break;
1760 }
1761 #else
1762 (void)(utf8); /* Keep compiler happy by referencing function argument */
1763 #endif
1764 }
1765 }
1766 }
1767
1768
1769
1770 /*************************************************
1771 * Scan compiled regex for recursion reference *
1772 *************************************************/
1773
1774 /* This little function scans through a compiled pattern until it finds an
1775 instance of OP_RECURSE.
1776
1777 Arguments:
1778 code points to start of expression
1779 utf8 TRUE in UTF-8 mode
1780
1781 Returns: pointer to the opcode for OP_RECURSE, or NULL if not found
1782 */
1783
1784 static const uschar *
1785 find_recurse(const uschar *code, BOOL utf8)
1786 {
1787 for (;;)
1788 {
1789 register int c = *code;
1790 if (c == OP_END) return NULL;
1791 if (c == OP_RECURSE) return code;
1792
1793 /* XCLASS is used for classes that cannot be represented just by a bit
1794 map. This includes negated single high-valued characters. The length in
1795 the table is zero; the actual length is stored in the compiled code. */
1796
1797 if (c == OP_XCLASS) code += GET(code, 1);
1798
1799 /* Otherwise, we can get the item's length from the table, except that for
1800 repeated character types, we have to test for \p and \P, which have an extra
1801 two bytes of parameters, and for MARK/PRUNE/SKIP/THEN with an argument, we
1802 must add in its length. */
1803
1804 else
1805 {
1806 switch(c)
1807 {
1808 case OP_TYPESTAR:
1809 case OP_TYPEMINSTAR:
1810 case OP_TYPEPLUS:
1811 case OP_TYPEMINPLUS:
1812 case OP_TYPEQUERY:
1813 case OP_TYPEMINQUERY:
1814 case OP_TYPEPOSSTAR:
1815 case OP_TYPEPOSPLUS:
1816 case OP_TYPEPOSQUERY:
1817 if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2;
1818 break;
1819
1820 case OP_TYPEPOSUPTO:
1821 case OP_TYPEUPTO:
1822 case OP_TYPEMINUPTO:
1823 case OP_TYPEEXACT:
1824 if (code[3] == OP_PROP || code[3] == OP_NOTPROP) code += 2;
1825 break;
1826
1827 case OP_MARK:
1828 case OP_PRUNE_ARG:
1829 case OP_SKIP_ARG:
1830 case OP_THEN_ARG:
1831 code += code[1];
1832 break;
1833 }
1834
1835 /* Add in the fixed length from the table */
1836
1837 code += _pcre_OP_lengths[c];
1838
1839 /* In UTF-8 mode, opcodes that are followed by a character may be followed
1840 by a multi-byte character. The length in the table is a minimum, so we have
1841 to arrange to skip the extra bytes. */
1842
1843 #ifdef SUPPORT_UTF8
1844 if (utf8) switch(c)
1845 {
1846 case OP_CHAR:
1847 case OP_CHARNC:
1848 case OP_EXACT:
1849 case OP_UPTO:
1850 case OP_MINUPTO:
1851 case OP_POSUPTO:
1852 case OP_STAR:
1853 case OP_MINSTAR:
1854 case OP_POSSTAR:
1855 case OP_PLUS:
1856 case OP_MINPLUS:
1857 case OP_POSPLUS:
1858 case OP_QUERY:
1859 case OP_MINQUERY:
1860 case OP_POSQUERY:
1861 if (code[-1] >= 0xc0) code += _pcre_utf8_table4[code[-1] & 0x3f];
1862 break;
1863 }
1864 #else
1865 (void)(utf8); /* Keep compiler happy by referencing function argument */
1866 #endif
1867 }
1868 }
1869 }
1870
1871
1872
1873 /*************************************************
1874 * Scan compiled branch for non-emptiness *
1875 *************************************************/
1876
1877 /* This function scans through a branch of a compiled pattern to see whether it
1878 can match the empty string or not. It is called from could_be_empty()
1879 below and from compile_branch() when checking for an unlimited repeat of a
1880 group that can match nothing. Note that first_significant_code() skips over
1881 backward and negative forward assertions when its final argument is TRUE. If we
1882 hit an unclosed bracket, we return "empty" - this means we've struck an inner
1883 bracket whose current branch will already have been scanned.
1884
1885 Arguments:
1886 code points to start of search
1887 endcode points to where to stop
1888 utf8 TRUE if in UTF8 mode
1889 cd contains pointers to tables etc.
1890
1891 Returns: TRUE if what is matched could be empty
1892 */
1893
1894 static BOOL
1895 could_be_empty_branch(const uschar *code, const uschar *endcode, BOOL utf8,
1896 compile_data *cd)
1897 {
1898 register int c;
1899 for (code = first_significant_code(code + _pcre_OP_lengths[*code], NULL, 0, TRUE);
1900 code < endcode;
1901 code = first_significant_code(code + _pcre_OP_lengths[c], NULL, 0, TRUE))
1902 {
1903 const uschar *ccode;
1904
1905 c = *code;
1906
1907 /* Skip over forward assertions; the other assertions are skipped by
1908 first_significant_code() with a TRUE final argument. */
1909
1910 if (c == OP_ASSERT)
1911 {
1912 do code += GET(code, 1); while (*code == OP_ALT);
1913 c = *code;
1914 continue;
1915 }
1916
1917 /* Groups with zero repeats can of course be empty; skip them. */
1918
1919 if (c == OP_BRAZERO || c == OP_BRAMINZERO || c == OP_SKIPZERO)
1920 {
1921 code += _pcre_OP_lengths[c];
1922 do code += GET(code, 1); while (*code == OP_ALT);
1923 c = *code;
1924 continue;
1925 }
1926
1927 /* For a recursion/subroutine call, if its end has been reached, which
1928 implies a subroutine call, we can scan it. */
1929
1930 if (c == OP_RECURSE)
1931 {
1932 BOOL empty_branch = FALSE;
1933 const uschar *scode = cd->start_code + GET(code, 1);
1934 if (GET(scode, 1) == 0) return TRUE; /* Unclosed */
1935 do
1936 {
1937 if (could_be_empty_branch(scode, endcode, utf8, cd))
1938 {
1939 empty_branch = TRUE;
1940 break;
1941 }
1942 scode += GET(scode, 1);
1943 }
1944 while (*scode == OP_ALT);
1945 if (!empty_branch) return FALSE; /* All branches are non-empty */
1946 continue;
1947 }
1948
1949 /* For other groups, scan the branches. */
1950
1951 if (c == OP_BRA || c == OP_CBRA || c == OP_ONCE || c == OP_COND)
1952 {
1953 BOOL empty_branch;
1954 if (GET(code, 1) == 0) return TRUE; /* Hit unclosed bracket */
1955
1956 /* If a conditional group has only one branch, there is a second, implied,
1957 empty branch, so just skip over the conditional, because it could be empty.
1958 Otherwise, scan the individual branches of the group. */
1959
1960 if (c == OP_COND && code[GET(code, 1)] != OP_ALT)
1961 code += GET(code, 1);
1962 else
1963 {
1964 empty_branch = FALSE;
1965 do
1966 {
1967 if (!empty_branch && could_be_empty_branch(code, endcode, utf8, cd))
1968 empty_branch = TRUE;
1969 code += GET(code, 1);
1970 }
1971 while (*code == OP_ALT);
1972 if (!empty_branch) return FALSE; /* All branches are non-empty */
1973 }
1974
1975 c = *code;
1976 continue;
1977 }
1978
1979 /* Handle the other opcodes */
1980
1981 switch (c)
1982 {
1983 /* Check for quantifiers after a class. XCLASS is used for classes that
1984 cannot be represented just by a bit map. This includes negated single
1985 high-valued characters. The length in _pcre_OP_lengths[] is zero; the
1986 actual length is stored in the compiled code, so we must update "code"
1987 here. */
1988
1989 #ifdef SUPPORT_UTF8
1990 case OP_XCLASS:
1991 ccode = code += GET(code, 1);
1992 goto CHECK_CLASS_REPEAT;
1993 #endif
1994
1995 case OP_CLASS:
1996 case OP_NCLASS:
1997 ccode = code + 33;
1998
1999 #ifdef SUPPORT_UTF8
2000 CHECK_CLASS_REPEAT:
2001 #endif
2002
2003 switch (*ccode)
2004 {
2005 case OP_CRSTAR: /* These could be empty; continue */
2006 case OP_CRMINSTAR:
2007 case OP_CRQUERY:
2008 case OP_CRMINQUERY:
2009 break;
2010
2011 default: /* Non-repeat => class must match */
2012 case OP_CRPLUS: /* These repeats aren't empty */
2013 case OP_CRMINPLUS:
2014 return FALSE;
2015
2016 case OP_CRRANGE:
2017 case OP_CRMINRANGE:
2018 if (GET2(ccode, 1) > 0) return FALSE; /* Minimum > 0 */
2019 break;
2020 }
2021 break;
2022
2023 /* Opcodes that must match a character */
2024
2025 case OP_PROP:
2026 case OP_NOTPROP:
2027 case OP_EXTUNI:
2028 case OP_NOT_DIGIT:
2029 case OP_DIGIT:
2030 case OP_NOT_WHITESPACE:
2031 case OP_WHITESPACE:
2032 case OP_NOT_WORDCHAR:
2033 case OP_WORDCHAR:
2034 case OP_ANY:
2035 case OP_ALLANY:
2036 case OP_ANYBYTE:
2037 case OP_CHAR:
2038 case OP_CHARNC:
2039 case OP_NOT:
2040 case OP_PLUS:
2041 case OP_MINPLUS:
2042 case OP_POSPLUS:
2043 case OP_EXACT:
2044 case OP_NOTPLUS:
2045 case OP_NOTMINPLUS:
2046 case OP_NOTPOSPLUS:
2047 case OP_NOTEXACT:
2048 case OP_TYPEPLUS:
2049 case OP_TYPEMINPLUS:
2050 case OP_TYPEPOSPLUS:
2051 case OP_TYPEEXACT:
2052 return FALSE;
2053
2054 /* These are going to continue, as they may be empty, but we have to
2055 fudge the length for the \p and \P cases. */
2056
2057 case OP_TYPESTAR:
2058 case OP_TYPEMINSTAR:
2059 case OP_TYPEPOSSTAR:
2060 case OP_TYPEQUERY:
2061 case OP_TYPEMINQUERY:
2062 case OP_TYPEPOSQUERY:
2063 if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2;
2064 break;
2065
2066 /* Same for these */
2067
2068 case OP_TYPEUPTO:
2069 case OP_TYPEMINUPTO:
2070 case OP_TYPEPOSUPTO:
2071 if (code[3] == OP_PROP || code[3] == OP_NOTPROP) code += 2;
2072 break;
2073
2074 /* End of branch */
2075
2076 case OP_KET:
2077 case OP_KETRMAX:
2078 case OP_KETRMIN:
2079 case OP_ALT:
2080 return TRUE;
2081
2082 /* In UTF-8 mode, STAR, MINSTAR, POSSTAR, QUERY, MINQUERY, POSQUERY, UPTO,
2083 MINUPTO, and POSUPTO may be followed by a multibyte character */
2084
2085 #ifdef SUPPORT_UTF8
2086 case OP_STAR:
2087 case OP_MINSTAR:
2088 case OP_POSSTAR:
2089 case OP_QUERY:
2090 case OP_MINQUERY:
2091 case OP_POSQUERY:
2092 if (utf8 && code[1] >= 0xc0) code += _pcre_utf8_table4[code[1] & 0x3f];
2093 break;
2094
2095 case OP_UPTO:
2096 case OP_MINUPTO:
2097 case OP_POSUPTO:
2098 if (utf8 && code[3] >= 0xc0) code += _pcre_utf8_table4[code[3] & 0x3f];
2099 break;
2100 #endif
2101
2102 /* MARK, and PRUNE/SKIP/THEN with an argument must skip over the argument
2103 string. */
2104
2105 case OP_MARK:
2106 case OP_PRUNE_ARG:
2107 case OP_SKIP_ARG:
2108 case OP_THEN_ARG:
2109 code += code[1];
2110 break;
2111
2112 /* None of the remaining opcodes are required to match a character. */
2113
2114 default:
2115 break;
2116 }
2117 }
2118
2119 return TRUE;
2120 }
2121
2122
2123
2124 /*************************************************
2125 * Scan compiled regex for non-emptiness *
2126 *************************************************/
2127
2128 /* This function is called to check for left recursive calls. We want to check
2129 the current branch of the current pattern to see if it could match the empty
2130 string. If it could, we must look outwards for branches at other levels,
2131 stopping when we pass beyond the bracket which is the subject of the recursion.
2132
2133 Arguments:
2134 code points to start of the recursion
2135 endcode points to where to stop (current RECURSE item)
2136 bcptr points to the chain of current (unclosed) branch starts
2137 utf8 TRUE if in UTF-8 mode
2138 cd pointers to tables etc
2139
2140 Returns: TRUE if what is matched could be empty
2141 */
2142
2143 static BOOL
2144 could_be_empty(const uschar *code, const uschar *endcode, branch_chain *bcptr,
2145 BOOL utf8, compile_data *cd)
2146 {
2147 while (bcptr != NULL && bcptr->current_branch >= code)
2148 {
2149 if (!could_be_empty_branch(bcptr->current_branch, endcode, utf8, cd))
2150 return FALSE;
2151 bcptr = bcptr->outer;
2152 }
2153 return TRUE;
2154 }
2155
2156
2157
2158 /*************************************************
2159 * Check for POSIX class syntax *
2160 *************************************************/
2161
2162 /* This function is called when the sequence "[:" or "[." or "[=" is
2163 encountered in a character class. It checks whether this is followed by a
2164 sequence of characters terminated by a matching ":]" or ".]" or "=]". If we
2165 reach an unescaped ']' without the special preceding character, return FALSE.
2166
2167 Originally, this function only recognized a sequence of letters between the
2168 terminators, but it seems that Perl recognizes any sequence of characters,
2169 though of course unknown POSIX names are subsequently rejected. Perl gives an
2170 "Unknown POSIX class" error for [:f\oo:] for example, where previously PCRE
2171 didn't consider this to be a POSIX class. Likewise for [:1234:].
2172
2173 The problem in trying to be exactly like Perl is in the handling of escapes. We
2174 have to be sure that [abc[:x\]pqr] is *not* treated as containing a POSIX
2175 class, but [abc[:x\]pqr:]] is (so that an error can be generated). The code
2176 below handles the special case of \], but does not try to do any other escape
2177 processing. This makes it different from Perl for cases such as [:l\ower:]
2178 where Perl recognizes it as the POSIX class "lower" but PCRE does not recognize
2179 "l\ower". This is a lesser evil that not diagnosing bad classes when Perl does,
2180 I think.
2181
2182 Arguments:
2183 ptr pointer to the initial [
2184 endptr where to return the end pointer
2185
2186 Returns: TRUE or FALSE
2187 */
2188
2189 static BOOL
2190 check_posix_syntax(const uschar *ptr, const uschar **endptr)
2191 {
2192 int terminator; /* Don't combine these lines; the Solaris cc */
2193 terminator = *(++ptr); /* compiler warns about "non-constant" initializer. */
2194 for (++ptr; *ptr != 0; ptr++)
2195 {
2196 if (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_RIGHT_SQUARE_BRACKET) ptr++; else
2197 {
2198 if (*ptr == CHAR_RIGHT_SQUARE_BRACKET) return FALSE;
2199 if (*ptr == terminator && ptr[1] == CHAR_RIGHT_SQUARE_BRACKET)
2200 {
2201 *endptr = ptr;
2202 return TRUE;
2203 }
2204 }
2205 }
2206 return FALSE;
2207 }
2208
2209
2210
2211
2212 /*************************************************
2213 * Check POSIX class name *
2214 *************************************************/
2215
2216 /* This function is called to check the name given in a POSIX-style class entry
2217 such as [:alnum:].
2218
2219 Arguments:
2220 ptr points to the first letter
2221 len the length of the name
2222
2223 Returns: a value representing the name, or -1 if unknown
2224 */
2225
2226 static int
2227 check_posix_name(const uschar *ptr, int len)
2228 {
2229 const char *pn = posix_names;
2230 register int yield = 0;
2231 while (posix_name_lengths[yield] != 0)
2232 {
2233 if (len == posix_name_lengths[yield] &&
2234 strncmp((const char *)ptr, pn, len) == 0) return yield;
2235 pn += posix_name_lengths[yield] + 1;
2236 yield++;
2237 }
2238 return -1;
2239 }
2240
2241
2242 /*************************************************
2243 * Adjust OP_RECURSE items in repeated group *
2244 *************************************************/
2245
2246 /* OP_RECURSE items contain an offset from the start of the regex to the group
2247 that is referenced. This means that groups can be replicated for fixed
2248 repetition simply by copying (because the recursion is allowed to refer to
2249 earlier groups that are outside the current group). However, when a group is
2250 optional (i.e. the minimum quantifier is zero), OP_BRAZERO or OP_SKIPZERO is
2251 inserted before it, after it has been compiled. This means that any OP_RECURSE
2252 items within it that refer to the group itself or any contained groups have to
2253 have their offsets adjusted. That one of the jobs of this function. Before it
2254 is called, the partially compiled regex must be temporarily terminated with
2255 OP_END.
2256
2257 This function has been extended with the possibility of forward references for
2258 recursions and subroutine calls. It must also check the list of such references
2259 for the group we are dealing with. If it finds that one of the recursions in
2260 the current group is on this list, it adjusts the offset in the list, not the
2261 value in the reference (which is a group number).
2262
2263 Arguments:
2264 group points to the start of the group
2265 adjust the amount by which the group is to be moved
2266 utf8 TRUE in UTF-8 mode
2267 cd contains pointers to tables etc.
2268 save_hwm the hwm forward reference pointer at the start of the group
2269
2270 Returns: nothing
2271 */
2272
2273 static void
2274 adjust_recurse(uschar *group, int adjust, BOOL utf8, compile_data *cd,
2275 uschar *save_hwm)
2276 {
2277 uschar *ptr = group;
2278
2279 while ((ptr = (uschar *)find_recurse(ptr, utf8)) != NULL)
2280 {
2281 int offset;
2282 uschar *hc;
2283
2284 /* See if this recursion is on the forward reference list. If so, adjust the
2285 reference. */
2286
2287 for (hc = save_hwm; hc < cd->hwm; hc += LINK_SIZE)
2288 {
2289 offset = GET(hc, 0);
2290 if (cd->start_code + offset == ptr + 1)
2291 {
2292 PUT(hc, 0, offset + adjust);
2293 break;
2294 }
2295 }
2296
2297 /* Otherwise, adjust the recursion offset if it's after the start of this
2298 group. */
2299
2300 if (hc >= cd->hwm)
2301 {
2302 offset = GET(ptr, 1);
2303 if (cd->start_code + offset >= group) PUT(ptr, 1, offset + adjust);
2304 }
2305
2306 ptr += 1 + LINK_SIZE;
2307 }
2308 }
2309
2310
2311
2312 /*************************************************
2313 * Insert an automatic callout point *
2314 *************************************************/
2315
2316 /* This function is called when the PCRE_AUTO_CALLOUT option is set, to insert
2317 callout points before each pattern item.
2318
2319 Arguments:
2320 code current code pointer
2321 ptr current pattern pointer
2322 cd pointers to tables etc
2323
2324 Returns: new code pointer
2325 */
2326
2327 static uschar *
2328 auto_callout(uschar *code, const uschar *ptr, compile_data *cd)
2329 {
2330 *code++ = OP_CALLOUT;
2331 *code++ = 255;
2332 PUT(code, 0, (int)(ptr - cd->start_pattern)); /* Pattern offset */
2333 PUT(code, LINK_SIZE, 0); /* Default length */
2334 return code + 2*LINK_SIZE;
2335 }
2336
2337
2338
2339 /*************************************************
2340 * Complete a callout item *
2341 *************************************************/
2342
2343 /* A callout item contains the length of the next item in the pattern, which
2344 we can't fill in till after we have reached the relevant point. This is used
2345 for both automatic and manual callouts.
2346
2347 Arguments:
2348 previous_callout points to previous callout item
2349 ptr current pattern pointer
2350 cd pointers to tables etc
2351
2352 Returns: nothing
2353 */
2354
2355 static void
2356 complete_callout(uschar *previous_callout, const uschar *ptr, compile_data *cd)
2357 {
2358 int length = (int)(ptr - cd->start_pattern - GET(previous_callout, 2));
2359 PUT(previous_callout, 2 + LINK_SIZE, length);
2360 }
2361
2362
2363
2364 #ifdef SUPPORT_UCP
2365 /*************************************************
2366 * Get othercase range *
2367 *************************************************/
2368
2369 /* This function is passed the start and end of a class range, in UTF-8 mode
2370 with UCP support. It searches up the characters, looking for internal ranges of
2371 characters in the "other" case. Each call returns the next one, updating the
2372 start address.
2373
2374 Arguments:
2375 cptr points to starting character value; updated
2376 d end value
2377 ocptr where to put start of othercase range
2378 odptr where to put end of othercase range
2379
2380 Yield: TRUE when range returned; FALSE when no more
2381 */
2382
2383 static BOOL
2384 get_othercase_range(unsigned int *cptr, unsigned int d, unsigned int *ocptr,
2385 unsigned int *odptr)
2386 {
2387 unsigned int c, othercase, next;
2388
2389 for (c = *cptr; c <= d; c++)
2390 { if ((othercase = UCD_OTHERCASE(c)) != c) break; }
2391
2392 if (c > d) return FALSE;
2393
2394 *ocptr = othercase;
2395 next = othercase + 1;
2396
2397 for (++c; c <= d; c++)
2398 {
2399 if (UCD_OTHERCASE(c) != next) break;
2400 next++;
2401 }
2402
2403 *odptr = next - 1;
2404 *cptr = c;
2405
2406 return TRUE;
2407 }
2408
2409
2410
2411 /*************************************************
2412 * Check a character and a property *
2413 *************************************************/
2414
2415 /* This function is called by check_auto_possessive() when a property item
2416 is adjacent to a fixed character.
2417
2418 Arguments:
2419 c the character
2420 ptype the property type
2421 pdata the data for the type
2422 negated TRUE if it's a negated property (\P or \p{^)
2423
2424 Returns: TRUE if auto-possessifying is OK
2425 */
2426
2427 static BOOL
2428 check_char_prop(int c, int ptype, int pdata, BOOL negated)
2429 {
2430 const ucd_record *prop = GET_UCD(c);
2431 switch(ptype)
2432 {
2433 case PT_LAMP:
2434 return (prop->chartype == ucp_Lu ||
2435 prop->chartype == ucp_Ll ||
2436 prop->chartype == ucp_Lt) == negated;
2437
2438 case PT_GC:
2439 return (pdata == _pcre_ucp_gentype[prop->chartype]) == negated;
2440
2441 case PT_PC:
2442 return (pdata == prop->chartype) == negated;
2443
2444 case PT_SC:
2445 return (pdata == prop->script) == negated;
2446
2447 /* These are specials */
2448
2449 case PT_ALNUM:
2450 return (_pcre_ucp_gentype[prop->chartype] == ucp_L ||
2451 _pcre_ucp_gentype[prop->chartype] == ucp_N) == negated;
2452
2453 case PT_SPACE: /* Perl space */
2454 return (_pcre_ucp_gentype[prop->chartype] == ucp_Z ||
2455 c == CHAR_HT || c == CHAR_NL || c == CHAR_FF || c == CHAR_CR)
2456 == negated;
2457
2458 case PT_PXSPACE: /* POSIX space */
2459 return (_pcre_ucp_gentype[prop->chartype] == ucp_Z ||
2460 c == CHAR_HT || c == CHAR_NL || c == CHAR_VT ||
2461 c == CHAR_FF || c == CHAR_CR)
2462 == negated;
2463
2464 case PT_WORD:
2465 return (_pcre_ucp_gentype[prop->chartype] == ucp_L ||
2466 _pcre_ucp_gentype[prop->chartype] == ucp_N ||
2467 c == CHAR_UNDERSCORE) == negated;
2468 }
2469 return FALSE;
2470 }
2471 #endif /* SUPPORT_UCP */
2472
2473
2474
2475 /*************************************************
2476 * Check if auto-possessifying is possible *
2477 *************************************************/
2478
2479 /* This function is called for unlimited repeats of certain items, to see
2480 whether the next thing could possibly match the repeated item. If not, it makes
2481 sense to automatically possessify the repeated item.
2482
2483 Arguments:
2484 previous pointer to the repeated opcode
2485 utf8 TRUE in UTF-8 mode
2486 ptr next character in pattern
2487 options options bits
2488 cd contains pointers to tables etc.
2489
2490 Returns: TRUE if possessifying is wanted
2491 */
2492
2493 static BOOL
2494 check_auto_possessive(const uschar *previous, BOOL utf8, const uschar *ptr,
2495 int options, compile_data *cd)
2496 {
2497 int c, next;
2498 int op_code = *previous++;
2499
2500 /* Skip whitespace and comments in extended mode */
2501
2502 if ((options & PCRE_EXTENDED) != 0)
2503 {
2504 for (;;)
2505 {
2506 while ((cd->ctypes[*ptr] & ctype_space) != 0) ptr++;
2507 if (*ptr == CHAR_NUMBER_SIGN)
2508 {
2509 while (*(++ptr) != 0)
2510 if (IS_NEWLINE(ptr)) { ptr += cd->nllen; break; }
2511 }
2512 else break;
2513 }
2514 }
2515
2516 /* If the next item is one that we can handle, get its value. A non-negative
2517 value is a character, a negative value is an escape value. */
2518
2519 if (*ptr == CHAR_BACKSLASH)
2520 {
2521 int temperrorcode = 0;
2522 next = check_escape(&ptr, &temperrorcode, cd->bracount, options, FALSE);
2523 if (temperrorcode != 0) return FALSE;
2524 ptr++; /* Point after the escape sequence */
2525 }
2526
2527 else if ((cd->ctypes[*ptr] & ctype_meta) == 0)
2528 {
2529 #ifdef SUPPORT_UTF8
2530 if (utf8) { GETCHARINC(next, ptr); } else
2531 #endif
2532 next = *ptr++;
2533 }
2534
2535 else return FALSE;
2536
2537 /* Skip whitespace and comments in extended mode */
2538
2539 if ((options & PCRE_EXTENDED) != 0)
2540 {
2541 for (;;)
2542 {
2543 while ((cd->ctypes[*ptr] & ctype_space) != 0) ptr++;
2544 if (*ptr == CHAR_NUMBER_SIGN)
2545 {
2546 while (*(++ptr) != 0)
2547 if (IS_NEWLINE(ptr)) { ptr += cd->nllen; break; }
2548 }
2549 else break;
2550 }
2551 }
2552
2553 /* If the next thing is itself optional, we have to give up. */
2554
2555 if (*ptr == CHAR_ASTERISK || *ptr == CHAR_QUESTION_MARK ||
2556 strncmp((char *)ptr, STR_LEFT_CURLY_BRACKET STR_0 STR_COMMA, 3) == 0)
2557 return FALSE;
2558
2559 /* Now compare the next item with the previous opcode. First, handle cases when
2560 the next item is a character. */
2561
2562 if (next >= 0) switch(op_code)
2563 {
2564 case OP_CHAR:
2565 #ifdef SUPPORT_UTF8
2566 GETCHARTEST(c, previous);
2567 #else
2568 c = *previous;
2569 #endif
2570 return c != next;
2571
2572 /* For CHARNC (caseless character) we must check the other case. If we have
2573 Unicode property support, we can use it to test the other case of
2574 high-valued characters. */
2575
2576 case OP_CHARNC:
2577 #ifdef SUPPORT_UTF8
2578 GETCHARTEST(c, previous);
2579 #else
2580 c = *previous;
2581 #endif
2582 if (c == next) return FALSE;
2583 #ifdef SUPPORT_UTF8
2584 if (utf8)
2585 {
2586 unsigned int othercase;
2587 if (next < 128) othercase = cd->fcc[next]; else
2588 #ifdef SUPPORT_UCP
2589 othercase = UCD_OTHERCASE((unsigned int)next);
2590 #else
2591 othercase = NOTACHAR;
2592 #endif
2593 return (unsigned int)c != othercase;
2594 }
2595 else
2596 #endif /* SUPPORT_UTF8 */
2597 return (c != cd->fcc[next]); /* Non-UTF-8 mode */
2598
2599 /* For OP_NOT, its data is always a single-byte character. */
2600
2601 case OP_NOT:
2602 if ((c = *previous) == next) return TRUE;
2603 if ((options & PCRE_CASELESS) == 0) return FALSE;
2604 #ifdef SUPPORT_UTF8
2605 if (utf8)
2606 {
2607 unsigned int othercase;
2608 if (next < 128) othercase = cd->fcc[next]; else
2609 #ifdef SUPPORT_UCP
2610 othercase = UCD_OTHERCASE(next);
2611 #else
2612 othercase = NOTACHAR;
2613 #endif
2614 return (unsigned int)c == othercase;
2615 }
2616 else
2617 #endif /* SUPPORT_UTF8 */
2618 return (c == cd->fcc[next]); /* Non-UTF-8 mode */
2619
2620 /* Note that OP_DIGIT etc. are generated only when PCRE_UCP is *not* set.
2621 When it is set, \d etc. are converted into OP_(NOT_)PROP codes. */
2622
2623 case OP_DIGIT:
2624 return next > 127 || (cd->ctypes[next] & ctype_digit) == 0;
2625
2626 case OP_NOT_DIGIT:
2627 return next <= 127 && (cd->ctypes[next] & ctype_digit) != 0;
2628
2629 case OP_WHITESPACE:
2630 return next > 127 || (cd->ctypes[next] & ctype_space) == 0;
2631
2632 case OP_NOT_WHITESPACE:
2633 return next <= 127 && (cd->ctypes[next] & ctype_space) != 0;
2634
2635 case OP_WORDCHAR:
2636 return next > 127 || (cd->ctypes[next] & ctype_word) == 0;
2637
2638 case OP_NOT_WORDCHAR:
2639 return next <= 127 && (cd->ctypes[next] & ctype_word) != 0;
2640
2641 case OP_HSPACE:
2642 case OP_NOT_HSPACE:
2643 switch(next)
2644 {
2645 case 0x09:
2646 case 0x20:
2647 case 0xa0:
2648 case 0x1680:
2649 case 0x180e:
2650 case 0x2000:
2651 case 0x2001:
2652 case 0x2002:
2653 case 0x2003:
2654 case 0x2004:
2655 case 0x2005:
2656 case 0x2006:
2657 case 0x2007:
2658 case 0x2008:
2659 case 0x2009:
2660 case 0x200A:
2661 case 0x202f:
2662 case 0x205f:
2663 case 0x3000:
2664 return op_code == OP_NOT_HSPACE;
2665 default:
2666 return op_code != OP_NOT_HSPACE;
2667 }
2668
2669 case OP_ANYNL:
2670 case OP_VSPACE:
2671 case OP_NOT_VSPACE:
2672 switch(next)
2673 {
2674 case 0x0a:
2675 case 0x0b:
2676 case 0x0c:
2677 case 0x0d:
2678 case 0x85:
2679 case 0x2028:
2680 case 0x2029:
2681 return op_code == OP_NOT_VSPACE;
2682 default:
2683 return op_code != OP_NOT_VSPACE;
2684 }
2685
2686 #ifdef SUPPORT_UCP
2687 case OP_PROP:
2688 return check_char_prop(next, previous[0], previous[1], FALSE);
2689
2690 case OP_NOTPROP:
2691 return check_char_prop(next, previous[0], previous[1], TRUE);
2692 #endif
2693
2694 default:
2695 return FALSE;
2696 }
2697
2698
2699 /* Handle the case when the next item is \d, \s, etc. Note that when PCRE_UCP
2700 is set, \d turns into ESC_du rather than ESC_d, etc., so ESC_d etc. are
2701 generated only when PCRE_UCP is *not* set, that is, when only ASCII
2702 characteristics are recognized. Similarly, the opcodes OP_DIGIT etc. are
2703 replaced by OP_PROP codes when PCRE_UCP is set. */
2704
2705 switch(op_code)
2706 {
2707 case OP_CHAR:
2708 case OP_CHARNC:
2709 #ifdef SUPPORT_UTF8
2710 GETCHARTEST(c, previous);
2711 #else
2712 c = *previous;
2713 #endif
2714 switch(-next)
2715 {
2716 case ESC_d:
2717 return c > 127 || (cd->ctypes[c] & ctype_digit) == 0;
2718
2719 case ESC_D:
2720 return c <= 127 && (cd->ctypes[c] & ctype_digit) != 0;
2721
2722 case ESC_s:
2723 return c > 127 || (cd->ctypes[c] & ctype_space) == 0;
2724
2725 case ESC_S:
2726 return c <= 127 && (cd->ctypes[c] & ctype_space) != 0;
2727
2728 case ESC_w:
2729 return c > 127 || (cd->ctypes[c] & ctype_word) == 0;
2730
2731 case ESC_W:
2732 return c <= 127 && (cd->ctypes[c] & ctype_word) != 0;
2733
2734 case ESC_h:
2735 case ESC_H:
2736 switch(c)
2737 {
2738 case 0x09:
2739 case 0x20:
2740 case 0xa0:
2741 case 0x1680:
2742 case 0x180e:
2743 case 0x2000:
2744 case 0x2001:
2745 case 0x2002:
2746 case 0x2003:
2747 case 0x2004:
2748 case 0x2005:
2749 case 0x2006:
2750 case 0x2007:
2751 case 0x2008:
2752 case 0x2009:
2753 case 0x200A:
2754 case 0x202f:
2755 case 0x205f:
2756 case 0x3000:
2757 return -next != ESC_h;
2758 default:
2759 return -next == ESC_h;
2760 }
2761
2762 case ESC_v:
2763 case ESC_V:
2764 switch(c)
2765 {
2766 case 0x0a:
2767 case 0x0b:
2768 case 0x0c:
2769 case 0x0d:
2770 case 0x85:
2771 case 0x2028:
2772 case 0x2029:
2773 return -next != ESC_v;
2774 default:
2775 return -next == ESC_v;
2776 }
2777
2778 /* When PCRE_UCP is set, these values get generated for \d etc. Find
2779 their substitutions and process them. The result will always be either
2780 -ESC_p or -ESC_P. Then fall through to process those values. */
2781
2782 #ifdef SUPPORT_UCP
2783 case ESC_du:
2784 case ESC_DU:
2785 case ESC_wu:
2786 case ESC_WU:
2787 case ESC_su:
2788 case ESC_SU:
2789 {
2790 int temperrorcode = 0;
2791 ptr = substitutes[-next - ESC_DU];
2792 next = check_escape(&ptr, &temperrorcode, 0, options, FALSE);
2793 if (temperrorcode != 0) return FALSE;
2794 ptr++; /* For compatibility */
2795 }
2796 /* Fall through */
2797
2798 case ESC_p:
2799 case ESC_P:
2800 {
2801 int ptype, pdata, errorcodeptr;
2802 BOOL negated;
2803
2804 ptr--; /* Make ptr point at the p or P */
2805 ptype = get_ucp(&ptr, &negated, &pdata, &errorcodeptr);
2806 if (ptype < 0) return FALSE;
2807 ptr++; /* Point past the final curly ket */
2808
2809 /* If the property item is optional, we have to give up. (When generated
2810 from \d etc by PCRE_UCP, this test will have been applied much earlier,
2811 to the original \d etc. At this point, ptr will point to a zero byte. */
2812
2813 if (*ptr == CHAR_ASTERISK || *ptr == CHAR_QUESTION_MARK ||
2814 strncmp((char *)ptr, STR_LEFT_CURLY_BRACKET STR_0 STR_COMMA, 3) == 0)
2815 return FALSE;
2816
2817 /* Do the property check. */
2818
2819 return check_char_prop(c, ptype, pdata, (next == -ESC_P) != negated);
2820 }
2821 #endif
2822
2823 default:
2824 return FALSE;
2825 }
2826
2827 /* In principle, support for Unicode properties should be integrated here as
2828 well. It means re-organizing the above code so as to get hold of the property
2829 values before switching on the op-code. However, I wonder how many patterns
2830 combine ASCII \d etc with Unicode properties? (Note that if PCRE_UCP is set,
2831 these op-codes are never generated.) */
2832
2833 case OP_DIGIT:
2834 return next == -ESC_D || next == -ESC_s || next == -ESC_W ||
2835 next == -ESC_h || next == -ESC_v || next == -ESC_R;
2836
2837 case OP_NOT_DIGIT:
2838 return next == -ESC_d;
2839
2840 case OP_WHITESPACE:
2841 return next == -ESC_S || next == -ESC_d || next == -ESC_w || next == -ESC_R;
2842
2843 case OP_NOT_WHITESPACE:
2844 return next == -ESC_s || next == -ESC_h || next == -ESC_v;
2845
2846 case OP_HSPACE:
2847 return next == -ESC_S || next == -ESC_H || next == -ESC_d ||
2848 next == -ESC_w || next == -ESC_v || next == -ESC_R;
2849
2850 case OP_NOT_HSPACE:
2851 return next == -ESC_h;
2852
2853 /* Can't have \S in here because VT matches \S (Perl anomaly) */
2854 case OP_ANYNL:
2855 case OP_VSPACE:
2856 return next == -ESC_V || next == -ESC_d || next == -ESC_w;
2857
2858 case OP_NOT_VSPACE:
2859 return next == -ESC_v || next == -ESC_R;
2860
2861 case OP_WORDCHAR:
2862 return next == -ESC_W || next == -ESC_s || next == -ESC_h ||
2863 next == -ESC_v || next == -ESC_R;
2864
2865 case OP_NOT_WORDCHAR:
2866 return next == -ESC_w || next == -ESC_d;
2867
2868 default:
2869 return FALSE;
2870 }
2871
2872 /* Control does not reach here */
2873 }
2874
2875
2876
2877 /*************************************************
2878 * Compile one branch *
2879 *************************************************/
2880
2881 /* Scan the pattern, compiling it into the a vector. If the options are
2882 changed during the branch, the pointer is used to change the external options
2883 bits. This function is used during the pre-compile phase when we are trying
2884 to find out the amount of memory needed, as well as during the real compile
2885 phase. The value of lengthptr distinguishes the two phases.
2886
2887 Arguments:
2888 optionsptr pointer to the option bits
2889 codeptr points to the pointer to the current code point
2890 ptrptr points to the current pattern pointer
2891 errorcodeptr points to error code variable
2892 firstbyteptr set to initial literal character, or < 0 (REQ_UNSET, REQ_NONE)
2893 reqbyteptr set to the last literal character required, else < 0
2894 bcptr points to current branch chain
2895 cd contains pointers to tables etc.
2896 lengthptr NULL during the real compile phase
2897 points to length accumulator during pre-compile phase
2898
2899 Returns: TRUE on success
2900 FALSE, with *errorcodeptr set non-zero on error
2901 */
2902
2903 static BOOL
2904 compile_branch(int *optionsptr, uschar **codeptr, const uschar **ptrptr,
2905 int *errorcodeptr, int *firstbyteptr, int *reqbyteptr, branch_chain *bcptr,
2906 compile_data *cd, int *lengthptr)
2907 {
2908 int repeat_type, op_type;
2909 int repeat_min = 0, repeat_max = 0; /* To please picky compilers */
2910 int bravalue = 0;
2911 int greedy_default, greedy_non_default;
2912 int firstbyte, reqbyte;
2913 int zeroreqbyte, zerofirstbyte;
2914 int req_caseopt, reqvary, tempreqvary;
2915 int options = *optionsptr;
2916 int after_manual_callout = 0;
2917 int length_prevgroup = 0;
2918 register int c;
2919 register uschar *code = *codeptr;
2920 uschar *last_code = code;
2921 uschar *orig_code = code;
2922 uschar *tempcode;
2923 BOOL inescq = FALSE;
2924 BOOL groupsetfirstbyte = FALSE;
2925 const uschar *ptr = *ptrptr;
2926 const uschar *tempptr;
2927 const uschar *nestptr = NULL;
2928 uschar *previous = NULL;
2929 uschar *previous_callout = NULL;
2930 uschar *save_hwm = NULL;
2931 uschar classbits[32];
2932
2933 #ifdef SUPPORT_UTF8
2934 BOOL class_utf8;
2935 BOOL utf8 = (options & PCRE_UTF8) != 0;
2936 uschar *class_utf8data;
2937 uschar *class_utf8data_base;
2938 uschar utf8_char[6];
2939 #else
2940 BOOL utf8 = FALSE;
2941 uschar *utf8_char = NULL;
2942 #endif
2943
2944 #ifdef PCRE_DEBUG
2945 if (lengthptr != NULL) DPRINTF((">> start branch\n"));
2946 #endif
2947
2948 /* Set up the default and non-default settings for greediness */
2949
2950 greedy_default = ((options & PCRE_UNGREEDY) != 0);
2951 greedy_non_default = greedy_default ^ 1;
2952
2953 /* Initialize no first byte, no required byte. REQ_UNSET means "no char
2954 matching encountered yet". It gets changed to REQ_NONE if we hit something that
2955 matches a non-fixed char first char; reqbyte just remains unset if we never
2956 find one.
2957
2958 When we hit a repeat whose minimum is zero, we may have to adjust these values
2959 to take the zero repeat into account. This is implemented by setting them to
2960 zerofirstbyte and zeroreqbyte when such a repeat is encountered. The individual
2961 item types that can be repeated set these backoff variables appropriately. */
2962
2963 firstbyte = reqbyte = zerofirstbyte = zeroreqbyte = REQ_UNSET;
2964
2965 /* The variable req_caseopt contains either the REQ_CASELESS value or zero,
2966 according to the current setting of the caseless flag. REQ_CASELESS is a bit
2967 value > 255. It is added into the firstbyte or reqbyte variables to record the
2968 case status of the value. This is used only for ASCII characters. */
2969
2970 req_caseopt = ((options & PCRE_CASELESS) != 0)? REQ_CASELESS : 0;
2971
2972 /* Switch on next character until the end of the branch */
2973
2974 for (;; ptr++)
2975 {
2976 BOOL negate_class;
2977 BOOL should_flip_negation;
2978 BOOL possessive_quantifier;
2979 BOOL is_quantifier;
2980 BOOL is_recurse;
2981 BOOL reset_bracount;
2982 int class_charcount;
2983 int class_lastchar;
2984 int newoptions;
2985 int recno;
2986 int refsign;
2987 int skipbytes;
2988 int subreqbyte;
2989 int subfirstbyte;
2990 int terminator;
2991 int mclength;
2992 uschar mcbuffer[8];
2993
2994 /* Get next byte in the pattern */
2995
2996 c = *ptr;
2997
2998 /* If we are at the end of a nested substitution, revert to the outer level
2999 string. Nesting only happens one level deep. */
3000
3001 if (c == 0 && nestptr != NULL)
3002 {
3003 ptr = nestptr;
3004 nestptr = NULL;
3005 c = *ptr;
3006 }
3007
3008 /* If we are in the pre-compile phase, accumulate the length used for the
3009 previous cycle of this loop. */
3010
3011 if (lengthptr != NULL)
3012 {
3013 #ifdef PCRE_DEBUG
3014 if (code > cd->hwm) cd->hwm = code; /* High water info */
3015 #endif
3016 if (code > cd->start_workspace + WORK_SIZE_CHECK) /* Check for overrun */
3017 {
3018 *errorcodeptr = ERR52;
3019 goto FAILED;
3020 }
3021
3022 /* There is at least one situation where code goes backwards: this is the
3023 case of a zero quantifier after a class (e.g. [ab]{0}). At compile time,
3024 the class is simply eliminated. However, it is created first, so we have to
3025 allow memory for it. Therefore, don't ever reduce the length at this point.
3026 */
3027
3028 if (code < last_code) code = last_code;
3029
3030 /* Paranoid check for integer overflow */
3031
3032 if (OFLOW_MAX - *lengthptr < code - last_code)
3033 {
3034 *errorcodeptr = ERR20;
3035 goto FAILED;
3036 }
3037
3038 *lengthptr += (int)(code - last_code);
3039 DPRINTF(("length=%d added %d c=%c\n", *lengthptr, code - last_code, c));
3040
3041 /* If "previous" is set and it is not at the start of the work space, move
3042 it back to there, in order to avoid filling up the work space. Otherwise,
3043 if "previous" is NULL, reset the current code pointer to the start. */
3044
3045 if (previous != NULL)
3046 {
3047 if (previous > orig_code)
3048 {
3049 memmove(orig_code, previous, code - previous);
3050 code -= previous - orig_code;
3051 previous = orig_code;
3052 }
3053 }
3054 else code = orig_code;
3055
3056 /* Remember where this code item starts so we can pick up the length
3057 next time round. */
3058
3059 last_code = code;
3060 }
3061
3062 /* In the real compile phase, just check the workspace used by the forward
3063 reference list. */
3064
3065 else if (cd->hwm > cd->start_workspace + WORK_SIZE_CHECK)
3066 {
3067 *errorcodeptr = ERR52;
3068 goto FAILED;
3069 }
3070
3071 /* If in \Q...\E, check for the end; if not, we have a literal */
3072
3073 if (inescq && c != 0)
3074 {
3075 if (c == CHAR_BACKSLASH && ptr[1] == CHAR_E)
3076 {
3077 inescq = FALSE;
3078 ptr++;
3079 continue;
3080 }
3081 else
3082 {
3083 if (previous_callout != NULL)
3084 {
3085 if (lengthptr == NULL) /* Don't attempt in pre-compile phase */
3086 complete_callout(previous_callout, ptr, cd);
3087 previous_callout = NULL;
3088 }
3089 if ((options & PCRE_AUTO_CALLOUT) != 0)
3090 {
3091 previous_callout = code;
3092 code = auto_callout(code, ptr, cd);
3093 }
3094 goto NORMAL_CHAR;
3095 }
3096 }
3097
3098 /* Fill in length of a previous callout, except when the next thing is
3099 a quantifier. */
3100
3101 is_quantifier =
3102 c == CHAR_ASTERISK || c == CHAR_PLUS || c == CHAR_QUESTION_MARK ||
3103 (c == CHAR_LEFT_CURLY_BRACKET && is_counted_repeat(ptr+1));
3104
3105 if (!is_quantifier && previous_callout != NULL &&
3106 after_manual_callout-- <= 0)
3107 {
3108 if (lengthptr == NULL) /* Don't attempt in pre-compile phase */
3109 complete_callout(previous_callout, ptr, cd);
3110 previous_callout = NULL;
3111 }
3112
3113 /* In extended mode, skip white space and comments */
3114
3115 if ((options & PCRE_EXTENDED) != 0)
3116 {
3117 if ((cd->ctypes[c] & ctype_space) != 0) continue;
3118 if (c == CHAR_NUMBER_SIGN)
3119 {
3120 while (*(++ptr) != 0)
3121 {
3122 if (IS_NEWLINE(ptr)) { ptr += cd->nllen - 1; break; }
3123 }
3124 if (*ptr != 0) continue;
3125
3126 /* Else fall through to handle end of string */
3127 c = 0;
3128 }
3129 }
3130
3131 /* No auto callout for quantifiers. */
3132
3133 if ((options & PCRE_AUTO_CALLOUT) != 0 && !is_quantifier)
3134 {
3135 previous_callout = code;
3136 code = auto_callout(code, ptr, cd);
3137 }
3138
3139 switch(c)
3140 {
3141 /* ===================================================================*/
3142 case 0: /* The branch terminates at string end */
3143 case CHAR_VERTICAL_LINE: /* or | or ) */
3144 case CHAR_RIGHT_PARENTHESIS:
3145 *firstbyteptr = firstbyte;
3146 *reqbyteptr = reqbyte;
3147 *codeptr = code;
3148 *ptrptr = ptr;
3149 if (lengthptr != NULL)
3150 {
3151 if (OFLOW_MAX - *lengthptr < code - last_code)
3152 {
3153 *errorcodeptr = ERR20;
3154 goto FAILED;
3155 }
3156 *lengthptr += (int)(code - last_code); /* To include callout length */
3157 DPRINTF((">> end branch\n"));
3158 }
3159 return TRUE;
3160
3161
3162 /* ===================================================================*/
3163 /* Handle single-character metacharacters. In multiline mode, ^ disables
3164 the setting of any following char as a first character. */
3165
3166 case CHAR_CIRCUMFLEX_ACCENT:
3167 if ((options & PCRE_MULTILINE) != 0)
3168 {
3169 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
3170 }
3171 previous = NULL;
3172 *code++ = OP_CIRC;
3173 break;
3174
3175 case CHAR_DOLLAR_SIGN:
3176 previous = NULL;
3177 *code++ = OP_DOLL;
3178 break;
3179
3180 /* There can never be a first char if '.' is first, whatever happens about
3181 repeats. The value of reqbyte doesn't change either. */
3182
3183 case CHAR_DOT:
3184 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
3185 zerofirstbyte = firstbyte;
3186 zeroreqbyte = reqbyte;
3187 previous = code;
3188 *code++ = ((options & PCRE_DOTALL) != 0)? OP_ALLANY: OP_ANY;
3189 break;
3190
3191
3192 /* ===================================================================*/
3193 /* Character classes. If the included characters are all < 256, we build a
3194 32-byte bitmap of the permitted characters, except in the special case
3195 where there is only one such character. For negated classes, we build the
3196 map as usual, then invert it at the end. However, we use a different opcode
3197 so that data characters > 255 can be handled correctly.
3198
3199 If the class contains characters outside the 0-255 range, a different
3200 opcode is compiled. It may optionally have a bit map for characters < 256,
3201 but those above are are explicitly listed afterwards. A flag byte tells
3202 whether the bitmap is present, and whether this is a negated class or not.
3203
3204 In JavaScript compatibility mode, an isolated ']' causes an error. In
3205 default (Perl) mode, it is treated as a data character. */
3206
3207 case CHAR_RIGHT_SQUARE_BRACKET:
3208 if ((cd->external_options & PCRE_JAVASCRIPT_COMPAT) != 0)
3209 {
3210 *errorcodeptr = ERR64;
3211 goto FAILED;
3212 }
3213 goto NORMAL_CHAR;
3214
3215 case CHAR_LEFT_SQUARE_BRACKET:
3216 previous = code;
3217
3218 /* PCRE supports POSIX class stuff inside a class. Perl gives an error if
3219 they are encountered at the top level, so we'll do that too. */
3220
3221 if ((ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT ||
3222 ptr[1] == CHAR_EQUALS_SIGN) &&
3223 check_posix_syntax(ptr, &tempptr))
3224 {
3225 *errorcodeptr = (ptr[1] == CHAR_COLON)? ERR13 : ERR31;
3226 goto FAILED;
3227 }
3228
3229 /* If the first character is '^', set the negation flag and skip it. Also,
3230 if the first few characters (either before or after ^) are \Q\E or \E we
3231 skip them too. This makes for compatibility with Perl. */
3232
3233 negate_class = FALSE;
3234 for (;;)
3235 {
3236 c = *(++ptr);
3237 if (c == CHAR_BACKSLASH)
3238 {
3239 if (ptr[1] == CHAR_E)
3240 ptr++;
3241 else if (strncmp((const char *)ptr+1,
3242 STR_Q STR_BACKSLASH STR_E, 3) == 0)
3243 ptr += 3;
3244 else
3245 break;
3246 }
3247 else if (!negate_class && c == CHAR_CIRCUMFLEX_ACCENT)
3248 negate_class = TRUE;
3249 else break;
3250 }
3251
3252 /* Empty classes are allowed in JavaScript compatibility mode. Otherwise,
3253 an initial ']' is taken as a data character -- the code below handles
3254 that. In JS mode, [] must always fail, so generate OP_FAIL, whereas
3255 [^] must match any character, so generate OP_ALLANY. */
3256
3257 if (c == CHAR_RIGHT_SQUARE_BRACKET &&
3258 (cd->external_options & PCRE_JAVASCRIPT_COMPAT) != 0)
3259 {
3260 *code++ = negate_class? OP_ALLANY : OP_FAIL;
3261 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
3262 zerofirstbyte = firstbyte;
3263 break;
3264 }
3265
3266 /* If a class contains a negative special such as \S, we need to flip the
3267 negation flag at the end, so that support for characters > 255 works
3268 correctly (they are all included in the class). */
3269
3270 should_flip_negation = FALSE;
3271
3272 /* Keep a count of chars with values < 256 so that we can optimize the case
3273 of just a single character (as long as it's < 256). However, For higher
3274 valued UTF-8 characters, we don't yet do any optimization. */
3275
3276 class_charcount = 0;
3277 class_lastchar = -1;
3278
3279 /* Initialize the 32-char bit map to all zeros. We build the map in a
3280 temporary bit of memory, in case the class contains only 1 character (less
3281 than 256), because in that case the compiled code doesn't use the bit map.
3282 */
3283
3284 memset(classbits, 0, 32 * sizeof(uschar));
3285
3286 #ifdef SUPPORT_UTF8
3287 class_utf8 = FALSE; /* No chars >= 256 */
3288 class_utf8data = code + LINK_SIZE + 2; /* For UTF-8 items */
3289 class_utf8data_base = class_utf8data; /* For resetting in pass 1 */
3290 #endif
3291
3292 /* Process characters until ] is reached. By writing this as a "do" it
3293 means that an initial ] is taken as a data character. At the start of the
3294 loop, c contains the first byte of the character. */
3295
3296 if (c != 0) do
3297 {
3298 const uschar *oldptr;
3299
3300 #ifdef SUPPORT_UTF8
3301 if (utf8 && c > 127)
3302 { /* Braces are required because the */
3303 GETCHARLEN(c, ptr, ptr); /* macro generates multiple statements */
3304 }
3305
3306 /* In the pre-compile phase, accumulate the length of any UTF-8 extra
3307 data and reset the pointer. This is so that very large classes that
3308 contain a zillion UTF-8 characters no longer overwrite the work space
3309 (which is on the stack). */
3310
3311 if (lengthptr != NULL)
3312 {
3313 *lengthptr += class_utf8data - class_utf8data_base;
3314 class_utf8data = class_utf8data_base;
3315 }
3316
3317 #endif
3318
3319 /* Inside \Q...\E everything is literal except \E */
3320
3321 if (inescq)
3322 {
3323 if (c == CHAR_BACKSLASH && ptr[1] == CHAR_E) /* If we are at \E */
3324 {
3325 inescq = FALSE; /* Reset literal state */
3326 ptr++; /* Skip the 'E' */
3327 continue; /* Carry on with next */
3328 }
3329 goto CHECK_RANGE; /* Could be range if \E follows */
3330 }
3331
3332 /* Handle POSIX class names. Perl allows a negation extension of the
3333 form [:^name:]. A square bracket that doesn't match the syntax is
3334 treated as a literal. We also recognize the POSIX constructions
3335 [.ch.] and [=ch=] ("collating elements") and fault them, as Perl
3336 5.6 and 5.8 do. */
3337
3338 if (c == CHAR_LEFT_SQUARE_BRACKET &&
3339 (ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT ||
3340 ptr[1] == CHAR_EQUALS_SIGN) && check_posix_syntax(ptr, &tempptr))
3341 {
3342 BOOL local_negate = FALSE;
3343 int posix_class, taboffset, tabopt;
3344 register const uschar *cbits = cd->cbits;
3345 uschar pbits[32];
3346
3347 if (ptr[1] != CHAR_COLON)
3348 {
3349 *errorcodeptr = ERR31;
3350 goto FAILED;
3351 }
3352
3353 ptr += 2;
3354 if (*ptr == CHAR_CIRCUMFLEX_ACCENT)
3355 {
3356 local_negate = TRUE;
3357 should_flip_negation = TRUE; /* Note negative special */
3358 ptr++;
3359 }
3360
3361 posix_class = check_posix_name(ptr, (int)(tempptr - ptr));
3362 if (posix_class < 0)
3363 {
3364 *errorcodeptr = ERR30;
3365 goto FAILED;
3366 }
3367
3368 /* If matching is caseless, upper and lower are converted to
3369 alpha. This relies on the fact that the class table starts with
3370 alpha, lower, upper as the first 3 entries. */
3371
3372 if ((options & PCRE_CASELESS) != 0 && posix_class <= 2)
3373 posix_class = 0;
3374
3375 /* When PCRE_UCP is set, some of the POSIX classes are converted to
3376 different escape sequences that use Unicode properties. */
3377
3378 #ifdef SUPPORT_UCP
3379 if ((options & PCRE_UCP) != 0)
3380 {
3381 int pc = posix_class + ((local_negate)? POSIX_SUBSIZE/2 : 0);
3382 if (posix_substitutes[pc] != NULL)
3383 {
3384 nestptr = tempptr + 1;
3385 ptr = posix_substitutes[pc] - 1;
3386 continue;
3387 }
3388 }
3389 #endif
3390 /* In the non-UCP case, we build the bit map for the POSIX class in a
3391 chunk of local store because we may be adding and subtracting from it,
3392 and we don't want to subtract bits that may be in the main map already.
3393 At the end we or the result into the bit map that is being built. */
3394
3395 posix_class *= 3;
3396
3397 /* Copy in the first table (always present) */
3398
3399 memcpy(pbits, cbits + posix_class_maps[posix_class],
3400 32 * sizeof(uschar));
3401
3402 /* If there is a second table, add or remove it as required. */
3403
3404 taboffset = posix_class_maps[posix_class + 1];
3405 tabopt = posix_class_maps[posix_class + 2];
3406
3407 if (taboffset >= 0)
3408 {
3409 if (tabopt >= 0)
3410 for (c = 0; c < 32; c++) pbits[c] |= cbits[c + taboffset];
3411 else
3412 for (c = 0; c < 32; c++) pbits[c] &= ~cbits[c + taboffset];
3413 }
3414
3415 /* Not see if we need to remove any special characters. An option
3416 value of 1 removes vertical space and 2 removes underscore. */
3417
3418 if (tabopt < 0) tabopt = -tabopt;
3419 if (tabopt == 1) pbits[1] &= ~0x3c;
3420 else if (tabopt == 2) pbits[11] &= 0x7f;
3421
3422 /* Add the POSIX table or its complement into the main table that is
3423 being built and we are done. */
3424
3425 if (local_negate)
3426 for (c = 0; c < 32; c++) classbits[c] |= ~pbits[c];
3427 else
3428 for (c = 0; c < 32; c++) classbits[c] |= pbits[c];
3429
3430 ptr = tempptr + 1;
3431 class_charcount = 10; /* Set > 1; assumes more than 1 per class */
3432 continue; /* End of POSIX syntax handling */
3433 }
3434
3435 /* Backslash may introduce a single character, or it may introduce one
3436 of the specials, which just set a flag. The sequence \b is a special
3437 case. Inside a class (and only there) it is treated as backspace. We
3438 assume that other escapes have more than one character in them, so set
3439 class_charcount bigger than one. Unrecognized escapes fall through and
3440 are either treated as literal characters (by default), or are faulted if
3441 PCRE_EXTRA is set. */
3442
3443 if (c == CHAR_BACKSLASH)
3444 {
3445 c = check_escape(&ptr, errorcodeptr, cd->bracount, options, TRUE);
3446 if (*errorcodeptr != 0) goto FAILED;
3447
3448 if (-c == ESC_b) c = CHAR_BS; /* \b is backspace in a class */
3449 else if (-c == ESC_Q) /* Handle start of quoted string */
3450 {
3451 if (ptr[1] == CHAR_BACKSLASH && ptr[2] == CHAR_E)
3452 {
3453 ptr += 2; /* avoid empty string */
3454 }
3455 else inescq = TRUE;
3456 continue;
3457 }
3458 else if (-c == ESC_E) continue; /* Ignore orphan \E */
3459
3460 if (c < 0)
3461 {
3462 register const uschar *cbits = cd->cbits;
3463 class_charcount += 2; /* Greater than 1 is what matters */
3464
3465 switch (-c)
3466 {
3467 #ifdef SUPPORT_UCP
3468 case ESC_du: /* These are the values given for \d etc */
3469 case ESC_DU: /* when PCRE_UCP is set. We replace the */
3470 case ESC_wu: /* escape sequence with an appropriate \p */
3471 case ESC_WU: /* or \P to test Unicode properties instead */
3472 case ESC_su: /* of the default ASCII testing. */
3473 case ESC_SU:
3474 nestptr = ptr;
3475 ptr = substitutes[-c - ESC_DU] - 1; /* Just before substitute */
3476 class_charcount -= 2; /* Undo! */
3477 continue;
3478 #endif
3479 case ESC_d:
3480 for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_digit];
3481 continue;
3482
3483 case ESC_D:
3484 should_flip_negation = TRUE;
3485 for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_digit];
3486 continue;
3487
3488 case ESC_w:
3489 for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_word];
3490 continue;
3491
3492 case ESC_W:
3493 should_flip_negation = TRUE;
3494 for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_word];
3495 continue;
3496
3497 case ESC_s:
3498 for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_space];
3499 classbits[1] &= ~0x08; /* Perl 5.004 onwards omits VT from \s */
3500 continue;
3501
3502 case ESC_S:
3503 should_flip_negation = TRUE;
3504 for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_space];
3505 classbits[1] |= 0x08; /* Perl 5.004 onwards omits VT from \s */
3506 continue;
3507
3508 case ESC_h:
3509 SETBIT(classbits, 0x09); /* VT */
3510 SETBIT(classbits, 0x20); /* SPACE */
3511 SETBIT(classbits, 0xa0); /* NSBP */
3512 #ifdef SUPPORT_UTF8
3513 if (utf8)
3514 {
3515 class_utf8 = TRUE;
3516 *class_utf8data++ = XCL_SINGLE;
3517 class_utf8data += _pcre_ord2utf8(0x1680, class_utf8data);
3518 *class_utf8data++ = XCL_SINGLE;
3519 class_utf8data += _pcre_ord2utf8(0x180e, class_utf8data);
3520 *class_utf8data++ = XCL_RANGE;
3521 class_utf8data += _pcre_ord2utf8(0x2000, class_utf8data);
3522 class_utf8data += _pcre_ord2utf8(0x200A, class_utf8data);
3523 *class_utf8data++ = XCL_SINGLE;
3524 class_utf8data += _pcre_ord2utf8(0x202f, class_utf8data);
3525 *class_utf8data++ = XCL_SINGLE;
3526 class_utf8data += _pcre_ord2utf8(0x205f, class_utf8data);
3527 *class_utf8data++ = XCL_SINGLE;
3528 class_utf8data += _pcre_ord2utf8(0x3000, class_utf8data);
3529 }
3530 #endif
3531 continue;
3532
3533 case ESC_H:
3534 for (c = 0; c < 32; c++)
3535 {
3536 int x = 0xff;
3537 switch (c)
3538 {
3539 case 0x09/8: x ^= 1 << (0x09%8); break;
3540 case 0x20/8: x ^= 1 << (0x20%8); break;
3541 case 0xa0/8: x ^= 1 << (0xa0%8); break;
3542 default: break;
3543 }
3544 classbits[c] |= x;
3545 }
3546
3547 #ifdef SUPPORT_UTF8
3548 if (utf8)
3549 {
3550 class_utf8 = TRUE;
3551 *class_utf8data++ = XCL_RANGE;
3552 class_utf8data += _pcre_ord2utf8(0x0100, class_utf8data);
3553 class_utf8data += _pcre_ord2utf8(0x167f, class_utf8data);
3554 *class_utf8data++ = XCL_RANGE;
3555 class_utf8data += _pcre_ord2utf8(0x1681, class_utf8data);
3556 class_utf8data += _pcre_ord2utf8(0x180d, class_utf8data);
3557 *class_utf8data++ = XCL_RANGE;
3558 class_utf8data += _pcre_ord2utf8(0x180f, class_utf8data);
3559 class_utf8data += _pcre_ord2utf8(0x1fff, class_utf8data);
3560 *class_utf8data++ = XCL_RANGE;
3561 class_utf8data += _pcre_ord2utf8(0x200B, class_utf8data);
3562 class_utf8data += _pcre_ord2utf8(0x202e, class_utf8data);
3563 *class_utf8data++ = XCL_RANGE;
3564 class_utf8data += _pcre_ord2utf8(0x2030, class_utf8data);
3565 class_utf8data += _pcre_ord2utf8(0x205e, class_utf8data);
3566 *class_utf8data++ = XCL_RANGE;
3567 class_utf8data += _pcre_ord2utf8(0x2060, class_utf8data);
3568 class_utf8data += _pcre_ord2utf8(0x2fff, class_utf8data);
3569 *class_utf8data++ = XCL_RANGE;
3570 class_utf8data += _pcre_ord2utf8(0x3001, class_utf8data);
3571 class_utf8data += _pcre_ord2utf8(0x7fffffff, class_utf8data);
3572 }
3573 #endif
3574 continue;
3575
3576 case ESC_v:
3577 SETBIT(classbits, 0x0a); /* LF */
3578 SETBIT(classbits, 0x0b); /* VT */
3579 SETBIT(classbits, 0x0c); /* FF */
3580 SETBIT(classbits, 0x0d); /* CR */
3581 SETBIT(classbits, 0x85); /* NEL */
3582 #ifdef SUPPORT_UTF8
3583 if (utf8)
3584 {
3585 class_utf8 = TRUE;
3586 *class_utf8data++ = XCL_RANGE;
3587 class_utf8data += _pcre_ord2utf8(0x2028, class_utf8data);
3588 class_utf8data += _pcre_ord2utf8(0x2029, class_utf8data);
3589 }
3590 #endif
3591 continue;
3592
3593 case ESC_V:
3594 for (c = 0; c < 32; c++)
3595 {
3596 int x = 0xff;
3597 switch (c)
3598 {
3599 case 0x0a/8: x ^= 1 << (0x0a%8);
3600 x ^= 1 << (0x0b%8);
3601 x ^= 1 << (0x0c%8);
3602 x ^= 1 << (0x0d%8);
3603 break;
3604 case 0x85/8: x ^= 1 << (0x85%8); break;
3605 default: break;
3606 }
3607 classbits[c] |= x;
3608 }
3609
3610 #ifdef SUPPORT_UTF8
3611 if (utf8)
3612 {
3613 class_utf8 = TRUE;
3614 *class_utf8data++ = XCL_RANGE;
3615 class_utf8data += _pcre_ord2utf8(0x0100, class_utf8data);
3616 class_utf8data += _pcre_ord2utf8(0x2027, class_utf8data);
3617 *class_utf8data++ = XCL_RANGE;
3618 class_utf8data += _pcre_ord2utf8(0x2029, class_utf8data);
3619 class_utf8data += _pcre_ord2utf8(0x7fffffff, class_utf8data);
3620 }
3621 #endif
3622 continue;
3623
3624 #ifdef SUPPORT_UCP
3625 case ESC_p:
3626 case ESC_P:
3627 {
3628 BOOL negated;
3629 int pdata;
3630 int ptype = get_ucp(&ptr, &negated, &pdata, errorcodeptr);
3631 if (ptype < 0) goto FAILED;
3632 class_utf8 = TRUE;
3633 *class_utf8data++ = ((-c == ESC_p) != negated)?
3634 XCL_PROP : XCL_NOTPROP;
3635 *class_utf8data++ = ptype;
3636 *class_utf8data++ = pdata;
3637 class_charcount -= 2; /* Not a < 256 character */
3638 continue;
3639 }
3640 #endif
3641 /* Unrecognized escapes are faulted if PCRE is running in its
3642 strict mode. By default, for compatibility with Perl, they are
3643 treated as literals. */
3644
3645 default:
3646 if ((options & PCRE_EXTRA) != 0)
3647 {
3648 *errorcodeptr = ERR7;
3649 goto FAILED;
3650 }
3651 class_charcount -= 2; /* Undo the default count from above */
3652 c = *ptr; /* Get the final character and fall through */
3653 break;
3654 }
3655 }
3656
3657 /* Fall through if we have a single character (c >= 0). This may be
3658 greater than 256 in UTF-8 mode. */
3659
3660 } /* End of backslash handling */
3661
3662 /* A single character may be followed by '-' to form a range. However,
3663 Perl does not permit ']' to be the end of the range. A '-' character
3664 at the end is treated as a literal. Perl ignores orphaned \E sequences
3665 entirely. The code for handling \Q and \E is messy. */
3666
3667 CHECK_RANGE:
3668 while (ptr[1] == CHAR_BACKSLASH && ptr[2] == CHAR_E)
3669 {
3670 inescq = FALSE;
3671 ptr += 2;
3672 }
3673
3674 oldptr = ptr;
3675
3676 /* Remember \r or \n */
3677
3678 if (c == CHAR_CR || c == CHAR_NL) cd->external_flags |= PCRE_HASCRORLF;
3679
3680 /* Check for range */
3681
3682 if (!inescq && ptr[1] == CHAR_MINUS)
3683 {
3684 int d;
3685 ptr += 2;
3686 while (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_E) ptr += 2;
3687
3688 /* If we hit \Q (not followed by \E) at this point, go into escaped
3689 mode. */
3690
3691 while (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_Q)
3692 {
3693 ptr += 2;
3694 if (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_E)
3695 { ptr += 2; continue; }
3696 inescq = TRUE;
3697 break;
3698 }
3699
3700 if (*ptr == 0 || (!inescq && *ptr == CHAR_RIGHT_SQUARE_BRACKET))
3701 {
3702 ptr = oldptr;
3703 goto LONE_SINGLE_CHARACTER;
3704 }
3705
3706 #ifdef SUPPORT_UTF8
3707 if (utf8)
3708 { /* Braces are required because the */
3709 GETCHARLEN(d, ptr, ptr); /* macro generates multiple statements */
3710 }
3711 else
3712 #endif
3713 d = *ptr; /* Not UTF-8 mode */
3714
3715 /* The second part of a range can be a single-character escape, but
3716 not any of the other escapes. Perl 5.6 treats a hyphen as a literal
3717 in such circumstances. */
3718
3719 if (!inescq && d == CHAR_BACKSLASH)
3720 {
3721 d = check_escape(&ptr, errorcodeptr, cd->bracount, options, TRUE);
3722 if (*errorcodeptr != 0) goto FAILED;
3723
3724 /* \b is backspace; any other special means the '-' was literal */
3725
3726 if (d < 0)
3727 {
3728 if (d == -ESC_b) d = CHAR_BS; else
3729 {
3730 ptr = oldptr;
3731 goto LONE_SINGLE_CHARACTER; /* A few lines below */
3732 }
3733 }
3734 }
3735
3736 /* Check that the two values are in the correct order. Optimize
3737 one-character ranges */
3738
3739 if (d < c)
3740 {
3741 *errorcodeptr = ERR8;
3742 goto FAILED;
3743 }
3744
3745 if (d == c) goto LONE_SINGLE_CHARACTER; /* A few lines below */
3746
3747 /* Remember \r or \n */
3748
3749 if (d == CHAR_CR || d == CHAR_NL) cd->external_flags |= PCRE_HASCRORLF;
3750
3751 /* In UTF-8 mode, if the upper limit is > 255, or > 127 for caseless
3752 matching, we have to use an XCLASS with extra data items. Caseless
3753 matching for characters > 127 is available only if UCP support is
3754 available. */
3755
3756 #ifdef SUPPORT_UTF8
3757 if (utf8 && (d > 255 || ((options & PCRE_CASELESS) != 0 && d > 127)))
3758 {
3759 class_utf8 = TRUE;
3760
3761 /* With UCP support, we can find the other case equivalents of
3762 the relevant characters. There may be several ranges. Optimize how
3763 they fit with the basic range. */
3764
3765 #ifdef SUPPORT_UCP
3766 if ((options & PCRE_CASELESS) != 0)
3767 {
3768 unsigned int occ, ocd;
3769 unsigned int cc = c;
3770 unsigned int origd = d;
3771 while (get_othercase_range(&cc, origd, &occ, &ocd))
3772 {
3773 if (occ >= (unsigned int)c &&
3774 ocd <= (unsigned int)d)
3775 continue; /* Skip embedded ranges */
3776
3777 if (occ < (unsigned int)c &&
3778 ocd >= (unsigned int)c - 1) /* Extend the basic range */
3779 { /* if there is overlap, */
3780 c = occ; /* noting that if occ < c */
3781 continue; /* we can't have ocd > d */
3782 } /* because a subrange is */
3783 if (ocd > (unsigned int)d &&
3784 occ <= (unsigned int)d + 1) /* always shorter than */
3785 { /* the basic range. */
3786 d = ocd;
3787 continue;
3788 }
3789
3790 if (occ == ocd)
3791 {
3792 *class_utf8data++ = XCL_SINGLE;
3793 }
3794 else
3795 {
3796 *class_utf8data++ = XCL_RANGE;
3797 class_utf8data += _pcre_ord2utf8(occ, class_utf8data);
3798 }
3799 class_utf8data += _pcre_ord2utf8(ocd, class_utf8data);
3800 }
3801 }
3802 #endif /* SUPPORT_UCP */
3803
3804 /* Now record the original range, possibly modified for UCP caseless
3805 overlapping ranges. */
3806
3807 *class_utf8data++ = XCL_RANGE;
3808 class_utf8data += _pcre_ord2utf8(c, class_utf8data);
3809 class_utf8data += _pcre_ord2utf8(d, class_utf8data);
3810
3811 /* With UCP support, we are done. Without UCP support, there is no
3812 caseless matching for UTF-8 characters > 127; we can use the bit map
3813 for the smaller ones. */
3814
3815 #ifdef SUPPORT_UCP
3816 continue; /* With next character in the class */
3817 #else
3818 if ((options & PCRE_CASELESS) == 0 || c > 127) continue;
3819
3820 /* Adjust upper limit and fall through to set up the map */
3821
3822 d = 127;
3823
3824 #endif /* SUPPORT_UCP */
3825 }
3826 #endif /* SUPPORT_UTF8 */
3827
3828 /* We use the bit map for all cases when not in UTF-8 mode; else
3829 ranges that lie entirely within 0-127 when there is UCP support; else
3830 for partial ranges without UCP support. */
3831
3832 class_charcount += d - c + 1;
3833 class_lastchar = d;
3834
3835 /* We can save a bit of time by skipping this in the pre-compile. */
3836
3837 if (lengthptr == NULL) for (; c <= d; c++)
3838 {
3839 classbits[c/8] |= (1 << (c&7));
3840 if ((options & PCRE_CASELESS) != 0)
3841 {
3842 int uc = cd->fcc[c]; /* flip case */
3843 classbits[uc/8] |= (1 << (uc&7));
3844 }
3845 }
3846
3847 continue; /* Go get the next char in the class */
3848 }
3849
3850 /* Handle a lone single character - we can get here for a normal
3851 non-escape char, or after \ that introduces a single character or for an
3852 apparent range that isn't. */
3853
3854 LONE_SINGLE_CHARACTER:
3855
3856 /* Handle a character that cannot go in the bit map */
3857
3858 #ifdef SUPPORT_UTF8
3859 if (utf8 && (c > 255 || ((options & PCRE_CASELESS) != 0 && c > 127)))
3860 {
3861 class_utf8 = TRUE;
3862 *class_utf8data++ = XCL_SINGLE;
3863 class_utf8data += _pcre_ord2utf8(c, class_utf8data);
3864
3865 #ifdef SUPPORT_UCP
3866 if ((options & PCRE_CASELESS) != 0)
3867 {
3868 unsigned int othercase;
3869 if ((othercase = UCD_OTHERCASE(c)) != c)
3870 {
3871 *class_utf8data++ = XCL_SINGLE;
3872 class_utf8data += _pcre_ord2utf8(othercase, class_utf8data);
3873 }
3874 }
3875 #endif /* SUPPORT_UCP */
3876
3877 }
3878 else
3879 #endif /* SUPPORT_UTF8 */
3880
3881 /* Handle a single-byte character */
3882 {
3883 classbits[c/8] |= (1 << (c&7));
3884 if ((options & PCRE_CASELESS) != 0)
3885 {
3886 c = cd->fcc[c]; /* flip case */
3887 classbits[c/8] |= (1 << (c&7));
3888 }
3889 class_charcount++;
3890 class_lastchar = c;
3891 }
3892 }
3893
3894 /* Loop until ']' reached. This "while" is the end of the "do" far above.
3895 If we are at the end of an internal nested string, revert to the outer
3896 string. */
3897
3898 while (((c = *(++ptr)) != 0 ||
3899 (nestptr != NULL &&
3900 (ptr = nestptr, nestptr = NULL, c = *(++ptr)) != 0)) &&
3901 (c != CHAR_RIGHT_SQUARE_BRACKET || inescq));
3902
3903 /* Check for missing terminating ']' */
3904
3905 if (c == 0)
3906 {
3907 *errorcodeptr = ERR6;
3908 goto FAILED;
3909 }
3910
3911 /* If class_charcount is 1, we saw precisely one character whose value is
3912 less than 256. As long as there were no characters >= 128 and there was no
3913 use of \p or \P, in other words, no use of any XCLASS features, we can
3914 optimize.
3915
3916 In UTF-8 mode, we can optimize the negative case only if there were no
3917 characters >= 128 because OP_NOT and the related opcodes like OP_NOTSTAR
3918 operate on single-bytes only. This is an historical hangover. Maybe one day
3919 we can tidy these opcodes to handle multi-byte characters.
3920
3921 The optimization throws away the bit map. We turn the item into a
3922 1-character OP_CHAR[NC] if it's positive, or OP_NOT if it's negative. Note
3923 that OP_NOT does not support multibyte characters. In the positive case, it
3924 can cause firstbyte to be set. Otherwise, there can be no first char if
3925 this item is first, whatever repeat count may follow. In the case of
3926 reqbyte, save the previous value for reinstating. */
3927
3928 #ifdef SUPPORT_UTF8
3929 if (class_charcount == 1 && !class_utf8 &&
3930 (!utf8 || !negate_class || class_lastchar < 128))
3931 #else
3932 if (class_charcount == 1)
3933 #endif
3934 {
3935 zeroreqbyte = reqbyte;
3936
3937 /* The OP_NOT opcode works on one-byte characters only. */
3938
3939 if (negate_class)
3940 {
3941 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
3942 zerofirstbyte = firstbyte;
3943 *code++ = OP_NOT;
3944 *code++ = class_lastchar;
3945 break;
3946 }
3947
3948 /* For a single, positive character, get the value into mcbuffer, and
3949 then we can handle this with the normal one-character code. */
3950
3951 #ifdef SUPPORT_UTF8
3952 if (utf8 && class_lastchar > 127)
3953 mclength = _pcre_ord2utf8(class_lastchar, mcbuffer);
3954 else
3955 #endif
3956 {
3957 mcbuffer[0] = class_lastchar;
3958 mclength = 1;
3959 }
3960 goto ONE_CHAR;
3961 } /* End of 1-char optimization */
3962
3963 /* The general case - not the one-char optimization. If this is the first
3964 thing in the branch, there can be no first char setting, whatever the
3965 repeat count. Any reqbyte setting must remain unchanged after any kind of
3966 repeat. */
3967
3968 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
3969 zerofirstbyte = firstbyte;
3970 zeroreqbyte = reqbyte;
3971
3972 /* If there are characters with values > 255, we have to compile an
3973 extended class, with its own opcode, unless there was a negated special
3974 such as \S in the class, and PCRE_UCP is not set, because in that case all
3975 characters > 255 are in the class, so any that were explicitly given as
3976 well can be ignored. If (when there are explicit characters > 255 that must
3977 be listed) there are no characters < 256, we can omit the bitmap in the
3978 actual compiled code. */
3979
3980 #ifdef SUPPORT_UTF8
3981 if (class_utf8 && (!should_flip_negation || (options & PCRE_UCP) != 0))
3982 {
3983 *class_utf8data++ = XCL_END; /* Marks the end of extra data */
3984 *code++ = OP_XCLASS;
3985 code += LINK_SIZE;
3986 *code = negate_class? XCL_NOT : 0;
3987
3988 /* If the map is required, move up the extra data to make room for it;
3989 otherwise just move the code pointer to the end of the extra data. */
3990
3991 if (class_charcount > 0)
3992 {
3993 *code++ |= XCL_MAP;
3994 memmove(code + 32, code, class_utf8data - code);
3995 memcpy(code, classbits, 32);
3996 code = class_utf8data + 32;
3997 }
3998 else code = class_utf8data;
3999
4000 /* Now fill in the complete length of the item */
4001
4002 PUT(previous, 1, code - previous);
4003 break; /* End of class handling */
4004 }
4005 #endif
4006
4007 /* If there are no characters > 255, or they are all to be included or
4008 excluded, set the opcode to OP_CLASS or OP_NCLASS, depending on whether the
4009 whole class was negated and whether there were negative specials such as \S
4010 (non-UCP) in the class. Then copy the 32-byte map into the code vector,
4011 negating it if necessary. */
4012
4013 *code++ = (negate_class == should_flip_negation) ? OP_CLASS : OP_NCLASS;
4014 if (negate_class)
4015 {
4016 if (lengthptr == NULL) /* Save time in the pre-compile phase */
4017 for (c = 0; c < 32; c++) code[c] = ~classbits[c];
4018 }
4019 else
4020 {
4021 memcpy(code, classbits, 32);
4022 }
4023 code += 32;
4024 break;
4025
4026
4027 /* ===================================================================*/
4028 /* Various kinds of repeat; '{' is not necessarily a quantifier, but this
4029 has been tested above. */
4030
4031 case CHAR_LEFT_CURLY_BRACKET:
4032 if (!is_quantifier) goto NORMAL_CHAR;
4033 ptr = read_repeat_counts(ptr+1, &repeat_min, &repeat_max, errorcodeptr);
4034 if (*errorcodeptr != 0) goto FAILED;
4035 goto REPEAT;
4036
4037 case CHAR_ASTERISK:
4038 repeat_min = 0;
4039 repeat_max = -1;
4040 goto REPEAT;
4041
4042 case CHAR_PLUS:
4043 repeat_min = 1;
4044 repeat_max = -1;
4045 goto REPEAT;
4046
4047 case CHAR_QUESTION_MARK:
4048 repeat_min = 0;
4049 repeat_max = 1;
4050
4051 REPEAT:
4052 if (previous == NULL)
4053 {
4054 *errorcodeptr = ERR9;
4055 goto FAILED;
4056 }
4057
4058 if (repeat_min == 0)
4059 {
4060 firstbyte = zerofirstbyte; /* Adjust for zero repeat */
4061 reqbyte = zeroreqbyte; /* Ditto */
4062 }
4063
4064 /* Remember whether this is a variable length repeat */
4065
4066 reqvary = (repeat_min == repeat_max)? 0 : REQ_VARY;
4067
4068 op_type = 0; /* Default single-char op codes */
4069 possessive_quantifier = FALSE; /* Default not possessive quantifier */
4070
4071 /* Save start of previous item, in case we have to move it up to make space
4072 for an inserted OP_ONCE for the additional '+' extension. */
4073
4074 tempcode = previous;
4075
4076 /* If the next character is '+', we have a possessive quantifier. This
4077 implies greediness, whatever the setting of the PCRE_UNGREEDY option.
4078 If the next character is '?' this is a minimizing repeat, by default,
4079 but if PCRE_UNGREEDY is set, it works the other way round. We change the
4080 repeat type to the non-default. */
4081
4082 if (ptr[1] == CHAR_PLUS)
4083 {
4084 repeat_type = 0; /* Force greedy */
4085 possessive_quantifier = TRUE;
4086 ptr++;
4087 }
4088 else if (ptr[1] == CHAR_QUESTION_MARK)
4089 {
4090 repeat_type = greedy_non_default;
4091 ptr++;
4092 }
4093 else repeat_type = greedy_default;
4094
4095 /* If previous was a character match, abolish the item and generate a
4096 repeat item instead. If a char item has a minumum of more than one, ensure
4097 that it is set in reqbyte - it might not be if a sequence such as x{3} is
4098 the first thing in a branch because the x will have gone into firstbyte
4099 instead. */
4100
4101 if (*previous == OP_CHAR || *previous == OP_CHARNC)
4102 {
4103 /* Deal with UTF-8 characters that take up more than one byte. It's
4104 easier to write this out separately than try to macrify it. Use c to
4105 hold the length of the character in bytes, plus 0x80 to flag that it's a
4106 length rather than a small character. */
4107
4108 #ifdef SUPPORT_UTF8
4109 if (utf8 && (code[-1] & 0x80) != 0)
4110 {
4111 uschar *lastchar = code - 1;
4112 while((*lastchar & 0xc0) == 0x80) lastchar--;
4113 c = code - lastchar; /* Length of UTF-8 character */
4114 memcpy(utf8_char, lastchar, c); /* Save the char */
4115 c |= 0x80; /* Flag c as a length */
4116 }
4117 else
4118 #endif
4119
4120 /* Handle the case of a single byte - either with no UTF8 support, or
4121 with UTF-8 disabled, or for a UTF-8 character < 128. */
4122
4123 {
4124 c = code[-1];
4125 if (repeat_min > 1) reqbyte = c | req_caseopt | cd->req_varyopt;
4126 }
4127
4128 /* If the repetition is unlimited, it pays to see if the next thing on
4129 the line is something that cannot possibly match this character. If so,
4130 automatically possessifying this item gains some performance in the case
4131 where the match fails. */
4132
4133 if (!possessive_quantifier &&
4134 repeat_max < 0 &&
4135 check_auto_possessive(previous, utf8, ptr + 1, options, cd))
4136 {
4137 repeat_type = 0; /* Force greedy */
4138 possessive_quantifier = TRUE;
4139 }
4140
4141 goto OUTPUT_SINGLE_REPEAT; /* Code shared with single character types */
4142 }
4143
4144 /* If previous was a single negated character ([^a] or similar), we use
4145 one of the special opcodes, replacing it. The code is shared with single-
4146 character repeats by setting opt_type to add a suitable offset into
4147 repeat_type. We can also test for auto-possessification. OP_NOT is
4148 currently used only for single-byte chars. */
4149
4150 else if (*previous == OP_NOT)
4151 {
4152 op_type = OP_NOTSTAR - OP_STAR; /* Use "not" opcodes */
4153 c = previous[1];
4154 if (!possessive_quantifier &&
4155 repeat_max < 0 &&
4156 check_auto_possessive(previous, utf8, ptr + 1, options, cd))
4157 {
4158 repeat_type = 0; /* Force greedy */
4159 possessive_quantifier = TRUE;
4160 }
4161 goto OUTPUT_SINGLE_REPEAT;
4162 }
4163
4164 /* If previous was a character type match (\d or similar), abolish it and
4165 create a suitable repeat item. The code is shared with single-character
4166 repeats by setting op_type to add a suitable offset into repeat_type. Note
4167 the the Unicode property types will be present only when SUPPORT_UCP is
4168 defined, but we don't wrap the little bits of code here because it just
4169 makes it horribly messy. */
4170
4171 else if (*previous < OP_EODN)
4172 {
4173 uschar *oldcode;
4174 int prop_type, prop_value;
4175 op_type = OP_TYPESTAR - OP_STAR; /* Use type opcodes */
4176 c = *previous;
4177
4178 if (!possessive_quantifier &&
4179 repeat_max < 0 &&
4180 check_auto_possessive(previous, utf8, ptr + 1, options, cd))
4181 {
4182 repeat_type = 0; /* Force greedy */
4183 possessive_quantifier = TRUE;
4184 }
4185
4186 OUTPUT_SINGLE_REPEAT:
4187 if (*previous == OP_PROP || *previous == OP_NOTPROP)
4188 {
4189 prop_type = previous[1];
4190 prop_value = previous[2];
4191 }
4192 else prop_type = prop_value = -1;
4193
4194 oldcode = code;
4195 code = previous; /* Usually overwrite previous item */
4196
4197 /* If the maximum is zero then the minimum must also be zero; Perl allows
4198 this case, so we do too - by simply omitting the item altogether. */
4199
4200 if (repeat_max == 0) goto END_REPEAT;
4201
4202 /*--------------------------------------------------------------------*/
4203 /* This code is obsolete from release 8.00; the restriction was finally
4204 removed: */
4205
4206 /* All real repeats make it impossible to handle partial matching (maybe
4207 one day we will be able to remove this restriction). */
4208
4209 /* if (repeat_max != 1) cd->external_flags |= PCRE_NOPARTIAL; */
4210 /*--------------------------------------------------------------------*/
4211
4212 /* Combine the op_type with the repeat_type */
4213
4214 repeat_type += op_type;
4215
4216 /* A minimum of zero is handled either as the special case * or ?, or as
4217 an UPTO, with the maximum given. */
4218
4219 if (repeat_min == 0)
4220 {
4221 if (repeat_max == -1) *code++ = OP_STAR + repeat_type;
4222 else if (repeat_max == 1) *code++ = OP_QUERY + repeat_type;
4223 else
4224 {
4225 *code++ = OP_UPTO + repeat_type;
4226 PUT2INC(code, 0, repeat_max);
4227 }
4228 }
4229
4230 /* A repeat minimum of 1 is optimized into some special cases. If the
4231 maximum is unlimited, we use OP_PLUS. Otherwise, the original item is
4232 left in place and, if the maximum is greater than 1, we use OP_UPTO with
4233 one less than the maximum. */
4234
4235 else if (repeat_min == 1)
4236 {
4237 if (repeat_max == -1)
4238 *code++ = OP_PLUS + repeat_type;
4239 else
4240 {
4241 code = oldcode; /* leave previous item in place */
4242 if (repeat_max == 1) goto END_REPEAT;
4243 *code++ = OP_UPTO + repeat_type;
4244 PUT2INC(code, 0, repeat_max - 1);
4245 }
4246 }
4247
4248 /* The case {n,n} is just an EXACT, while the general case {n,m} is
4249 handled as an EXACT followed by an UPTO. */
4250
4251 else
4252 {
4253 *code++ = OP_EXACT + op_type; /* NB EXACT doesn't have repeat_type */
4254 PUT2INC(code, 0, repeat_min);
4255
4256 /* If the maximum is unlimited, insert an OP_STAR. Before doing so,
4257 we have to insert the character for the previous code. For a repeated
4258 Unicode property match, there are two extra bytes that define the
4259 required property. In UTF-8 mode, long characters have their length in
4260 c, with the 0x80 bit as a flag. */
4261
4262 if (repeat_max < 0)
4263 {
4264 #ifdef SUPPORT_UTF8
4265 if (utf8 && c >= 128)
4266 {
4267 memcpy(code, utf8_char, c & 7);
4268 code += c & 7;
4269 }
4270 else
4271 #endif
4272 {
4273 *code++ = c;
4274 if (prop_type >= 0)
4275 {
4276 *code++ = prop_type;
4277 *code++ = prop_value;
4278 }
4279 }
4280 *code++ = OP_STAR + repeat_type;
4281 }
4282
4283 /* Else insert an UPTO if the max is greater than the min, again
4284 preceded by the character, for the previously inserted code. If the
4285 UPTO is just for 1 instance, we can use QUERY instead. */
4286
4287 else if (repeat_max != repeat_min)
4288 {
4289 #ifdef SUPPORT_UTF8
4290 if (utf8 && c >= 128)
4291 {
4292 memcpy(code, utf8_char, c & 7);
4293 code += c & 7;
4294 }
4295 else
4296 #endif
4297 *code++ = c;
4298 if (prop_type >= 0)
4299 {
4300 *code++ = prop_type;
4301 *code++ = prop_value;
4302 }
4303 repeat_max -= repeat_min;
4304
4305 if (repeat_max == 1)
4306 {
4307 *code++ = OP_QUERY + repeat_type;
4308 }
4309 else
4310 {
4311 *code++ = OP_UPTO + repeat_type;
4312 PUT2INC(code, 0, repeat_max);
4313 }
4314 }
4315 }
4316
4317 /* The character or character type itself comes last in all cases. */
4318
4319 #ifdef SUPPORT_UTF8
4320 if (utf8 && c >= 128)
4321 {
4322 memcpy(code, utf8_char, c & 7);
4323 code += c & 7;
4324 }
4325 else
4326 #endif
4327 *code++ = c;
4328
4329 /* For a repeated Unicode property match, there are two extra bytes that
4330 define the required property. */
4331
4332 #ifdef SUPPORT_UCP
4333 if (prop_type >= 0)
4334 {
4335 *code++ = prop_type;
4336 *code++ = prop_value;
4337 }
4338 #endif
4339 }
4340
4341 /* If previous was a character class or a back reference, we put the repeat
4342 stuff after it, but just skip the item if the repeat was {0,0}. */
4343
4344 else if (*previous == OP_CLASS ||
4345 *previous == OP_NCLASS ||
4346 #ifdef SUPPORT_UTF8
4347 *previous == OP_XCLASS ||
4348 #endif
4349 *previous == OP_REF)
4350 {
4351 if (repeat_max == 0)
4352 {
4353 code = previous;
4354 goto END_REPEAT;
4355 }
4356
4357 /*--------------------------------------------------------------------*/
4358 /* This code is obsolete from release 8.00; the restriction was finally
4359 removed: */
4360
4361 /* All real repeats make it impossible to handle partial matching (maybe
4362 one day we will be able to remove this restriction). */
4363
4364 /* if (repeat_max != 1) cd->external_flags |= PCRE_NOPARTIAL; */
4365 /*--------------------------------------------------------------------*/
4366
4367 if (repeat_min == 0 && repeat_max == -1)
4368 *code++ = OP_CRSTAR + repeat_type;
4369 else if (repeat_min == 1 && repeat_max == -1)
4370 *code++ = OP_CRPLUS + repeat_type;
4371 else if (repeat_min == 0 && repeat_max == 1)
4372 *code++ = OP_CRQUERY + repeat_type;
4373 else
4374 {
4375 *code++ = OP_CRRANGE + repeat_type;
4376 PUT2INC(code, 0, repeat_min);
4377 if (repeat_max == -1) repeat_max = 0; /* 2-byte encoding for max */
4378 PUT2INC(code, 0, repeat_max);
4379 }
4380 }
4381
4382 /* If previous was a bracket group, we may have to replicate it in certain
4383 cases. */
4384
4385 else if (*previous == OP_BRA || *previous == OP_CBRA ||
4386 *previous == OP_ONCE || *previous == OP_COND)
4387 {
4388 register int i;
4389 int ketoffset = 0;
4390 int len = (int)(code - previous);
4391 uschar *bralink = NULL;
4392
4393 /* Repeating a DEFINE group is pointless */
4394
4395 if (*previous == OP_COND && previous[LINK_SIZE+1] == OP_DEF)
4396 {
4397 *errorcodeptr = ERR55;
4398 goto FAILED;
4399 }
4400
4401 /* If the maximum repeat count is unlimited, find the end of the bracket
4402 by scanning through from the start, and compute the offset back to it
4403 from the current code pointer. There may be an OP_OPT setting following
4404 the final KET, so we can't find the end just by going back from the code
4405 pointer. */
4406
4407 if (repeat_max == -1)
4408 {
4409 register uschar *ket = previous;
4410 do ket += GET(ket, 1); while (*ket != OP_KET);
4411 ketoffset = (int)(code - ket);
4412 }
4413
4414 /* The case of a zero minimum is special because of the need to stick
4415 OP_BRAZERO in front of it, and because the group appears once in the
4416 data, whereas in other cases it appears the minimum number of times. For
4417 this reason, it is simplest to treat this case separately, as otherwise
4418 the code gets far too messy. There are several special subcases when the
4419 minimum is zero. */
4420
4421 if (repeat_min == 0)
4422 {
4423 /* If the maximum is also zero, we used to just omit the group from the
4424 output altogether, like this:
4425
4426 ** if (repeat_max == 0)
4427 ** {
4428 ** code = previous;
4429 ** goto END_REPEAT;
4430 ** }
4431
4432 However, that fails when a group is referenced as a subroutine from
4433 elsewhere in the pattern, so now we stick in OP_SKIPZERO in front of it
4434 so that it is skipped on execution. As we don't have a list of which
4435 groups are referenced, we cannot do this selectively.
4436
4437 If the maximum is 1 or unlimited, we just have to stick in the BRAZERO
4438 and do no more at this point. However, we do need to adjust any
4439 OP_RECURSE calls inside the group that refer to the group itself or any
4440 internal or forward referenced group, because the offset is from the
4441 start of the whole regex. Temporarily terminate the pattern while doing
4442 this. */
4443
4444 if (repeat_max <= 1) /* Covers 0, 1, and unlimited */
4445 {
4446 *code = OP_END;
4447 adjust_recurse(previous, 1, utf8, cd, save_hwm);
4448 memmove(previous+1, previous, len);
4449 code++;
4450 if (repeat_max == 0)
4451 {
4452 *previous++ = OP_SKIPZERO;
4453 goto END_REPEAT;
4454 }
4455 *previous++ = OP_BRAZERO + repeat_type;
4456 }
4457
4458 /* If the maximum is greater than 1 and limited, we have to replicate
4459 in a nested fashion, sticking OP_BRAZERO before each set of brackets.
4460 The first one has to be handled carefully because it's the original
4461 copy, which has to be moved up. The remainder can be handled by code
4462 that is common with the non-zero minimum case below. We have to
4463 adjust the value or repeat_max, since one less copy is required. Once
4464 again, we may have to adjust any OP_RECURSE calls inside the group. */
4465
4466 else
4467 {
4468 int offset;
4469 *code = OP_END;
4470 adjust_recurse(previous, 2 + LINK_SIZE, utf8, cd, save_hwm);
4471 memmove(previous + 2 + LINK_SIZE, previous, len);
4472 code += 2 + LINK_SIZE;
4473 *previous++ = OP_BRAZERO + repeat_type;
4474 *previous++ = OP_BRA;
4475
4476 /* We chain together the bracket offset fields that have to be
4477 filled in later when the ends of the brackets are reached. */
4478
4479 offset = (bralink == NULL)? 0 : (int)(previous - bralink);
4480 bralink = previous;
4481 PUTINC(previous, 0, offset);
4482 }
4483
4484 repeat_max--;
4485 }
4486
4487 /* If the minimum is greater than zero, replicate the group as many
4488 times as necessary, and adjust the maximum to the number of subsequent
4489 copies that we need. If we set a first char from the group, and didn't
4490 set a required char, copy the latter from the former. If there are any
4491 forward reference subroutine calls in the group, there will be entries on
4492 the workspace list; replicate these with an appropriate increment. */
4493
4494 else
4495 {
4496 if (repeat_min > 1)
4497 {
4498 /* In the pre-compile phase, we don't actually do the replication. We
4499 just adjust the length as if we had. Do some paranoid checks for
4500 potential integer overflow. The INT64_OR_DOUBLE type is a 64-bit
4501 integer type when available, otherwise double. */
4502
4503 if (lengthptr != NULL)
4504 {
4505 int delta = (repeat_min - 1)*length_prevgroup;
4506 if ((INT64_OR_DOUBLE)(repeat_min - 1)*
4507 (INT64_OR_DOUBLE)length_prevgroup >
4508 (INT64_OR_DOUBLE)INT_MAX ||
4509 OFLOW_MAX - *lengthptr < delta)
4510 {
4511 *errorcodeptr = ERR20;
4512 goto FAILED;
4513 }
4514 *lengthptr += delta;
4515 }
4516
4517 /* This is compiling for real */
4518
4519 else
4520 {
4521 if (groupsetfirstbyte && reqbyte < 0) reqbyte = firstbyte;
4522 for (i = 1; i < repeat_min; i++)
4523 {
4524 uschar *hc;
4525 uschar *this_hwm = cd->hwm;
4526 memcpy(code, previous, len);
4527 for (hc = save_hwm; hc < this_hwm; hc += LINK_SIZE)
4528 {
4529 PUT(cd->hwm, 0, GET(hc, 0) + len);
4530 cd->hwm += LINK_SIZE;
4531 }
4532 save_hwm = this_hwm;
4533 code += len;
4534 }
4535 }
4536 }
4537
4538 if (repeat_max > 0) repeat_max -= repeat_min;
4539 }
4540
4541 /* This code is common to both the zero and non-zero minimum cases. If
4542 the maximum is limited, it replicates the group in a nested fashion,
4543 remembering the bracket starts on a stack. In the case of a zero minimum,
4544 the first one was set up above. In all cases the repeat_max now specifies
4545 the number of additional copies needed. Again, we must remember to
4546 replicate entries on the forward reference list. */
4547
4548 if (repeat_max >= 0)
4549 {
4550 /* In the pre-compile phase, we don't actually do the replication. We
4551 just adjust the length as if we had. For each repetition we must add 1
4552 to the length for BRAZERO and for all but the last repetition we must
4553 add 2 + 2*LINKSIZE to allow for the nesting that occurs. Do some
4554 paranoid checks to avoid integer overflow. The INT64_OR_DOUBLE type is
4555 a 64-bit integer type when available, otherwise double. */
4556
4557 if (lengthptr != NULL && repeat_max > 0)
4558 {
4559 int delta = repeat_max * (length_prevgroup + 1 + 2 + 2*LINK_SIZE) -
4560 2 - 2*LINK_SIZE; /* Last one doesn't nest */
4561 if ((INT64_OR_DOUBLE)repeat_max *
4562 (INT64_OR_DOUBLE)(length_prevgroup + 1 + 2 + 2*LINK_SIZE)
4563 > (INT64_OR_DOUBLE)INT_MAX ||
4564 OFLOW_MAX - *lengthptr < delta)
4565 {
4566 *errorcodeptr = ERR20;
4567 goto FAILED;
4568 }
4569 *lengthptr += delta;
4570 }
4571
4572 /* This is compiling for real */
4573
4574 else for (i = repeat_max - 1; i >= 0; i--)
4575 {
4576 uschar *hc;
4577 uschar *this_hwm = cd->hwm;
4578
4579 *code++ = OP_BRAZERO + repeat_type;
4580
4581 /* All but the final copy start a new nesting, maintaining the
4582 chain of brackets outstanding. */
4583
4584 if (i != 0)
4585 {
4586 int offset;
4587 *code++ = OP_BRA;
4588 offset = (bralink == NULL)? 0 : (int)(code - bralink);
4589 bralink = code;
4590 PUTINC(code, 0, offset);
4591 }
4592
4593 memcpy(code, previous, len);
4594 for (hc = save_hwm; hc < this_hwm; hc += LINK_SIZE)
4595 {
4596 PUT(cd->hwm, 0, GET(hc, 0) + len + ((i != 0)? 2+LINK_SIZE : 1));
4597 cd->hwm += LINK_SIZE;
4598 }
4599 save_hwm = this_hwm;
4600 code += len;
4601 }
4602
4603 /* Now chain through the pending brackets, and fill in their length
4604 fields (which are holding the chain links pro tem). */
4605
4606 while (bralink != NULL)
4607 {
4608 int oldlinkoffset;
4609 int offset = (int)(code - bralink + 1);
4610 uschar *bra = code - offset;
4611 oldlinkoffset = GET(bra, 1);
4612 bralink = (oldlinkoffset == 0)? NULL : bralink - oldlinkoffset;
4613 *code++ = OP_KET;
4614 PUTINC(code, 0, offset);
4615 PUT(bra, 1, offset);
4616 }
4617 }
4618
4619 /* If the maximum is unlimited, set a repeater in the final copy. We
4620 can't just offset backwards from the current code point, because we
4621 don't know if there's been an options resetting after the ket. The
4622 correct offset was computed above.
4623
4624 Then, when we are doing the actual compile phase, check to see whether
4625 this group is a non-atomic one that could match an empty string. If so,
4626 convert the initial operator to the S form (e.g. OP_BRA -> OP_SBRA) so
4627 that runtime checking can be done. [This check is also applied to
4628 atomic groups at runtime, but in a different way.] */
4629
4630 else
4631 {
4632 uschar *ketcode = code - ketoffset;
4633 uschar *bracode = ketcode - GET(ketcode, 1);
4634 *ketcode = OP_KETRMAX + repeat_type;
4635 if (lengthptr == NULL && *bracode != OP_ONCE)
4636 {
4637 uschar *scode = bracode;
4638 do
4639 {
4640 if (could_be_empty_branch(scode, ketcode, utf8, cd))
4641 {
4642 *bracode += OP_SBRA - OP_BRA;
4643 break;
4644 }
4645 scode += GET(scode, 1);
4646 }
4647 while (*scode == OP_ALT);
4648 }
4649 }
4650 }
4651
4652 /* If previous is OP_FAIL, it was generated by an empty class [] in
4653 JavaScript mode. The other ways in which OP_FAIL can be generated, that is
4654 by (*FAIL) or (?!) set previous to NULL, which gives a "nothing to repeat"
4655 error above. We can just ignore the repeat in JS case. */
4656
4657 else if (*previous == OP_FAIL) goto END_REPEAT;
4658
4659 /* Else there's some kind of shambles */
4660
4661 else
4662 {
4663 *errorcodeptr = ERR11;
4664 goto FAILED;
4665 }
4666
4667 /* If the character following a repeat is '+', or if certain optimization
4668 tests above succeeded, possessive_quantifier is TRUE. For some of the
4669 simpler opcodes, there is an special alternative opcode for this. For
4670 anything else, we wrap the entire repeated item inside OP_ONCE brackets.
4671 The '+' notation is just syntactic sugar, taken from Sun's Java package,
4672 but the special opcodes can optimize it a bit. The repeated item starts at
4673 tempcode, not at previous, which might be the first part of a string whose
4674 (former) last char we repeated.
4675
4676 Possessifying an 'exact' quantifier has no effect, so we can ignore it. But
4677 an 'upto' may follow. We skip over an 'exact' item, and then test the
4678 length of what remains before proceeding. */
4679
4680 if (possessive_quantifier)
4681 {
4682 int len;
4683
4684 if (*tempcode == OP_TYPEEXACT)
4685 tempcode += _pcre_OP_lengths[*tempcode] +
4686 ((tempcode[3] == OP_PROP || tempcode[3] == OP_NOTPROP)? 2 : 0);
4687
4688 else if (*tempcode == OP_EXACT || *tempcode == OP_NOTEXACT)
4689 {
4690 tempcode += _pcre_OP_lengths[*tempcode];
4691 #ifdef SUPPORT_UTF8
4692 if (utf8 && tempcode[-1] >= 0xc0)
4693 tempcode += _pcre_utf8_table4[tempcode[-1] & 0x3f];
4694 #endif
4695 }
4696
4697 len = (int)(code - tempcode);
4698 if (len > 0) switch (*tempcode)
4699 {
4700 case OP_STAR: *tempcode = OP_POSSTAR; break;
4701 case OP_PLUS: *tempcode = OP_POSPLUS; break;
4702 case OP_QUERY: *tempcode = OP_POSQUERY; break;
4703 case OP_UPTO: *tempcode = OP_POSUPTO; break;
4704
4705 case OP_TYPESTAR: *tempcode = OP_TYPEPOSSTAR; break;
4706 case OP_TYPEPLUS: *tempcode = OP_TYPEPOSPLUS; break;
4707 case OP_TYPEQUERY: *tempcode = OP_TYPEPOSQUERY; break;
4708 case OP_TYPEUPTO: *tempcode = OP_TYPEPOSUPTO; break;
4709
4710 case OP_NOTSTAR: *tempcode = OP_NOTPOSSTAR; break;
4711 case OP_NOTPLUS: *tempcode = OP_NOTPOSPLUS; break;
4712 case OP_NOTQUERY: *tempcode = OP_NOTPOSQUERY; break;
4713 case OP_NOTUPTO: *tempcode = OP_NOTPOSUPTO; break;
4714
4715 /* Because we are moving code along, we must ensure that any
4716 pending recursive references are updated. */
4717
4718 default:
4719 *code = OP_END;
4720 adjust_recurse(tempcode, 1 + LINK_SIZE, utf8, cd, save_hwm);
4721 memmove(tempcode + 1+LINK_SIZE, tempcode, len);
4722 code += 1 + LINK_SIZE;
4723 len += 1 + LINK_SIZE;
4724 tempcode[0] = OP_ONCE;
4725 *code++ = OP_KET;
4726 PUTINC(code, 0, len);
4727 PUT(tempcode, 1, len);
4728 break;
4729 }
4730 }
4731
4732 /* In all case we no longer have a previous item. We also set the
4733 "follows varying string" flag for subsequently encountered reqbytes if
4734 it isn't already set and we have just passed a varying length item. */
4735
4736 END_REPEAT:
4737 previous = NULL;
4738 cd->req_varyopt |= reqvary;
4739 break;
4740
4741
4742 /* ===================================================================*/
4743 /* Start of nested parenthesized sub-expression, or comment or lookahead or
4744 lookbehind or option setting or condition or all the other extended
4745 parenthesis forms. */
4746
4747 case CHAR_LEFT_PARENTHESIS:
4748 newoptions = options;
4749 skipbytes = 0;
4750 bravalue = OP_CBRA;
4751 save_hwm = cd->hwm;
4752 reset_bracount = FALSE;
4753
4754 /* First deal with various "verbs" that can be introduced by '*'. */
4755
4756 if (*(++ptr) == CHAR_ASTERISK &&
4757 ((cd->ctypes[ptr[1]] & ctype_letter) != 0 || ptr[1] == ':'))
4758 {
4759 int i, namelen;
4760 int arglen = 0;
4761 const char *vn = verbnames;
4762 const uschar *name = ptr + 1;
4763 const uschar *arg = NULL;
4764 previous = NULL;
4765 while ((cd->ctypes[*++ptr] & ctype_letter) != 0) {};
4766 namelen = (int)(ptr - name);
4767
4768 if (*ptr == CHAR_COLON)
4769 {
4770 arg = ++ptr;
4771 while ((cd->ctypes[*ptr] & (ctype_letter|ctype_digit)) != 0
4772 || *ptr == '_') ptr++;
4773 arglen = (int)(ptr - arg);
4774 }
4775
4776 if (*ptr != CHAR_RIGHT_PARENTHESIS)
4777 {
4778 *errorcodeptr = ERR60;
4779 goto FAILED;
4780 }
4781
4782 /* Scan the table of verb names */
4783
4784 for (i = 0; i < verbcount; i++)
4785 {
4786 if (namelen == verbs[i].len &&
4787 strncmp((char *)name, vn, namelen) == 0)
4788 {
4789 /* Check for open captures before ACCEPT */
4790
4791 if (verbs[i].op == OP_ACCEPT)
4792 {
4793 open_capitem *oc;
4794 cd->had_accept = TRUE;
4795 for (oc = cd->open_caps; oc != NULL; oc = oc->next)
4796 {
4797 *code++ = OP_CLOSE;
4798 PUT2INC(code, 0, oc->number);
4799 }
4800 }
4801
4802 /* Handle the cases with/without an argument */
4803
4804 if (arglen == 0)
4805 {
4806 if (verbs[i].op < 0) /* Argument is mandatory */
4807 {
4808 *errorcodeptr = ERR66;
4809 goto FAILED;
4810 }
4811 *code++ = verbs[i].op;
4812 }
4813
4814 else
4815 {
4816 if (verbs[i].op_arg < 0) /* Argument is forbidden */
4817 {
4818 *errorcodeptr = ERR59;
4819 goto FAILED;
4820 }
4821 *code++ = verbs[i].op_arg;
4822 *code++ = arglen;
4823 memcpy(code, arg, arglen);
4824 code += arglen;
4825 *code++ = 0;
4826 }
4827
4828 break; /* Found verb, exit loop */
4829 }
4830
4831 vn += verbs[i].len + 1;
4832 }
4833
4834 if (i < verbcount) continue; /* Successfully handled a verb */
4835 *errorcodeptr = ERR60; /* Verb not recognized */
4836 goto FAILED;
4837 }
4838
4839 /* Deal with the extended parentheses; all are introduced by '?', and the
4840 appearance of any of them means that this is not a capturing group. */
4841
4842 else if (*ptr == CHAR_QUESTION_MARK)
4843 {
4844 int i, set, unset, namelen;
4845 int *optset;
4846 const uschar *name;
4847 uschar *slot;
4848
4849 switch (*(++ptr))
4850 {
4851 case CHAR_NUMBER_SIGN: /* Comment; skip to ket */
4852 ptr++;
4853 while (*ptr != 0 && *ptr != CHAR_RIGHT_PARENTHESIS) ptr++;
4854 if (*ptr == 0)
4855 {
4856 *errorcodeptr = ERR18;
4857 goto FAILED;
4858 }
4859 continue;
4860
4861
4862 /* ------------------------------------------------------------ */
4863 case CHAR_VERTICAL_LINE: /* Reset capture count for each branch */
4864 reset_bracount = TRUE;
4865 /* Fall through */
4866
4867 /* ------------------------------------------------------------ */
4868 case CHAR_COLON: /* Non-capturing bracket */
4869 bravalue = OP_BRA;
4870 ptr++;
4871 break;
4872
4873
4874 /* ------------------------------------------------------------ */
4875 case CHAR_LEFT_PARENTHESIS:
4876 bravalue = OP_COND; /* Conditional group */
4877
4878 /* A condition can be an assertion, a number (referring to a numbered
4879 group), a name (referring to a named group), or 'R', referring to
4880 recursion. R<digits> and R&name are also permitted for recursion tests.
4881
4882 There are several syntaxes for testing a named group: (?(name)) is used
4883 by Python; Perl 5.10 onwards uses (?(<name>) or (?('name')).
4884
4885 There are two unfortunate ambiguities, caused by history. (a) 'R' can
4886 be the recursive thing or the name 'R' (and similarly for 'R' followed
4887 by digits), and (b) a number could be a name that consists of digits.
4888 In both cases, we look for a name first; if not found, we try the other
4889 cases. */
4890
4891 /* For conditions that are assertions, check the syntax, and then exit
4892 the switch. This will take control down to where bracketed groups,
4893 including assertions, are processed. */
4894
4895 if (ptr[1] == CHAR_QUESTION_MARK && (ptr[2] == CHAR_EQUALS_SIGN ||
4896 ptr[2] == CHAR_EXCLAMATION_MARK || ptr[2] == CHAR_LESS_THAN_SIGN))
4897 break;
4898
4899 /* Most other conditions use OP_CREF (a couple change to OP_RREF
4900 below), and all need to skip 3 bytes at the start of the group. */
4901
4902 code[1+LINK_SIZE] = OP_CREF;
4903 skipbytes = 3;
4904 refsign = -1;
4905
4906 /* Check for a test for recursion in a named group. */
4907
4908 if (ptr[1] == CHAR_R && ptr[2] == CHAR_AMPERSAND)
4909 {
4910 terminator = -1;
4911 ptr += 2;
4912 code[1+LINK_SIZE] = OP_RREF; /* Change the type of test */
4913 }
4914
4915 /* Check for a test for a named group's having been set, using the Perl
4916 syntax (?(<name>) or (?('name') */
4917
4918 else if (ptr[1] == CHAR_LESS_THAN_SIGN)
4919 {
4920 terminator = CHAR_GREATER_THAN_SIGN;
4921 ptr++;
4922 }
4923 else if (ptr[1] == CHAR_APOSTROPHE)
4924 {
4925 terminator = CHAR_APOSTROPHE;
4926 ptr++;
4927 }
4928 else
4929 {
4930 terminator = 0;
4931 if (ptr[1] == CHAR_MINUS || ptr[1] == CHAR_PLUS) refsign = *(++ptr);
4932 }
4933
4934 /* We now expect to read a name; any thing else is an error */
4935
4936 if ((cd->ctypes[ptr[1]] & ctype_word) == 0)
4937 {
4938 ptr += 1; /* To get the right offset */
4939 *errorcodeptr = ERR28;
4940 goto FAILED;
4941 }
4942
4943 /* Read the name, but also get it as a number if it's all digits */
4944
4945 recno = 0;
4946 name = ++ptr;
4947 while ((cd->ctypes[*ptr] & ctype_word) != 0)
4948 {
4949 if (recno >= 0)
4950 recno = ((digitab[*ptr] & ctype_digit) != 0)?
4951 recno * 10 + *ptr - CHAR_0 : -1;
4952 ptr++;
4953 }
4954 namelen = (int)(ptr - name);
4955
4956 if ((terminator > 0 && *ptr++ != terminator) ||
4957 *ptr++ != CHAR_RIGHT_PARENTHESIS)
4958 {
4959 ptr--; /* Error offset */
4960 *errorcodeptr = ERR26;
4961 goto FAILED;
4962 }
4963
4964 /* Do no further checking in the pre-compile phase. */
4965
4966 if (lengthptr != NULL) break;
4967
4968 /* In the real compile we do the work of looking for the actual
4969 reference. If the string started with "+" or "-" we require the rest to
4970 be digits, in which case recno will be set. */
4971
4972 if (refsign > 0)
4973 {
4974 if (recno <= 0)
4975 {
4976 *errorcodeptr = ERR58;
4977 goto FAILED;
4978 }
4979 recno = (refsign == CHAR_MINUS)?
4980 cd->bracount - recno + 1 : recno +cd->bracount;
4981 if (recno <= 0 || recno > cd->final_bracount)
4982 {
4983 *errorcodeptr = ERR15;
4984 goto FAILED;
4985 }
4986 PUT2(code, 2+LINK_SIZE, recno);
4987 break;
4988 }
4989
4990 /* Otherwise (did not start with "+" or "-"), start by looking for the
4991 name. If we find a name, add one to the opcode to change OP_CREF or
4992 OP_RREF into OP_NCREF or OP_NRREF. These behave exactly the same,
4993 except they record that the reference was originally to a name. The
4994 information is used to check duplicate names. */
4995
4996 slot = cd->name_table;
4997 for (i = 0; i < cd->names_found; i++)
4998 {
4999 if (strncmp((char *)name, (char *)slot+2, namelen) == 0) break;
5000 slot += cd->name_entry_size;
5001 }
5002
5003 /* Found a previous named subpattern */
5004
5005 if (i < cd->names_found)
5006 {
5007 recno = GET2(slot, 0);
5008 PUT2(code, 2+LINK_SIZE, recno);
5009 code[1+LINK_SIZE]++;
5010 }
5011
5012 /* Search the pattern for a forward reference */
5013
5014 else if ((i = find_parens(cd, name, namelen,
5015 (options & PCRE_EXTENDED) != 0)) > 0)
5016 {
5017 PUT2(code, 2+LINK_SIZE, i);
5018 code[1+LINK_SIZE]++;
5019 }
5020
5021 /* If terminator == 0 it means that the name followed directly after
5022 the opening parenthesis [e.g. (?(abc)...] and in this case there are
5023 some further alternatives to try. For the cases where terminator != 0
5024 [things like (?(<name>... or (?('name')... or (?(R&name)... ] we have
5025 now checked all the possibilities, so give an error. */
5026
5027 else if (terminator != 0)
5028 {
5029 *errorcodeptr = ERR15;
5030 goto FAILED;
5031 }
5032
5033 /* Check for (?(R) for recursion. Allow digits after R to specify a
5034 specific group number. */
5035
5036 else if (*name == CHAR_R)
5037 {
5038 recno = 0;
5039 for (i = 1; i < namelen; i++)
5040 {
5041 if ((digitab[name[i]] & ctype_digit) == 0)
5042 {
5043 *errorcodeptr = ERR15;
5044 goto FAILED;
5045 }
5046 recno = recno * 10 + name[i] - CHAR_0;
5047 }
5048 if (recno == 0) recno = RREF_ANY;
5049 code[1+LINK_SIZE] = OP_RREF; /* Change test type */
5050 PUT2(code, 2+LINK_SIZE, recno);
5051 }
5052
5053 /* Similarly, check for the (?(DEFINE) "condition", which is always
5054 false. */
5055
5056 else if (namelen == 6 && strncmp((char *)name, STRING_DEFINE, 6) == 0)
5057 {
5058 code[1+LINK_SIZE] = OP_DEF;
5059 skipbytes = 1;
5060 }
5061
5062 /* Check for the "name" actually being a subpattern number. We are
5063 in the second pass here, so final_bracount is set. */
5064
5065 else if (recno > 0 && recno <= cd->final_bracount)
5066 {
5067 PUT2(code, 2+LINK_SIZE, recno);
5068 }
5069
5070 /* Either an unidentified subpattern, or a reference to (?(0) */
5071
5072 else
5073 {
5074 *errorcodeptr = (recno == 0)? ERR35: ERR15;
5075 goto FAILED;
5076 }
5077 break;
5078
5079
5080 /* ------------------------------------------------------------ */
5081 case CHAR_EQUALS_SIGN: /* Positive lookahead */
5082 bravalue = OP_ASSERT;
5083 ptr++;
5084 break;
5085
5086
5087 /* ------------------------------------------------------------ */
5088 case CHAR_EXCLAMATION_MARK: /* Negative lookahead */
5089 ptr++;
5090 if (*ptr == CHAR_RIGHT_PARENTHESIS) /* Optimize (?!) */
5091 {
5092 *code++ = OP_FAIL;
5093 previous = NULL;
5094 continue;
5095 }
5096 bravalue = OP_ASSERT_NOT;
5097 break;
5098
5099
5100 /* ------------------------------------------------------------ */
5101 case CHAR_LESS_THAN_SIGN: /* Lookbehind or named define */
5102 switch (ptr[1])
5103 {
5104 case CHAR_EQUALS_SIGN: /* Positive lookbehind */
5105 bravalue = OP_ASSERTBACK;
5106 ptr += 2;
5107 break;
5108
5109 case CHAR_EXCLAMATION_MARK: /* Negative lookbehind */
5110 bravalue = OP_ASSERTBACK_NOT;
5111 ptr += 2;
5112 break;
5113
5114 default: /* Could be name define, else bad */
5115 if ((cd->ctypes[ptr[1]] & ctype_word) != 0) goto DEFINE_NAME;
5116 ptr++; /* Correct offset for error */
5117 *errorcodeptr = ERR24;
5118 goto FAILED;
5119 }
5120 break;
5121
5122
5123 /* ------------------------------------------------------------ */
5124 case CHAR_GREATER_THAN_SIGN: /* One-time brackets */
5125 bravalue = OP_ONCE;
5126 ptr++;
5127 break;
5128
5129
5130 /* ------------------------------------------------------------ */
5131 case CHAR_C: /* Callout - may be followed by digits; */
5132 previous_callout = code; /* Save for later completion */
5133 after_manual_callout = 1; /* Skip one item before completing */
5134 *code++ = OP_CALLOUT;
5135 {
5136 int n = 0;
5137 while ((digitab[*(++ptr)] & ctype_digit) != 0)
5138 n = n * 10 + *ptr - CHAR_0;
5139 if (*ptr != CHAR_RIGHT_PARENTHESIS)
5140 {
5141 *errorcodeptr = ERR39;
5142 goto FAILED;
5143 }
5144 if (n > 255)
5145 {
5146 *errorcodeptr = ERR38;
5147 goto FAILED;
5148 }
5149 *code++ = n;
5150 PUT(code, 0, (int)(ptr - cd->start_pattern + 1)); /* Pattern offset */
5151 PUT(code, LINK_SIZE, 0); /* Default length */
5152 code += 2 * LINK_SIZE;
5153 }
5154 previous = NULL;
5155 continue;
5156
5157
5158 /* ------------------------------------------------------------ */
5159 case CHAR_P: /* Python-style named subpattern handling */
5160 if (*(++ptr) == CHAR_EQUALS_SIGN ||
5161 *ptr == CHAR_GREATER_THAN_SIGN) /* Reference or recursion */
5162 {
5163 is_recurse = *ptr == CHAR_GREATER_THAN_SIGN;
5164 terminator = CHAR_RIGHT_PARENTHESIS;
5165 goto NAMED_REF_OR_RECURSE;
5166 }
5167 else if (*ptr != CHAR_LESS_THAN_SIGN) /* Test for Python-style defn */
5168 {
5169 *errorcodeptr = ERR41;
5170 goto FAILED;
5171 }
5172 /* Fall through to handle (?P< as (?< is handled */
5173
5174
5175 /* ------------------------------------------------------------ */
5176 DEFINE_NAME: /* Come here from (?< handling */
5177 case CHAR_APOSTROPHE:
5178 {
5179 terminator = (*ptr == CHAR_LESS_THAN_SIGN)?
5180 CHAR_GREATER_THAN_SIGN : CHAR_APOSTROPHE;
5181 name = ++ptr;
5182
5183 while ((cd->ctypes[*ptr] & ctype_word) != 0) ptr++;
5184 namelen = (int)(ptr - name);
5185
5186 /* In the pre-compile phase, just do a syntax check. */
5187
5188 if (lengthptr != NULL)
5189 {
5190 if (*ptr != terminator)
5191 {
5192 *errorcodeptr = ERR42;
5193 goto FAILED;
5194 }
5195 if (cd->names_found >= MAX_NAME_COUNT)
5196 {
5197 *errorcodeptr = ERR49;
5198 goto FAILED;
5199 }
5200 if (namelen + 3 > cd->name_entry_size)
5201 {
5202 cd->name_entry_size = namelen + 3;
5203 if (namelen > MAX_NAME_SIZE)
5204 {
5205 *errorcodeptr = ERR48;
5206 goto FAILED;
5207 }
5208 }
5209 }
5210
5211 /* In the real compile, create the entry in the table, maintaining
5212 alphabetical order. Duplicate names for different numbers are
5213 permitted only if PCRE_DUPNAMES is set. Duplicate names for the same
5214 number are always OK. (An existing number can be re-used if (?|
5215 appears in the pattern.) In either event, a duplicate name results in
5216 a duplicate entry in the table, even if the number is the same. This
5217 is because the number of names, and hence the table size, is computed
5218 in the pre-compile, and it affects various numbers and pointers which
5219 would all have to be modified, and the compiled code moved down, if
5220 duplicates with the same number were omitted from the table. This
5221 doesn't seem worth the hassle. However, *different* names for the
5222 same number are not permitted. */
5223
5224 else
5225 {
5226 BOOL dupname = FALSE;
5227 slot = cd->name_table;
5228
5229 for (i = 0; i < cd->names_found; i++)
5230 {
5231 int crc = memcmp(name, slot+2, namelen);
5232 if (crc == 0)
5233 {
5234 if (slot[2+namelen] == 0)
5235 {
5236 if (GET2(slot, 0) != cd->bracount + 1 &&
5237 (options & PCRE_DUPNAMES) == 0)
5238 {
5239 *errorcodeptr = ERR43;
5240 goto FAILED;
5241 }
5242 else dupname = TRUE;
5243 }
5244 else crc = -1; /* Current name is a substring */
5245 }
5246
5247 /* Make space in the table and break the loop for an earlier
5248 name. For a duplicate or later name, carry on. We do this for
5249 duplicates so that in the simple case (when ?(| is not used) they
5250 are in order of their numbers. */
5251
5252 if (crc < 0)
5253 {
5254 memmove(slot + cd->name_entry_size, slot,
5255 (cd->names_found - i) * cd->name_entry_size);
5256 break;
5257 }
5258
5259 /* Continue the loop for a later or duplicate name */
5260
5261 slot += cd->name_entry_size;
5262 }
5263
5264 /* For non-duplicate names, check for a duplicate number before
5265 adding the new name. */
5266
5267 if (!dupname)
5268 {
5269 uschar *cslot = cd->name_table;
5270 for (i = 0; i < cd->names_found; i++)
5271 {
5272 if (cslot != slot)
5273 {
5274 if (GET2(cslot, 0) == cd->bracount + 1)
5275 {
5276 *errorcodeptr = ERR65;
5277 goto FAILED;
5278 }
5279 }
5280 else i--;
5281 cslot += cd->name_entry_size;
5282 }
5283 }
5284
5285 PUT2(slot, 0, cd->bracount + 1);
5286 memcpy(slot + 2, name, namelen);
5287 slot[2+namelen] = 0;
5288 }
5289 }
5290
5291 /* In both pre-compile and compile, count the number of names we've
5292 encountered. */
5293
5294 cd->names_found++;
5295 ptr++; /* Move past > or ' */
5296 goto NUMBERED_GROUP;
5297
5298
5299 /* ------------------------------------------------------------ */
5300 case CHAR_AMPERSAND: /* Perl recursion/subroutine syntax */
5301 terminator = CHAR_RIGHT_PARENTHESIS;
5302 is_recurse = TRUE;
5303 /* Fall through */
5304
5305 /* We come here from the Python syntax above that handles both
5306 references (?P=name) and recursion (?P>name), as well as falling
5307 through from the Perl recursion syntax (?&name). We also come here from
5308 the Perl \k<name> or \k'name' back reference syntax and the \k{name}
5309 .NET syntax, and the Oniguruma \g<...> and \g'...' subroutine syntax. */
5310
5311 NAMED_REF_OR_RECURSE:
5312 name = ++ptr;
5313 while ((cd->ctypes[*ptr] & ctype_word) != 0) ptr++;
5314 namelen = (int)(ptr - name);
5315
5316 /* In the pre-compile phase, do a syntax check and set a dummy
5317 reference number. */
5318
5319 if (lengthptr != NULL)
5320 {
5321 if (namelen == 0)
5322 {
5323 *errorcodeptr = ERR62;
5324 goto FAILED;
5325 }
5326 if (*ptr != terminator)
5327 {
5328 *errorcodeptr = ERR42;
5329 goto FAILED;
5330 }
5331 if (namelen > MAX_NAME_SIZE)
5332 {
5333 *errorcodeptr = ERR48;
5334 goto FAILED;
5335 }
5336 recno = 0;
5337 }
5338
5339 /* In the real compile, seek the name in the table. We check the name
5340 first, and then check that we have reached the end of the name in the
5341 table. That way, if the name that is longer than any in the table,
5342 the comparison will fail without reading beyond the table entry. */
5343
5344 else
5345 {
5346 slot = cd->name_table;
5347 for (i = 0; i < cd->names_found; i++)
5348 {
5349 if (strncmp((char *)name, (char *)slot+2, namelen) == 0 &&
5350 slot[2+namelen] == 0)
5351 break;
5352 slot += cd->name_entry_size;
5353 }
5354
5355 if (i < cd->names_found) /* Back reference */
5356 {
5357 recno = GET2(slot, 0);
5358 }
5359 else if ((recno = /* Forward back reference */
5360 find_parens(cd, name, namelen,
5361 (options & PCRE_EXTENDED) != 0)) <= 0)
5362 {
5363 *errorcodeptr = ERR15;
5364 goto FAILED;
5365 }
5366 }
5367
5368 /* In both phases, we can now go to the code than handles numerical
5369 recursion or backreferences. */
5370
5371 if (is_recurse) goto HANDLE_RECURSION;
5372 else goto HANDLE_REFERENCE;
5373
5374
5375 /* ------------------------------------------------------------ */
5376 case CHAR_R: /* Recursion */
5377 ptr++; /* Same as (?0) */
5378 /* Fall through */
5379
5380
5381 /* ------------------------------------------------------------ */
5382 case CHAR_MINUS: case CHAR_PLUS: /* Recursion or subroutine */
5383 case CHAR_0: case CHAR_1: case CHAR_2: case CHAR_3: case CHAR_4:
5384 case CHAR_5: case CHAR_6: case CHAR_7: case CHAR_8: case CHAR_9:
5385 {
5386 const uschar *called;
5387 terminator = CHAR_RIGHT_PARENTHESIS;
5388
5389 /* Come here from the \g<...> and \g'...' code (Oniguruma
5390 compatibility). However, the syntax has been checked to ensure that
5391 the ... are a (signed) number, so that neither ERR63 nor ERR29 will
5392 be called on this path, nor with the jump to OTHER_CHAR_AFTER_QUERY
5393 ever be taken. */
5394
5395 HANDLE_NUMERICAL_RECURSION:
5396
5397 if ((refsign = *ptr) == CHAR_PLUS)
5398 {
5399 ptr++;
5400 if ((digitab[*ptr] & ctype_digit) == 0)
5401 {
5402 *errorcodeptr = ERR63;
5403 goto FAILED;
5404 }
5405 }
5406 else if (refsign == CHAR_MINUS)
5407 {
5408 if ((digitab[ptr[1]] & ctype_digit) == 0)
5409 goto OTHER_CHAR_AFTER_QUERY;
5410 ptr++;
5411 }
5412
5413 recno = 0;
5414 while((digitab[*ptr] & ctype_digit) != 0)
5415 recno = recno * 10 + *ptr++ - CHAR_0;
5416
5417 if (*ptr != terminator)
5418 {
5419 *errorcodeptr = ERR29;
5420 goto FAILED;
5421 }
5422
5423 if (refsign == CHAR_MINUS)
5424 {
5425 if (recno == 0)
5426 {
5427 *errorcodeptr = ERR58;
5428 goto FAILED;
5429 }
5430 recno = cd->bracount - recno + 1;
5431 if (recno <= 0)
5432 {
5433 *errorcodeptr = ERR15;
5434 goto FAILED;
5435 }
5436 }
5437 else if (refsign == CHAR_PLUS)
5438 {
5439 if (recno == 0)
5440 {
5441 *errorcodeptr = ERR58;
5442 goto FAILED;
5443 }
5444 recno += cd->bracount;
5445 }
5446
5447 /* Come here from code above that handles a named recursion */
5448
5449 HANDLE_RECURSION:
5450
5451 previous = code;
5452 called = cd->start_code;
5453
5454 /* When we are actually compiling, find the bracket that is being
5455 referenced. Temporarily end the regex in case it doesn't exist before
5456 this point. If we end up with a forward reference, first check that
5457 the bracket does occur later so we can give the error (and position)
5458 now. Then remember this forward reference in the workspace so it can
5459 be filled in at the end. */
5460
5461 if (lengthptr == NULL)
5462 {
5463 *code = OP_END;
5464 if (recno != 0)
5465 called = _pcre_find_bracket(cd->start_code, utf8, recno);
5466
5467 /* Forward reference */
5468
5469 if (called == NULL)
5470 {
5471 if (find_parens(cd, NULL, recno,
5472 (options & PCRE_EXTENDED) != 0) < 0)
5473 {
5474 *errorcodeptr = ERR15;
5475 goto FAILED;
5476 }
5477
5478 /* Fudge the value of "called" so that when it is inserted as an
5479 offset below, what it actually inserted is the reference number
5480 of the group. */
5481
5482 called = cd->start_code + recno;
5483 PUTINC(cd->hwm, 0, (int)(code + 2 + LINK_SIZE - cd->start_code));
5484 }
5485
5486 /* If not a forward reference, and the subpattern is still open,
5487 this is a recursive call. We check to see if this is a left
5488 recursion that could loop for ever, and diagnose that case. */
5489
5490 else if (GET(called, 1) == 0 &&
5491 could_be_empty(called, code, bcptr, utf8, cd))
5492 {
5493 *errorcodeptr = ERR40;
5494 goto FAILED;
5495 }
5496 }
5497
5498 /* Insert the recursion/subroutine item, automatically wrapped inside
5499 "once" brackets. Set up a "previous group" length so that a
5500 subsequent quantifier will work. */
5501
5502 *code = OP_ONCE;
5503 PUT(code, 1, 2 + 2*LINK_SIZE);
5504 code += 1 + LINK_SIZE;
5505
5506 *code = OP_RECURSE;
5507 PUT(code, 1, (int)(called - cd->start_code));
5508 code += 1 + LINK_SIZE;
5509
5510 *code = OP_KET;
5511 PUT(code, 1, 2 + 2*LINK_SIZE);
5512 code += 1 + LINK_SIZE;
5513
5514 length_prevgroup = 3 + 3*LINK_SIZE;
5515 }
5516
5517 /* Can't determine a first byte now */
5518
5519 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
5520 continue;
5521
5522
5523 /* ------------------------------------------------------------ */
5524 default: /* Other characters: check option setting */
5525 OTHER_CHAR_AFTER_QUERY:
5526 set = unset = 0;
5527 optset = &set;
5528
5529 while (*ptr != CHAR_RIGHT_PARENTHESIS && *ptr != CHAR_COLON)
5530 {
5531 switch (*ptr++)
5532 {
5533 case CHAR_MINUS: optset = &unset; break;
5534
5535 case CHAR_J: /* Record that it changed in the external options */
5536 *optset |= PCRE_DUPNAMES;
5537 cd->external_flags |= PCRE_JCHANGED;
5538 break;
5539
5540 case CHAR_i: *optset |= PCRE_CASELESS; break;
5541 case CHAR_m: *optset |= PCRE_MULTILINE; break;
5542 case CHAR_s: *optset |= PCRE_DOTALL; break;
5543 case CHAR_x: *optset |= PCRE_EXTENDED; break;
5544 case CHAR_U: *optset |= PCRE_UNGREEDY; break;
5545 case CHAR_X: *optset |= PCRE_EXTRA; break;
5546
5547 default: *errorcodeptr = ERR12;
5548 ptr--; /* Correct the offset */
5549 goto FAILED;
5550 }
5551 }
5552
5553 /* Set up the changed option bits, but don't change anything yet. */
5554
5555 newoptions = (options | set) & (~unset);
5556
5557 /* If the options ended with ')' this is not the start of a nested
5558 group with option changes, so the options change at this level. If this
5559 item is right at the start of the pattern, the options can be
5560 abstracted and made external in the pre-compile phase, and ignored in
5561 the compile phase. This can be helpful when matching -- for instance in
5562 caseless checking of required bytes.
5563
5564 If the code pointer is not (cd->start_code + 1 + LINK_SIZE), we are
5565 definitely *not* at the start of the pattern because something has been
5566 compiled. In the pre-compile phase, however, the code pointer can have
5567 that value after the start, because it gets reset as code is discarded
5568 during the pre-compile. However, this can happen only at top level - if
5569 we are within parentheses, the starting BRA will still be present. At
5570 any parenthesis level, the length value can be used to test if anything
5571 has been compiled at that level. Thus, a test for both these conditions
5572 is necessary to ensure we correctly detect the start of the pattern in
5573 both phases.
5574
5575 If we are not at the pattern start, compile code to change the ims
5576 options if this setting actually changes any of them, and reset the
5577 greedy defaults and the case value for firstbyte and reqbyte. */
5578
5579 if (*ptr == CHAR_RIGHT_PARENTHESIS)
5580 {
5581 if (code == cd->start_code + 1 + LINK_SIZE &&
5582 (lengthptr == NULL || *lengthptr == 2 + 2*LINK_SIZE))
5583 {
5584 cd->external_options = newoptions;
5585 }
5586 else
5587 {
5588 if ((options & PCRE_IMS) != (newoptions & PCRE_IMS))
5589 {
5590 *code++ = OP_OPT;
5591 *code++ = newoptions & PCRE_IMS;
5592 }
5593 greedy_default = ((newoptions & PCRE_UNGREEDY) != 0);
5594 greedy_non_default = greedy_default ^ 1;
5595 req_caseopt = ((newoptions & PCRE_CASELESS) != 0)? REQ_CASELESS : 0;
5596 }
5597
5598 /* Change options at this level, and pass them back for use
5599 in subsequent branches. When not at the start of the pattern, this
5600 information is also necessary so that a resetting item can be
5601 compiled at the end of a group (if we are in a group). */
5602
5603 *optionsptr = options = newoptions;
5604 previous = NULL; /* This item can't be repeated */
5605 continue; /* It is complete */
5606 }
5607
5608 /* If the options ended with ':' we are heading into a nested group
5609 with possible change of options. Such groups are non-capturing and are
5610 not assertions of any kind. All we need to do is skip over the ':';
5611 the newoptions value is handled below. */
5612
5613 bravalue = OP_BRA;
5614 ptr++;
5615 } /* End of switch for character following (? */
5616 } /* End of (? handling */
5617
5618 /* Opening parenthesis not followed by '*' or '?'. If PCRE_NO_AUTO_CAPTURE
5619 is set, all unadorned brackets become non-capturing and behave like (?:...)
5620 brackets. */
5621
5622 else if ((options & PCRE_NO_AUTO_CAPTURE) != 0)
5623 {
5624 bravalue = OP_BRA;
5625 }
5626
5627 /* Else we have a capturing group. */
5628
5629 else
5630 {
5631 NUMBERED_GROUP:
5632 cd->bracount += 1;
5633 PUT2(code, 1+LINK_SIZE, cd->bracount);
5634 skipbytes = 2;
5635 }
5636
5637 /* Process nested bracketed regex. Assertions may not be repeated, but
5638 other kinds can be. All their opcodes are >= OP_ONCE. We copy code into a
5639 non-register variable in order to be able to pass its address because some
5640 compilers complain otherwise. Pass in a new setting for the ims options if
5641 they have changed. */
5642
5643 previous = (bravalue >= OP_ONCE)? code : NULL;
5644 *code = bravalue;
5645 tempcode = code;
5646 tempreqvary = cd->req_varyopt; /* Save value before bracket */
5647 length_prevgroup = 0; /* Initialize for pre-compile phase */
5648
5649 if (!compile_regex(
5650 newoptions, /* The complete new option state */
5651 options & PCRE_IMS, /* The previous ims option state */
5652 &tempcode, /* Where to put code (updated) */
5653 &ptr, /* Input pointer (updated) */
5654 errorcodeptr, /* Where to put an error message */
5655 (bravalue == OP_ASSERTBACK ||
5656 bravalue == OP_ASSERTBACK_NOT), /* TRUE if back assert */
5657 reset_bracount, /* True if (?| group */
5658 skipbytes, /* Skip over bracket number */
5659 &subfirstbyte, /* For possible first char */
5660 &subreqbyte, /* For possible last char */
5661 bcptr, /* Current branch chain */
5662 cd, /* Tables block */
5663 (lengthptr == NULL)? NULL : /* Actual compile phase */
5664 &length_prevgroup /* Pre-compile phase */
5665 ))
5666 goto FAILED;
5667
5668 /* At the end of compiling, code is still pointing to the start of the
5669 group, while tempcode has been updated to point past the end of the group
5670 and any option resetting that may follow it. The pattern pointer (ptr)
5671 is on the bracket. */
5672
5673 /* If this is a conditional bracket, check that there are no more than
5674 two branches in the group, or just one if it's a DEFINE group. We do this
5675 in the real compile phase, not in the pre-pass, where the whole group may
5676 not be available. */
5677
5678 if (bravalue == OP_COND && lengthptr == NULL)
5679 {
5680 uschar *tc = code;
5681 int condcount = 0;
5682
5683 do {
5684 condcount++;
5685 tc += GET(tc,1);
5686 }
5687 while (*tc != OP_KET);
5688
5689 /* A DEFINE group is never obeyed inline (the "condition" is always
5690 false). It must have only one branch. */
5691
5692 if (code[LINK_SIZE+1] == OP_DEF)
5693 {
5694 if (condcount > 1)
5695 {
5696 *errorcodeptr = ERR54;
5697 goto FAILED;
5698 }
5699 bravalue = OP_DEF; /* Just a flag to suppress char handling below */
5700 }
5701
5702 /* A "normal" conditional group. If there is just one branch, we must not
5703 make use of its firstbyte or reqbyte, because this is equivalent to an
5704 empty second branch. */
5705
5706 else
5707 {
5708 if (condcount > 2)
5709 {
5710 *errorcodeptr = ERR27;
5711 goto FAILED;
5712 }
5713 if (condcount == 1) subfirstbyte = subreqbyte = REQ_NONE;
5714 }
5715 }
5716
5717 /* Error if hit end of pattern */
5718
5719 if (*ptr != CHAR_RIGHT_PARENTHESIS)
5720 {
5721 *errorcodeptr = ERR14;
5722 goto FAILED;
5723 }
5724
5725 /* In the pre-compile phase, update the length by the length of the group,
5726 less the brackets at either end. Then reduce the compiled code to just a
5727 set of non-capturing brackets so that it doesn't use much memory if it is
5728 duplicated by a quantifier.*/
5729
5730 if (lengthptr != NULL)
5731 {
5732 if (OFLOW_MAX - *lengthptr < length_prevgroup - 2 - 2*LINK_SIZE)
5733 {
5734 *errorcodeptr = ERR20;
5735 goto FAILED;
5736 }
5737 *lengthptr += length_prevgroup - 2 - 2*LINK_SIZE;
5738 *code++ = OP_BRA;
5739 PUTINC(code, 0, 1 + LINK_SIZE);
5740 *code++ = OP_KET;
5741 PUTINC(code, 0, 1 + LINK_SIZE);
5742 break; /* No need to waste time with special character handling */
5743 }
5744
5745 /* Otherwise update the main code pointer to the end of the group. */
5746
5747 code = tempcode;
5748
5749 /* For a DEFINE group, required and first character settings are not
5750 relevant. */
5751
5752 if (bravalue == OP_DEF) break;
5753
5754 /* Handle updating of the required and first characters for other types of
5755 group. Update for normal brackets of all kinds, and conditions with two
5756 branches (see code above). If the bracket is followed by a quantifier with
5757 zero repeat, we have to back off. Hence the definition of zeroreqbyte and
5758 zerofirstbyte outside the main loop so that they can be accessed for the
5759 back off. */
5760
5761 zeroreqbyte = reqbyte;
5762 zerofirstbyte = firstbyte;
5763 groupsetfirstbyte = FALSE;
5764
5765 if (bravalue >= OP_ONCE)
5766 {
5767 /* If we have not yet set a firstbyte in this branch, take it from the
5768 subpattern, remembering that it was set here so that a repeat of more
5769 than one can replicate it as reqbyte if necessary. If the subpattern has
5770 no firstbyte, set "none" for the whole branch. In both cases, a zero
5771 repeat forces firstbyte to "none". */
5772
5773 if (firstbyte == REQ_UNSET)
5774 {
5775 if (subfirstbyte >= 0)
5776 {
5777 firstbyte = subfirstbyte;
5778 groupsetfirstbyte = TRUE;
5779 }
5780 else firstbyte = REQ_NONE;
5781 zerofirstbyte = REQ_NONE;
5782 }
5783
5784 /* If firstbyte was previously set, convert the subpattern's firstbyte
5785 into reqbyte if there wasn't one, using the vary flag that was in
5786 existence beforehand. */
5787
5788 else if (subfirstbyte >= 0 && subreqbyte < 0)
5789 subreqbyte = subfirstbyte | tempreqvary;
5790
5791 /* If the subpattern set a required byte (or set a first byte that isn't
5792 really the first byte - see above), set it. */
5793
5794 if (subreqbyte >= 0) reqbyte = subreqbyte;
5795 }
5796
5797 /* For a forward assertion, we take the reqbyte, if set. This can be
5798 helpful if the pattern that follows the assertion doesn't set a different
5799 char. For example, it's useful for /(?=abcde).+/. We can't set firstbyte
5800 for an assertion, however because it leads to incorrect effect for patterns
5801 such as /(?=a)a.+/ when the "real" "a" would then become a reqbyte instead
5802 of a firstbyte. This is overcome by a scan at the end if there's no
5803 firstbyte, looking for an asserted first char. */
5804
5805 else if (bravalue == OP_ASSERT && subreqbyte >= 0) reqbyte = subreqbyte;
5806 break; /* End of processing '(' */
5807
5808
5809 /* ===================================================================*/
5810 /* Handle metasequences introduced by \. For ones like \d, the ESC_ values
5811 are arranged to be the negation of the corresponding OP_values in the
5812 default case when PCRE_UCP is not set. For the back references, the values
5813 are ESC_REF plus the reference number. Only back references and those types
5814 that consume a character may be repeated. We can test for values between
5815 ESC_b and ESC_Z for the latter; this may have to change if any new ones are
5816 ever created. */
5817
5818 case CHAR_BACKSLASH:
5819 tempptr = ptr;
5820 c = check_escape(&ptr, errorcodeptr, cd->bracount, options, FALSE);
5821 if (*errorcodeptr != 0) goto FAILED;
5822
5823 if (c < 0)
5824 {
5825 if (-c == ESC_Q) /* Handle start of quoted string */
5826 {
5827 if (ptr[1] == CHAR_BACKSLASH && ptr[2] == CHAR_E)
5828 ptr += 2; /* avoid empty string */
5829 else inescq = TRUE;
5830 continue;
5831 }
5832
5833 if (-c == ESC_E) continue; /* Perl ignores an orphan \E */
5834
5835 /* For metasequences that actually match a character, we disable the
5836 setting of a first character if it hasn't already been set. */
5837
5838 if (firstbyte == REQ_UNSET && -c > ESC_b && -c < ESC_Z)
5839 firstbyte = REQ_NONE;
5840
5841 /* Set values to reset to if this is followed by a zero repeat. */
5842
5843 zerofirstbyte = firstbyte;
5844 zeroreqbyte = reqbyte;
5845
5846 /* \g<name> or \g'name' is a subroutine call by name and \g<n> or \g'n'
5847 is a subroutine call by number (Oniguruma syntax). In fact, the value
5848 -ESC_g is returned only for these cases. So we don't need to check for <
5849 or ' if the value is -ESC_g. For the Perl syntax \g{n} the value is
5850 -ESC_REF+n, and for the Perl syntax \g{name} the result is -ESC_k (as
5851 that is a synonym for a named back reference). */
5852
5853 if (-c == ESC_g)
5854 {
5855 const uschar *p;
5856 save_hwm = cd->hwm; /* Normally this is set when '(' is read */
5857 terminator = (*(++ptr) == CHAR_LESS_THAN_SIGN)?
5858 CHAR_GREATER_THAN_SIGN : CHAR_APOSTROPHE;
5859
5860 /* These two statements stop the compiler for warning about possibly
5861 unset variables caused by the jump to HANDLE_NUMERICAL_RECURSION. In
5862 fact, because we actually check for a number below, the paths that
5863 would actually be in error are never taken. */
5864
5865 skipbytes = 0;
5866 reset_bracount = FALSE;
5867
5868 /* Test for a name */
5869
5870 if (ptr[1] != CHAR_PLUS && ptr[1] != CHAR_MINUS)
5871 {
5872 BOOL isnumber = TRUE;
5873 for (p = ptr + 1; *p != 0 && *p != terminator; p++)
5874 {
5875 if ((cd->ctypes[*p] & ctype_digit) == 0) isnumber = FALSE;
5876 if ((cd->ctypes[*p] & ctype_word) == 0) break;
5877 }
5878 if (*p != terminator)
5879 {
5880 *errorcodeptr = ERR57;
5881 break;
5882 }
5883 if (isnumber)
5884 {
5885 ptr++;
5886 goto HANDLE_NUMERICAL_RECURSION;
5887 }
5888 is_recurse = TRUE;
5889 goto NAMED_REF_OR_RECURSE;
5890 }
5891
5892 /* Test a signed number in angle brackets or quotes. */
5893
5894 p = ptr + 2;
5895 while ((digitab[*p] & ctype_digit) != 0) p++;
5896 if (*p != terminator)
5897 {
5898 *errorcodeptr = ERR57;
5899 break;
5900 }
5901 ptr++;
5902 goto HANDLE_NUMERICAL_RECURSION;
5903 }
5904
5905 /* \k<name> or \k'name' is a back reference by name (Perl syntax).
5906 We also support \k{name} (.NET syntax) */
5907
5908 if (-c == ESC_k && (ptr[1] == CHAR_LESS_THAN_SIGN ||
5909 ptr[1] == CHAR_APOSTROPHE || ptr[1] == CHAR_LEFT_CURLY_BRACKET))
5910 {
5911 is_recurse = FALSE;
5912 terminator = (*(++ptr) == CHAR_LESS_THAN_SIGN)?
5913 CHAR_GREATER_THAN_SIGN : (*ptr == CHAR_APOSTROPHE)?
5914 CHAR_APOSTROPHE : CHAR_RIGHT_CURLY_BRACKET;
5915 goto NAMED_REF_OR_RECURSE;
5916 }
5917
5918 /* Back references are handled specially; must disable firstbyte if
5919 not set to cope with cases like (?=(\w+))\1: which would otherwise set
5920 ':' later. */
5921
5922 if (-c >= ESC_REF)
5923 {
5924 open_capitem *oc;
5925 recno = -c - ESC_REF;
5926
5927 HANDLE_REFERENCE: /* Come here from named backref handling */
5928 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
5929 previous = code;
5930 *code++ = OP_REF;
5931 PUT2INC(code, 0, recno);
5932 cd->backref_map |= (recno < 32)? (1 << recno) : 1;
5933 if (recno > cd->top_backref) cd->top_backref = recno;
5934
5935 /* Check to see if this back reference is recursive, that it, it
5936 is inside the group that it references. A flag is set so that the
5937 group can be made atomic. */
5938
5939 for (oc = cd->open_caps; oc != NULL; oc = oc->next)
5940 {
5941 if (oc->number == recno)
5942 {
5943 oc->flag = TRUE;
5944 break;
5945 }
5946 }
5947 }
5948
5949 /* So are Unicode property matches, if supported. */
5950
5951 #ifdef SUPPORT_UCP
5952 else if (-c == ESC_P || -c == ESC_p)
5953 {
5954 BOOL negated;
5955 int pdata;
5956 int ptype = get_ucp(&ptr, &negated, &pdata, errorcodeptr);
5957 if (ptype < 0) goto FAILED;
5958 previous = code;
5959 *code++ = ((-c == ESC_p) != negated)? OP_PROP : OP_NOTPROP;
5960 *code++ = ptype;
5961 *code++ = pdata;
5962 }
5963 #else
5964
5965 /* If Unicode properties are not supported, \X, \P, and \p are not
5966 allowed. */
5967
5968 else if (-c == ESC_X || -c == ESC_P || -c == ESC_p)
5969 {
5970 *errorcodeptr = ERR45;
5971 goto FAILED;
5972 }
5973 #endif
5974
5975 /* For the rest (including \X when Unicode properties are supported), we
5976 can obtain the OP value by negating the escape value in the default
5977 situation when PCRE_UCP is not set. When it *is* set, we substitute
5978 Unicode property tests. */
5979
5980 else
5981 {
5982 #ifdef SUPPORT_UCP
5983 if (-c >= ESC_DU && -c <= ESC_wu)
5984 {
5985 nestptr = ptr + 1; /* Where to resume */
5986 ptr = substitutes[-c - ESC_DU] - 1; /* Just before substitute */
5987 }
5988 else
5989 #endif
5990 {
5991 previous = (-c > ESC_b && -c < ESC_Z)? code : NULL;
5992 *code++ = -c;
5993 }
5994 }
5995 continue;
5996 }
5997
5998 /* We have a data character whose value is in c. In UTF-8 mode it may have
5999 a value > 127. We set its representation in the length/buffer, and then
6000 handle it as a data character. */
6001
6002 #ifdef SUPPORT_UTF8
6003 if (utf8 && c > 127)
6004 mclength = _pcre_ord2utf8(c, mcbuffer);
6005 else
6006 #endif
6007
6008 {
6009 mcbuffer[0] = c;
6010 mclength = 1;
6011 }
6012 goto ONE_CHAR;
6013
6014
6015 /* ===================================================================*/
6016 /* Handle a literal character. It is guaranteed not to be whitespace or #
6017 when the extended flag is set. If we are in UTF-8 mode, it may be a
6018 multi-byte literal character. */
6019
6020 default:
6021 NORMAL_CHAR:
6022 mclength = 1;
6023 mcbuffer[0] = c;
6024
6025 #ifdef SUPPORT_UTF8
6026 if (utf8 && c >= 0xc0)
6027 {
6028 while ((ptr[1] & 0xc0) == 0x80)
6029 mcbuffer[mclength++] = *(++ptr);
6030 }
6031 #endif
6032
6033 /* At this point we have the character's bytes in mcbuffer, and the length
6034 in mclength. When not in UTF-8 mode, the length is always 1. */
6035
6036 ONE_CHAR:
6037 previous = code;
6038 *code++ = ((options & PCRE_CASELESS) != 0)? OP_CHARNC : OP_CHAR;
6039 for (c = 0; c < mclength; c++) *code++ = mcbuffer[c];
6040
6041 /* Remember if \r or \n were seen */
6042
6043 if (mcbuffer[0] == CHAR_CR || mcbuffer[0] == CHAR_NL)
6044 cd->external_flags |= PCRE_HASCRORLF;
6045
6046 /* Set the first and required bytes appropriately. If no previous first
6047 byte, set it from this character, but revert to none on a zero repeat.
6048 Otherwise, leave the firstbyte value alone, and don't change it on a zero
6049 repeat. */
6050
6051 if (firstbyte == REQ_UNSET)
6052 {
6053 zerofirstbyte = REQ_NONE;
6054 zeroreqbyte = reqbyte;
6055
6056 /* If the character is more than one byte long, we can set firstbyte
6057 only if it is not to be matched caselessly. */
6058
6059 if (mclength == 1 || req_caseopt == 0)
6060 {
6061 firstbyte = mcbuffer[0] | req_caseopt;
6062 if (mclength != 1) reqbyte = code[-1] | cd->req_varyopt;
6063 }
6064 else firstbyte = reqbyte = REQ_NONE;
6065 }
6066
6067 /* firstbyte was previously set; we can set reqbyte only the length is
6068 1 or the matching is caseful. */
6069
6070 else
6071 {
6072 zerofirstbyte = firstbyte;
6073 zeroreqbyte = reqbyte;
6074 if (mclength == 1 || req_caseopt == 0)
6075 reqbyte = code[-1] | req_caseopt | cd->req_varyopt;
6076 }
6077
6078 break; /* End of literal character handling */
6079 }
6080 } /* end of big loop */
6081
6082
6083 /* Control never reaches here by falling through, only by a goto for all the
6084 error states. Pass back the position in the pattern so that it can be displayed
6085 to the user for diagnosing the error. */
6086
6087 FAILED:
6088 *ptrptr = ptr;
6089 return FALSE;
6090 }
6091
6092
6093
6094
6095 /*************************************************
6096 * Compile sequence of alternatives *
6097 *************************************************/
6098
6099 /* On entry, ptr is pointing past the bracket character, but on return it
6100 points to the closing bracket, or vertical bar, or end of string. The code
6101 variable is pointing at the byte into which the BRA operator has been stored.
6102 If the ims options are changed at the start (for a (?ims: group) or during any
6103 branch, we need to insert an OP_OPT item at the start of every following branch
6104 to ensure they get set correctly at run time, and also pass the new options
6105 into every subsequent branch compile.
6106
6107 This function is used during the pre-compile phase when we are trying to find
6108 out the amount of memory needed, as well as during the real compile phase. The
6109 value of lengthptr distinguishes the two phases.
6110
6111 Arguments:
6112 options option bits, including any changes for this subpattern
6113 oldims previous settings of ims option bits
6114 codeptr -> the address of the current code pointer
6115 ptrptr -> the address of the current pattern pointer
6116 errorcodeptr -> pointer to error code variable
6117 lookbehind TRUE if this is a lookbehind assertion
6118 reset_bracount TRUE to reset the count for each branch
6119 skipbytes skip this many bytes at start (for brackets and OP_COND)
6120 firstbyteptr place to put the first required character, or a negative number
6121 reqbyteptr place to put the last required character, or a negative number
6122 bcptr pointer to the chain of currently open branches
6123 cd points to the data block with tables pointers etc.
6124 lengthptr NULL during the real compile phase
6125 points to length accumulator during pre-compile phase
6126
6127 Returns: TRUE on success
6128 */
6129
6130 static BOOL
6131 compile_regex(int options, int oldims, uschar **codeptr, const uschar **ptrptr,
6132 int *errorcodeptr, BOOL lookbehind, BOOL reset_bracount, int skipbytes,
6133 int *firstbyteptr, int *reqbyteptr, branch_chain *bcptr, compile_data *cd,
6134 int *lengthptr)
6135 {
6136 const uschar *ptr = *ptrptr;
6137 uschar *code = *codeptr;
6138 uschar *last_branch = code;
6139 uschar *start_bracket = code;
6140 uschar *reverse_count = NULL;
6141 open_capitem capitem;
6142 int capnumber = 0;
6143 int firstbyte, reqbyte;
6144 int branchfirstbyte, branchreqbyte;
6145 int length;
6146 int orig_bracount;
6147 int max_bracount;
6148 int old_external_options = cd->external_options;
6149 branch_chain bc;
6150
6151 bc.outer = bcptr;
6152 bc.current_branch = code;
6153
6154 firstbyte = reqbyte = REQ_UNSET;
6155
6156 /* Accumulate the length for use in the pre-compile phase. Start with the
6157 length of the BRA and KET and any extra bytes that are required at the
6158 beginning. We accumulate in a local variable to save frequent testing of
6159 lenthptr for NULL. We cannot do this by looking at the value of code at the
6160 start and end of each alternative, because compiled items are discarded during
6161 the pre-compile phase so that the work space is not exceeded. */
6162
6163 length = 2 + 2*LINK_SIZE + skipbytes;
6164
6165 /* WARNING: If the above line is changed for any reason, you must also change
6166 the code that abstracts option settings at the start of the pattern and makes
6167 them global. It tests the value of length for (2 + 2*LINK_SIZE) in the
6168 pre-compile phase to find out whether anything has yet been compiled or not. */
6169
6170 /* If this is a capturing subpattern, add to the chain of open capturing items
6171 so that we can detect them if (*ACCEPT) is encountered. This is also used to
6172 detect groups that contain recursive back references to themselves. */
6173
6174 if (*code == OP_CBRA)
6175 {
6176 capnumber = GET2(code, 1 + LINK_SIZE);
6177 capitem.number = capnumber;
6178 capitem.next = cd->open_caps;
6179 capitem.flag = FALSE;
6180 cd->open_caps = &capitem;
6181 }
6182
6183 /* Offset is set zero to mark that this bracket is still open */
6184
6185 PUT(code, 1, 0);
6186 code += 1 + LINK_SIZE + skipbytes;
6187
6188 /* Loop for each alternative branch */
6189
6190 orig_bracount = max_bracount = cd->bracount;
6191 for (;;)
6192 {
6193 /* For a (?| group, reset the capturing bracket count so that each branch
6194 uses the same numbers. */
6195
6196 if (reset_bracount) cd->bracount = orig_bracount;
6197
6198 /* Handle a change of ims options at the start of the branch */
6199
6200 if ((options & PCRE_IMS) != oldims)
6201 {
6202 *code++ = OP_OPT;
6203 *code++ = options & PCRE_IMS;
6204 length += 2;
6205 }
6206
6207 /* Set up dummy OP_REVERSE if lookbehind assertion */
6208
6209 if (lookbehind)
6210 {
6211 *code++ = OP_REVERSE;
6212 reverse_count = code;
6213 PUTINC(code, 0, 0);
6214 length += 1 + LINK_SIZE;
6215 }
6216
6217 /* Now compile the branch; in the pre-compile phase its length gets added
6218 into the length. */
6219
6220 if (!compile_branch(&options, &code, &ptr, errorcodeptr, &branchfirstbyte,
6221 &branchreqbyte, &bc, cd, (lengthptr == NULL)? NULL : &length))
6222 {
6223 *ptrptr = ptr;
6224 return FALSE;
6225 }
6226
6227 /* If the external options have changed during this branch, it means that we
6228 are at the top level, and a leading option setting has been encountered. We
6229 need to re-set the original option values to take account of this so that,
6230 during the pre-compile phase, we know to allow for a re-set at the start of
6231 subsequent branches. */
6232
6233 if (old_external_options != cd->external_options)
6234 oldims = cd->external_options & PCRE_IMS;
6235
6236 /* Keep the highest bracket count in case (?| was used and some branch
6237 has fewer than the rest. */
6238
6239 if (cd->bracount > max_bracount) max_bracount = cd->bracount;
6240
6241 /* In the real compile phase, there is some post-processing to be done. */
6242
6243 if (lengthptr == NULL)
6244 {
6245 /* If this is the first branch, the firstbyte and reqbyte values for the
6246 branch become the values for the regex. */
6247
6248 if (*last_branch != OP_ALT)
6249 {
6250 firstbyte = branchfirstbyte;
6251 reqbyte = branchreqbyte;
6252 }
6253
6254 /* If this is not the first branch, the first char and reqbyte have to
6255 match the values from all the previous branches, except that if the
6256 previous value for reqbyte didn't have REQ_VARY set, it can still match,
6257 and we set REQ_VARY for the regex. */
6258
6259 else
6260 {
6261 /* If we previously had a firstbyte, but it doesn't match the new branch,
6262 we have to abandon the firstbyte for the regex, but if there was
6263 previously no reqbyte, it takes on the value of the old firstbyte. */
6264
6265 if (firstbyte >= 0 && firstbyte != branchfirstbyte)
6266 {
6267 if (reqbyte < 0) reqbyte = firstbyte;
6268 firstbyte = REQ_NONE;
6269 }
6270
6271 /* If we (now or from before) have no firstbyte, a firstbyte from the
6272 branch becomes a reqbyte if there isn't a branch reqbyte. */
6273
6274 if (firstbyte < 0 && branchfirstbyte >= 0 && branchreqbyte < 0)
6275 branchreqbyte = branchfirstbyte;
6276
6277 /* Now ensure that the reqbytes match */
6278
6279 if ((reqbyte & ~REQ_VARY) != (branchreqbyte & ~REQ_VARY))
6280 reqbyte = REQ_NONE;
6281 else reqbyte |= branchreqbyte; /* To "or" REQ_VARY */
6282 }
6283
6284 /* If lookbehind, check that this branch matches a fixed-length string, and
6285 put the length into the OP_REVERSE item. Temporarily mark the end of the
6286 branch with OP_END. If the branch contains OP_RECURSE, the result is -3
6287 because there may be forward references that we can't check here. Set a
6288 flag to cause another lookbehind check at the end. Why not do it all at the
6289 end? Because common, erroneous checks are picked up here and the offset of
6290 the problem can be shown. */
6291
6292 if (lookbehind)
6293 {
6294 int fixed_length;
6295 *code = OP_END;
6296 fixed_length = find_fixedlength(last_branch, options, FALSE, cd);
6297 DPRINTF(("fixed length = %d\n", fixed_length));
6298 if (fixed_length == -3)
6299 {
6300 cd->check_lookbehind = TRUE;
6301 }
6302 else if (fixed_length < 0)
6303 {
6304 *errorcodeptr = (fixed_length == -2)? ERR36 : ERR25;
6305 *ptrptr = ptr;
6306 return FALSE;
6307 }
6308 else { PUT(reverse_count, 0, fixed_length); }
6309 }
6310 }
6311
6312 /* Reached end of expression, either ')' or end of pattern. In the real
6313 compile phase, go back through the alternative branches and reverse the chain
6314 of offsets, with the field in the BRA item now becoming an offset to the
6315 first alternative. If there are no alternatives, it points to the end of the
6316 group. The length in the terminating ket is always the length of the whole
6317 bracketed item. If any of the ims options were changed inside the group,
6318 compile a resetting op-code following, except at the very end of the pattern.
6319 Return leaving the pointer at the terminating char. */
6320
6321 if (*ptr != CHAR_VERTICAL_LINE)
6322 {
6323 if (lengthptr == NULL)
6324 {
6325 int branch_length = (int)(code - last_branch);
6326 do
6327 {
6328 int prev_length = GET(last_branch, 1);
6329 PUT(last_branch, 1, branch_length);
6330 branch_length = prev_length;
6331 last_branch -= branch_length;
6332 }
6333 while (branch_length > 0);
6334 }
6335
6336 /* Fill in the ket */
6337
6338 *code = OP_KET;
6339 PUT(code, 1, (int)(code - start_bracket));
6340 code += 1 + LINK_SIZE;
6341
6342 /* If it was a capturing subpattern, check to see if it contained any
6343 recursive back references. If so, we must wrap it in atomic brackets.
6344 In any event, remove the block from the chain. */
6345
6346 if (capnumber > 0)
6347 {
6348 if (cd->open_caps->flag)
6349 {
6350 memmove(start_bracket + 1 + LINK_SIZE, start_bracket,
6351 code - start_bracket);
6352 *start_bracket = OP_ONCE;
6353 code += 1 + LINK_SIZE;
6354 PUT(start_bracket, 1, (int)(code - start_bracket));
6355 *code = OP_KET;
6356 PUT(code, 1, (int)(code - start_bracket));
6357 code += 1 + LINK_SIZE;
6358 length += 2 + 2*LINK_SIZE;
6359 }
6360 cd->open_caps = cd->open_caps->next;
6361 }
6362
6363 /* Reset options if needed. */
6364
6365 if ((options & PCRE_IMS) != oldims && *ptr == CHAR_RIGHT_PARENTHESIS)
6366 {
6367 *code++ = OP_OPT;
6368 *code++ = oldims;
6369 length += 2;
6370 }
6371
6372 /* Retain the highest bracket number, in case resetting was used. */
6373
6374 cd->bracount = max_bracount;
6375
6376 /* Set values to pass back */
6377
6378 *codeptr = code;
6379 *ptrptr = ptr;
6380 *firstbyteptr = firstbyte;
6381 *reqbyteptr = reqbyte;
6382 if (lengthptr != NULL)
6383 {
6384 if (OFLOW_MAX - *lengthptr < length)
6385 {
6386 *errorcodeptr = ERR20;
6387 return FALSE;
6388 }
6389 *lengthptr += length;
6390 }
6391 return TRUE;
6392 }
6393
6394 /* Another branch follows. In the pre-compile phase, we can move the code
6395 pointer back to where it was for the start of the first branch. (That is,
6396 pretend that each branch is the only one.)
6397
6398 In the real compile phase, insert an ALT node. Its length field points back
6399 to the previous branch while the bracket remains open. At the end the chain
6400 is reversed. It's done like this so that the start of the bracket has a
6401 zero offset until it is closed, making it possible to detect recursion. */
6402
6403 if (lengthptr != NULL)
6404 {
6405 code = *codeptr + 1 + LINK_SIZE + skipbytes;
6406 length += 1 + LINK_SIZE;
6407 }
6408 else
6409 {
6410 *code = OP_ALT;
6411 PUT(code, 1, (int)(code - last_branch));
6412 bc.current_branch = last_branch = code;
6413 code += 1 + LINK_SIZE;
6414 }
6415
6416 ptr++;
6417 }
6418 /* Control never reaches here */
6419 }
6420
6421
6422
6423
6424 /*************************************************
6425 * Check for anchored expression *
6426 *************************************************/
6427
6428 /* Try to find out if this is an anchored regular expression. Consider each
6429 alternative branch. If they all start with OP_SOD or OP_CIRC, or with a bracket
6430 all of whose alternatives start with OP_SOD or OP_CIRC (recurse ad lib), then
6431 it's anchored. However, if this is a multiline pattern, then only OP_SOD
6432 counts, since OP_CIRC can match in the middle.
6433
6434 We can also consider a regex to be anchored if OP_SOM starts all its branches.
6435 This is the code for \G, which means "match at start of match position, taking
6436 into account the match offset".
6437
6438 A branch is also implicitly anchored if it starts with .* and DOTALL is set,
6439 because that will try the rest of the pattern at all possible matching points,
6440 so there is no point trying again.... er ....
6441
6442 .... except when the .* appears inside capturing parentheses, and there is a
6443 subsequent back reference to those parentheses. We haven't enough information
6444 to catch that case precisely.
6445
6446 At first, the best we could do was to detect when .* was in capturing brackets
6447 and the highest back reference was greater than or equal to that level.
6448 However, by keeping a bitmap of the first 31 back references, we can catch some
6449 of the more common cases more precisely.
6450
6451 Arguments:
6452 code points to start of expression (the bracket)
6453 options points to the options setting
6454 bracket_map a bitmap of which brackets we are inside while testing; this
6455 handles up to substring 31; after that we just have to take
6456 the less precise approach
6457 backref_map the back reference bitmap
6458
6459 Returns: TRUE or FALSE
6460 */
6461
6462 static BOOL
6463 is_anchored(register const uschar *code, int *options, unsigned int bracket_map,
6464 unsigned int backref_map)
6465 {
6466 do {
6467 const uschar *scode = first_significant_code(code + _pcre_OP_lengths[*code],
6468 options, PCRE_MULTILINE, FALSE);
6469 register int op = *scode;
6470
6471 /* Non-capturing brackets */
6472
6473 if (op == OP_BRA)
6474 {
6475 if (!is_anchored(scode, options, bracket_map, backref_map)) return FALSE;
6476 }
6477
6478 /* Capturing brackets */
6479
6480 else if (op == OP_CBRA)
6481 {
6482 int n = GET2(scode, 1+LINK_SIZE);
6483 int new_map = bracket_map | ((n < 32)? (1 << n) : 1);
6484 if (!is_anchored(scode, options, new_map, backref_map)) return FALSE;
6485 }
6486
6487 /* Other brackets */
6488
6489 else if (op == OP_ASSERT || op == OP_ONCE || op == OP_COND)
6490 {
6491 if (!is_anchored(scode, options, bracket_map, backref_map)) return FALSE;
6492 }
6493
6494 /* .* is not anchored unless DOTALL is set (which generates OP_ALLANY) and
6495 it isn't in brackets that are or may be referenced. */
6496
6497 else if ((op == OP_TYPESTAR || op == OP_TYPEMINSTAR ||
6498 op == OP_TYPEPOSSTAR))
6499 {
6500 if (scode[1] != OP_ALLANY || (bracket_map & backref_map) != 0)
6501 return FALSE;
6502 }
6503
6504 /* Check for explicit anchoring */
6505
6506 else if (op != OP_SOD && op != OP_SOM &&
6507 ((*options & PCRE_MULTILINE) != 0 || op != OP_CIRC))
6508 return FALSE;
6509 code += GET(code, 1);
6510 }
6511 while (*code == OP_ALT); /* Loop for each alternative */
6512 return TRUE;
6513 }
6514
6515
6516
6517 /*************************************************
6518 * Check for starting with ^ or .* *
6519 *************************************************/
6520
6521 /* This is called to find out if every branch starts with ^ or .* so that
6522 "first char" processing can be done to speed things up in multiline
6523 matching and for non-DOTALL patterns that start with .* (which must start at
6524 the beginning or after \n). As in the case of is_anchored() (see above), we
6525 have to take account of back references to capturing brackets that contain .*
6526 because in that case we can't make the assumption.
6527
6528 Arguments:
6529 code points to start of expression (the bracket)
6530 bracket_map a bitmap of which brackets we are inside while testing; this
6531 handles up to substring 31; after that we just have to take
6532 the less precise approach
6533 backref_map the back reference bitmap
6534
6535 Returns: TRUE or FALSE
6536 */
6537
6538 static BOOL
6539 is_startline(const uschar *code, unsigned int bracket_map,
6540 unsigned int backref_map)
6541 {
6542 do {
6543 const uschar *scode = first_significant_code(code + _pcre_OP_lengths[*code],
6544 NULL, 0, FALSE);
6545 register int op = *scode;
6546
6547 /* If we are at the start of a conditional assertion group, *both* the
6548 conditional assertion *and* what follows the condition must satisfy the test
6549 for start of line. Other kinds of condition fail. Note that there may be an
6550 auto-callout at the start of a condition. */
6551
6552 if (op == OP_COND)
6553 {
6554 scode += 1 + LINK_SIZE;
6555 if (*scode == OP_CALLOUT) scode += _pcre_OP_lengths[OP_CALLOUT];
6556 switch (*scode)
6557 {
6558 case OP_CREF:
6559 case OP_NCREF:
6560 case OP_RREF:
6561 case OP_NRREF:
6562 case OP_DEF:
6563 return FALSE;
6564
6565 default: /* Assertion */
6566 if (!is_startline(scode, bracket_map, backref_map)) return FALSE;
6567 do scode += GET(scode, 1); while (*scode == OP_ALT);
6568 scode += 1 + LINK_SIZE;
6569 break;
6570 }
6571 scode = first_significant_code(scode, NULL, 0, FALSE);
6572 op = *scode;
6573 }
6574
6575 /* Non-capturing brackets */
6576
6577 if (op == OP_BRA)
6578 {
6579 if (!is_startline(scode, bracket_map, backref_map)) return FALSE;
6580 }
6581
6582 /* Capturing brackets */
6583
6584 else if (op == OP_CBRA)
6585 {
6586 int n = GET2(scode, 1+LINK_SIZE);
6587 int new_map = bracket_map | ((n < 32)? (1 << n) : 1);
6588 if (!is_startline(scode, new_map, backref_map)) return FALSE;
6589 }
6590
6591 /* Other brackets */
6592
6593 else if (op == OP_ASSERT || op == OP_ONCE)
6594 {
6595 if (!is_startline(scode, bracket_map, backref_map)) return FALSE;
6596 }
6597
6598 /* .* means "start at start or after \n" if it isn't in brackets that
6599 may be referenced. */
6600
6601 else if (op == OP_TYPESTAR || op == OP_TYPEMINSTAR || op == OP_TYPEPOSSTAR)
6602 {
6603 if (scode[1] != OP_ANY || (bracket_map & backref_map) != 0) return FALSE;
6604 }
6605
6606 /* Check for explicit circumflex */
6607
6608 else if (op != OP_CIRC) return FALSE;
6609
6610 /* Move on to the next alternative */
6611
6612 code += GET(code, 1);
6613 }
6614 while (*code == OP_ALT); /* Loop for each alternative */
6615 return TRUE;
6616 }
6617
6618
6619
6620 /*************************************************
6621 * Check for asserted fixed first char *
6622 *************************************************/
6623
6624 /* During compilation, the "first char" settings from forward assertions are
6625 discarded, because they can cause conflicts with actual literals that follow.
6626 However, if we end up without a first char setting for an unanchored pattern,
6627 it is worth scanning the regex to see if there is an initial asserted first
6628 char. If all branches start with the same asserted char, or with a bracket all
6629 of whose alternatives start with the same asserted char (recurse ad lib), then
6630 we return that char, otherwise -1.
6631
6632 Arguments:
6633 code points to start of expression (the bracket)
6634 options pointer to the options (used to check casing changes)
6635 inassert TRUE if in an assertion
6636
6637 Returns: -1 or the fixed first char
6638 */
6639
6640 static int
6641 find_firstassertedchar(const uschar *code, int *options, BOOL inassert)
6642 {
6643 register int c = -1;
6644 do {
6645 int d;
6646 const uschar *scode =
6647 first_significant_code(code + 1+LINK_SIZE, options, PCRE_CASELESS, TRUE);
6648 register int op = *scode;
6649
6650 switch(op)
6651 {
6652 default:
6653 return -1;
6654
6655 case OP_BRA:
6656 case OP_CBRA:
6657 case OP_ASSERT:
6658 case OP_ONCE:
6659 case OP_COND:
6660 if ((d = find_firstassertedchar(scode, options, op == OP_ASSERT)) < 0)
6661 return -1;
6662 if (c < 0) c = d; else if (c != d) return -1;
6663 break;
6664
6665 case OP_EXACT: /* Fall through */
6666 scode += 2;
6667
6668