/[pcre]/code/trunk/pcre_compile.c
ViewVC logotype

Contents of /code/trunk/pcre_compile.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 793 - (show annotations) (download)
Wed Dec 7 16:52:34 2011 UTC (2 years, 10 months ago) by ph10
File MIME type: text/plain
File size: 255166 byte(s)
Computation of memory needed for the table of names of groups was giving an 
unnecessarily large value.

1 /*************************************************
2 * Perl-Compatible Regular Expressions *
3 *************************************************/
4
5 /* PCRE is a library of functions to support regular expressions whose syntax
6 and semantics are as close as possible to those of the Perl 5 language.
7
8 Written by Philip Hazel
9 Copyright (c) 1997-2011 University of Cambridge
10
11 -----------------------------------------------------------------------------
12 Redistribution and use in source and binary forms, with or without
13 modification, are permitted provided that the following conditions are met:
14
15 * Redistributions of source code must retain the above copyright notice,
16 this list of conditions and the following disclaimer.
17
18 * Redistributions in binary form must reproduce the above copyright
19 notice, this list of conditions and the following disclaimer in the
20 documentation and/or other materials provided with the distribution.
21
22 * Neither the name of the University of Cambridge nor the names of its
23 contributors may be used to endorse or promote products derived from
24 this software without specific prior written permission.
25
26 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
27 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
30 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 POSSIBILITY OF SUCH DAMAGE.
37 -----------------------------------------------------------------------------
38 */
39
40
41 /* This module contains the external function pcre_compile(), along with
42 supporting internal functions that are not used by other modules. */
43
44
45 #ifdef HAVE_CONFIG_H
46 #include "config.h"
47 #endif
48
49 #define NLBLOCK cd /* Block containing newline information */
50 #define PSSTART start_pattern /* Field containing processed string start */
51 #define PSEND end_pattern /* Field containing processed string end */
52
53 #include "pcre_internal.h"
54
55
56 /* When PCRE_DEBUG is defined, we need the pcre_printint() function, which is
57 also used by pcretest. PCRE_DEBUG is not defined when building a production
58 library. */
59
60 #ifdef PCRE_DEBUG
61 #include "pcre_printint.src"
62 #endif
63
64
65 /* Macro for setting individual bits in class bitmaps. */
66
67 #define SETBIT(a,b) a[b/8] |= (1 << (b%8))
68
69 /* Maximum length value to check against when making sure that the integer that
70 holds the compiled pattern length does not overflow. We make it a bit less than
71 INT_MAX to allow for adding in group terminating bytes, so that we don't have
72 to check them every time. */
73
74 #define OFLOW_MAX (INT_MAX - 20)
75
76
77 /*************************************************
78 * Code parameters and static tables *
79 *************************************************/
80
81 /* This value specifies the size of stack workspace that is used during the
82 first pre-compile phase that determines how much memory is required. The regex
83 is partly compiled into this space, but the compiled parts are discarded as
84 soon as they can be, so that hopefully there will never be an overrun. The code
85 does, however, check for an overrun. The largest amount I've seen used is 218,
86 so this number is very generous.
87
88 The same workspace is used during the second, actual compile phase for
89 remembering forward references to groups so that they can be filled in at the
90 end. Each entry in this list occupies LINK_SIZE bytes, so even when LINK_SIZE
91 is 4 there is plenty of room for most patterns. However, the memory can get
92 filled up by repetitions of forward references, for example patterns like
93 /(?1){0,1999}(b)/, and one user did hit the limit. The code has been changed so
94 that the workspace is expanded using malloc() in this situation. The value
95 below is therefore a minimum, and we put a maximum on it for safety. The
96 minimum is now also defined in terms of LINK_SIZE so that the use of malloc()
97 kicks in at the same number of forward references in all cases. */
98
99 #define COMPILE_WORK_SIZE (2048*LINK_SIZE)
100 #define COMPILE_WORK_SIZE_MAX (100*COMPILE_WORK_SIZE)
101
102 /* The overrun tests check for a slightly smaller size so that they detect the
103 overrun before it actually does run off the end of the data block. */
104
105 #define WORK_SIZE_SAFETY_MARGIN (100)
106
107
108 /* Table for handling escaped characters in the range '0'-'z'. Positive returns
109 are simple data values; negative values are for special things like \d and so
110 on. Zero means further processing is needed (for things like \x), or the escape
111 is invalid. */
112
113 #ifndef EBCDIC
114
115 /* This is the "normal" table for ASCII systems or for EBCDIC systems running
116 in UTF-8 mode. */
117
118 static const short int escapes[] = {
119 0, 0,
120 0, 0,
121 0, 0,
122 0, 0,
123 0, 0,
124 CHAR_COLON, CHAR_SEMICOLON,
125 CHAR_LESS_THAN_SIGN, CHAR_EQUALS_SIGN,
126 CHAR_GREATER_THAN_SIGN, CHAR_QUESTION_MARK,
127 CHAR_COMMERCIAL_AT, -ESC_A,
128 -ESC_B, -ESC_C,
129 -ESC_D, -ESC_E,
130 0, -ESC_G,
131 -ESC_H, 0,
132 0, -ESC_K,
133 0, 0,
134 -ESC_N, 0,
135 -ESC_P, -ESC_Q,
136 -ESC_R, -ESC_S,
137 0, 0,
138 -ESC_V, -ESC_W,
139 -ESC_X, 0,
140 -ESC_Z, CHAR_LEFT_SQUARE_BRACKET,
141 CHAR_BACKSLASH, CHAR_RIGHT_SQUARE_BRACKET,
142 CHAR_CIRCUMFLEX_ACCENT, CHAR_UNDERSCORE,
143 CHAR_GRAVE_ACCENT, 7,
144 -ESC_b, 0,
145 -ESC_d, ESC_e,
146 ESC_f, 0,
147 -ESC_h, 0,
148 0, -ESC_k,
149 0, 0,
150 ESC_n, 0,
151 -ESC_p, 0,
152 ESC_r, -ESC_s,
153 ESC_tee, 0,
154 -ESC_v, -ESC_w,
155 0, 0,
156 -ESC_z
157 };
158
159 #else
160
161 /* This is the "abnormal" table for EBCDIC systems without UTF-8 support. */
162
163 static const short int escapes[] = {
164 /* 48 */ 0, 0, 0, '.', '<', '(', '+', '|',
165 /* 50 */ '&', 0, 0, 0, 0, 0, 0, 0,
166 /* 58 */ 0, 0, '!', '$', '*', ')', ';', '~',
167 /* 60 */ '-', '/', 0, 0, 0, 0, 0, 0,
168 /* 68 */ 0, 0, '|', ',', '%', '_', '>', '?',
169 /* 70 */ 0, 0, 0, 0, 0, 0, 0, 0,
170 /* 78 */ 0, '`', ':', '#', '@', '\'', '=', '"',
171 /* 80 */ 0, 7, -ESC_b, 0, -ESC_d, ESC_e, ESC_f, 0,
172 /* 88 */-ESC_h, 0, 0, '{', 0, 0, 0, 0,
173 /* 90 */ 0, 0, -ESC_k, 'l', 0, ESC_n, 0, -ESC_p,
174 /* 98 */ 0, ESC_r, 0, '}', 0, 0, 0, 0,
175 /* A0 */ 0, '~', -ESC_s, ESC_tee, 0,-ESC_v, -ESC_w, 0,
176 /* A8 */ 0,-ESC_z, 0, 0, 0, '[', 0, 0,
177 /* B0 */ 0, 0, 0, 0, 0, 0, 0, 0,
178 /* B8 */ 0, 0, 0, 0, 0, ']', '=', '-',
179 /* C0 */ '{',-ESC_A, -ESC_B, -ESC_C, -ESC_D,-ESC_E, 0, -ESC_G,
180 /* C8 */-ESC_H, 0, 0, 0, 0, 0, 0, 0,
181 /* D0 */ '}', 0, -ESC_K, 0, 0,-ESC_N, 0, -ESC_P,
182 /* D8 */-ESC_Q,-ESC_R, 0, 0, 0, 0, 0, 0,
183 /* E0 */ '\\', 0, -ESC_S, 0, 0,-ESC_V, -ESC_W, -ESC_X,
184 /* E8 */ 0,-ESC_Z, 0, 0, 0, 0, 0, 0,
185 /* F0 */ 0, 0, 0, 0, 0, 0, 0, 0,
186 /* F8 */ 0, 0, 0, 0, 0, 0, 0, 0
187 };
188 #endif
189
190
191 /* Table of special "verbs" like (*PRUNE). This is a short table, so it is
192 searched linearly. Put all the names into a single string, in order to reduce
193 the number of relocations when a shared library is dynamically linked. The
194 string is built from string macros so that it works in UTF-8 mode on EBCDIC
195 platforms. */
196
197 typedef struct verbitem {
198 int len; /* Length of verb name */
199 int op; /* Op when no arg, or -1 if arg mandatory */
200 int op_arg; /* Op when arg present, or -1 if not allowed */
201 } verbitem;
202
203 static const char verbnames[] =
204 "\0" /* Empty name is a shorthand for MARK */
205 STRING_MARK0
206 STRING_ACCEPT0
207 STRING_COMMIT0
208 STRING_F0
209 STRING_FAIL0
210 STRING_PRUNE0
211 STRING_SKIP0
212 STRING_THEN;
213
214 static const verbitem verbs[] = {
215 { 0, -1, OP_MARK },
216 { 4, -1, OP_MARK },
217 { 6, OP_ACCEPT, -1 },
218 { 6, OP_COMMIT, -1 },
219 { 1, OP_FAIL, -1 },
220 { 4, OP_FAIL, -1 },
221 { 5, OP_PRUNE, OP_PRUNE_ARG },
222 { 4, OP_SKIP, OP_SKIP_ARG },
223 { 4, OP_THEN, OP_THEN_ARG }
224 };
225
226 static const int verbcount = sizeof(verbs)/sizeof(verbitem);
227
228
229 /* Tables of names of POSIX character classes and their lengths. The names are
230 now all in a single string, to reduce the number of relocations when a shared
231 library is dynamically loaded. The list of lengths is terminated by a zero
232 length entry. The first three must be alpha, lower, upper, as this is assumed
233 for handling case independence. */
234
235 static const char posix_names[] =
236 STRING_alpha0 STRING_lower0 STRING_upper0 STRING_alnum0
237 STRING_ascii0 STRING_blank0 STRING_cntrl0 STRING_digit0
238 STRING_graph0 STRING_print0 STRING_punct0 STRING_space0
239 STRING_word0 STRING_xdigit;
240
241 static const uschar posix_name_lengths[] = {
242 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 6, 0 };
243
244 /* Table of class bit maps for each POSIX class. Each class is formed from a
245 base map, with an optional addition or removal of another map. Then, for some
246 classes, there is some additional tweaking: for [:blank:] the vertical space
247 characters are removed, and for [:alpha:] and [:alnum:] the underscore
248 character is removed. The triples in the table consist of the base map offset,
249 second map offset or -1 if no second map, and a non-negative value for map
250 addition or a negative value for map subtraction (if there are two maps). The
251 absolute value of the third field has these meanings: 0 => no tweaking, 1 =>
252 remove vertical space characters, 2 => remove underscore. */
253
254 static const int posix_class_maps[] = {
255 cbit_word, cbit_digit, -2, /* alpha */
256 cbit_lower, -1, 0, /* lower */
257 cbit_upper, -1, 0, /* upper */
258 cbit_word, -1, 2, /* alnum - word without underscore */
259 cbit_print, cbit_cntrl, 0, /* ascii */
260 cbit_space, -1, 1, /* blank - a GNU extension */
261 cbit_cntrl, -1, 0, /* cntrl */
262 cbit_digit, -1, 0, /* digit */
263 cbit_graph, -1, 0, /* graph */
264 cbit_print, -1, 0, /* print */
265 cbit_punct, -1, 0, /* punct */
266 cbit_space, -1, 0, /* space */
267 cbit_word, -1, 0, /* word - a Perl extension */
268 cbit_xdigit,-1, 0 /* xdigit */
269 };
270
271 /* Table of substitutes for \d etc when PCRE_UCP is set. The POSIX class
272 substitutes must be in the order of the names, defined above, and there are
273 both positive and negative cases. NULL means no substitute. */
274
275 #ifdef SUPPORT_UCP
276 static const uschar *substitutes[] = {
277 (uschar *)"\\P{Nd}", /* \D */
278 (uschar *)"\\p{Nd}", /* \d */
279 (uschar *)"\\P{Xsp}", /* \S */ /* NOTE: Xsp is Perl space */
280 (uschar *)"\\p{Xsp}", /* \s */
281 (uschar *)"\\P{Xwd}", /* \W */
282 (uschar *)"\\p{Xwd}" /* \w */
283 };
284
285 static const uschar *posix_substitutes[] = {
286 (uschar *)"\\p{L}", /* alpha */
287 (uschar *)"\\p{Ll}", /* lower */
288 (uschar *)"\\p{Lu}", /* upper */
289 (uschar *)"\\p{Xan}", /* alnum */
290 NULL, /* ascii */
291 (uschar *)"\\h", /* blank */
292 NULL, /* cntrl */
293 (uschar *)"\\p{Nd}", /* digit */
294 NULL, /* graph */
295 NULL, /* print */
296 NULL, /* punct */
297 (uschar *)"\\p{Xps}", /* space */ /* NOTE: Xps is POSIX space */
298 (uschar *)"\\p{Xwd}", /* word */
299 NULL, /* xdigit */
300 /* Negated cases */
301 (uschar *)"\\P{L}", /* ^alpha */
302 (uschar *)"\\P{Ll}", /* ^lower */
303 (uschar *)"\\P{Lu}", /* ^upper */
304 (uschar *)"\\P{Xan}", /* ^alnum */
305 NULL, /* ^ascii */
306 (uschar *)"\\H", /* ^blank */
307 NULL, /* ^cntrl */
308 (uschar *)"\\P{Nd}", /* ^digit */
309 NULL, /* ^graph */
310 NULL, /* ^print */
311 NULL, /* ^punct */
312 (uschar *)"\\P{Xps}", /* ^space */ /* NOTE: Xps is POSIX space */
313 (uschar *)"\\P{Xwd}", /* ^word */
314 NULL /* ^xdigit */
315 };
316 #define POSIX_SUBSIZE (sizeof(posix_substitutes)/sizeof(uschar *))
317 #endif
318
319 #define STRING(a) # a
320 #define XSTRING(s) STRING(s)
321
322 /* The texts of compile-time error messages. These are "char *" because they
323 are passed to the outside world. Do not ever re-use any error number, because
324 they are documented. Always add a new error instead. Messages marked DEAD below
325 are no longer used. This used to be a table of strings, but in order to reduce
326 the number of relocations needed when a shared library is loaded dynamically,
327 it is now one long string. We cannot use a table of offsets, because the
328 lengths of inserts such as XSTRING(MAX_NAME_SIZE) are not known. Instead, we
329 simply count through to the one we want - this isn't a performance issue
330 because these strings are used only when there is a compilation error.
331
332 Each substring ends with \0 to insert a null character. This includes the final
333 substring, so that the whole string ends with \0\0, which can be detected when
334 counting through. */
335
336 static const char error_texts[] =
337 "no error\0"
338 "\\ at end of pattern\0"
339 "\\c at end of pattern\0"
340 "unrecognized character follows \\\0"
341 "numbers out of order in {} quantifier\0"
342 /* 5 */
343 "number too big in {} quantifier\0"
344 "missing terminating ] for character class\0"
345 "invalid escape sequence in character class\0"
346 "range out of order in character class\0"
347 "nothing to repeat\0"
348 /* 10 */
349 "operand of unlimited repeat could match the empty string\0" /** DEAD **/
350 "internal error: unexpected repeat\0"
351 "unrecognized character after (? or (?-\0"
352 "POSIX named classes are supported only within a class\0"
353 "missing )\0"
354 /* 15 */
355 "reference to non-existent subpattern\0"
356 "erroffset passed as NULL\0"
357 "unknown option bit(s) set\0"
358 "missing ) after comment\0"
359 "parentheses nested too deeply\0" /** DEAD **/
360 /* 20 */
361 "regular expression is too large\0"
362 "failed to get memory\0"
363 "unmatched parentheses\0"
364 "internal error: code overflow\0"
365 "unrecognized character after (?<\0"
366 /* 25 */
367 "lookbehind assertion is not fixed length\0"
368 "malformed number or name after (?(\0"
369 "conditional group contains more than two branches\0"
370 "assertion expected after (?(\0"
371 "(?R or (?[+-]digits must be followed by )\0"
372 /* 30 */
373 "unknown POSIX class name\0"
374 "POSIX collating elements are not supported\0"
375 "this version of PCRE is not compiled with PCRE_UTF8 support\0"
376 "spare error\0" /** DEAD **/
377 "character value in \\x{...} sequence is too large\0"
378 /* 35 */
379 "invalid condition (?(0)\0"
380 "\\C not allowed in lookbehind assertion\0"
381 "PCRE does not support \\L, \\l, \\N{name}, \\U, or \\u\0"
382 "number after (?C is > 255\0"
383 "closing ) for (?C expected\0"
384 /* 40 */
385 "recursive call could loop indefinitely\0"
386 "unrecognized character after (?P\0"
387 "syntax error in subpattern name (missing terminator)\0"
388 "two named subpatterns have the same name\0"
389 "invalid UTF-8 string\0"
390 /* 45 */
391 "support for \\P, \\p, and \\X has not been compiled\0"
392 "malformed \\P or \\p sequence\0"
393 "unknown property name after \\P or \\p\0"
394 "subpattern name is too long (maximum " XSTRING(MAX_NAME_SIZE) " characters)\0"
395 "too many named subpatterns (maximum " XSTRING(MAX_NAME_COUNT) ")\0"
396 /* 50 */
397 "repeated subpattern is too long\0" /** DEAD **/
398 "octal value is greater than \\377 (not in UTF-8 mode)\0"
399 "internal error: overran compiling workspace\0"
400 "internal error: previously-checked referenced subpattern not found\0"
401 "DEFINE group contains more than one branch\0"
402 /* 55 */
403 "repeating a DEFINE group is not allowed\0" /** DEAD **/
404 "inconsistent NEWLINE options\0"
405 "\\g is not followed by a braced, angle-bracketed, or quoted name/number or by a plain number\0"
406 "a numbered reference must not be zero\0"
407 "an argument is not allowed for (*ACCEPT), (*FAIL), or (*COMMIT)\0"
408 /* 60 */
409 "(*VERB) not recognized\0"
410 "number is too big\0"
411 "subpattern name expected\0"
412 "digit expected after (?+\0"
413 "] is an invalid data character in JavaScript compatibility mode\0"
414 /* 65 */
415 "different names for subpatterns of the same number are not allowed\0"
416 "(*MARK) must have an argument\0"
417 "this version of PCRE is not compiled with PCRE_UCP support\0"
418 "\\c must be followed by an ASCII character\0"
419 "\\k is not followed by a braced, angle-bracketed, or quoted name\0"
420 /* 70 */
421 "internal error: unknown opcode in find_fixedlength()\0"
422 "\\N is not supported in a class\0"
423 "too many forward references\0"
424 ;
425
426 /* Table to identify digits and hex digits. This is used when compiling
427 patterns. Note that the tables in chartables are dependent on the locale, and
428 may mark arbitrary characters as digits - but the PCRE compiling code expects
429 to handle only 0-9, a-z, and A-Z as digits when compiling. That is why we have
430 a private table here. It costs 256 bytes, but it is a lot faster than doing
431 character value tests (at least in some simple cases I timed), and in some
432 applications one wants PCRE to compile efficiently as well as match
433 efficiently.
434
435 For convenience, we use the same bit definitions as in chartables:
436
437 0x04 decimal digit
438 0x08 hexadecimal digit
439
440 Then we can use ctype_digit and ctype_xdigit in the code. */
441
442 #ifndef EBCDIC
443
444 /* This is the "normal" case, for ASCII systems, and EBCDIC systems running in
445 UTF-8 mode. */
446
447 static const unsigned char digitab[] =
448 {
449 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 0- 7 */
450 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 8- 15 */
451 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 16- 23 */
452 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */
453 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - ' */
454 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ( - / */
455 0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c, /* 0 - 7 */
456 0x0c,0x0c,0x00,0x00,0x00,0x00,0x00,0x00, /* 8 - ? */
457 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* @ - G */
458 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* H - O */
459 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* P - W */
460 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* X - _ */
461 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* ` - g */
462 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* h - o */
463 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* p - w */
464 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* x -127 */
465 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 128-135 */
466 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 136-143 */
467 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 144-151 */
468 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 152-159 */
469 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 160-167 */
470 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 168-175 */
471 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 176-183 */
472 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 184-191 */
473 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 192-199 */
474 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 200-207 */
475 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 208-215 */
476 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 216-223 */
477 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 224-231 */
478 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 232-239 */
479 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 240-247 */
480 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};/* 248-255 */
481
482 #else
483
484 /* This is the "abnormal" case, for EBCDIC systems not running in UTF-8 mode. */
485
486 static const unsigned char digitab[] =
487 {
488 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 0- 7 0 */
489 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 8- 15 */
490 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 16- 23 10 */
491 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */
492 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 32- 39 20 */
493 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 40- 47 */
494 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 48- 55 30 */
495 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 56- 63 */
496 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - 71 40 */
497 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 72- | */
498 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* & - 87 50 */
499 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 88- 95 */
500 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - -103 60 */
501 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 104- ? */
502 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 112-119 70 */
503 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 120- " */
504 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* 128- g 80 */
505 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* h -143 */
506 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 144- p 90 */
507 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* q -159 */
508 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 160- x A0 */
509 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* y -175 */
510 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ^ -183 B0 */
511 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 184-191 */
512 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* { - G C0 */
513 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* H -207 */
514 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* } - P D0 */
515 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* Q -223 */
516 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* \ - X E0 */
517 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* Y -239 */
518 0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c, /* 0 - 7 F0 */
519 0x0c,0x0c,0x00,0x00,0x00,0x00,0x00,0x00};/* 8 -255 */
520
521 static const unsigned char ebcdic_chartab[] = { /* chartable partial dup */
522 0x80,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 0- 7 */
523 0x00,0x00,0x00,0x00,0x01,0x01,0x00,0x00, /* 8- 15 */
524 0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 16- 23 */
525 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */
526 0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 32- 39 */
527 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 40- 47 */
528 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 48- 55 */
529 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 56- 63 */
530 0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - 71 */
531 0x00,0x00,0x00,0x80,0x00,0x80,0x80,0x80, /* 72- | */
532 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* & - 87 */
533 0x00,0x00,0x00,0x80,0x80,0x80,0x00,0x00, /* 88- 95 */
534 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - -103 */
535 0x00,0x00,0x00,0x00,0x00,0x10,0x00,0x80, /* 104- ? */
536 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 112-119 */
537 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 120- " */
538 0x00,0x1a,0x1a,0x1a,0x1a,0x1a,0x1a,0x12, /* 128- g */
539 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* h -143 */
540 0x00,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* 144- p */
541 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* q -159 */
542 0x00,0x00,0x12,0x12,0x12,0x12,0x12,0x12, /* 160- x */
543 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* y -175 */
544 0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ^ -183 */
545 0x00,0x00,0x80,0x00,0x00,0x00,0x00,0x00, /* 184-191 */
546 0x80,0x1a,0x1a,0x1a,0x1a,0x1a,0x1a,0x12, /* { - G */
547 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* H -207 */
548 0x00,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* } - P */
549 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* Q -223 */
550 0x00,0x00,0x12,0x12,0x12,0x12,0x12,0x12, /* \ - X */
551 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* Y -239 */
552 0x1c,0x1c,0x1c,0x1c,0x1c,0x1c,0x1c,0x1c, /* 0 - 7 */
553 0x1c,0x1c,0x00,0x00,0x00,0x00,0x00,0x00};/* 8 -255 */
554 #endif
555
556
557 /* Definition to allow mutual recursion */
558
559 static BOOL
560 compile_regex(int, uschar **, const uschar **, int *, BOOL, BOOL, int, int,
561 int *, int *, branch_chain *, compile_data *, int *);
562
563
564
565 /*************************************************
566 * Find an error text *
567 *************************************************/
568
569 /* The error texts are now all in one long string, to save on relocations. As
570 some of the text is of unknown length, we can't use a table of offsets.
571 Instead, just count through the strings. This is not a performance issue
572 because it happens only when there has been a compilation error.
573
574 Argument: the error number
575 Returns: pointer to the error string
576 */
577
578 static const char *
579 find_error_text(int n)
580 {
581 const char *s = error_texts;
582 for (; n > 0; n--)
583 {
584 while (*s++ != 0) {};
585 if (*s == 0) return "Error text not found (please report)";
586 }
587 return s;
588 }
589
590
591 /*************************************************
592 * Expand the workspace *
593 *************************************************/
594
595 /* This function is called during the second compiling phase, if the number of
596 forward references fills the existing workspace, which is originally a block on
597 the stack. A larger block is obtained from malloc() unless the ultimate limit
598 has been reached or the increase will be rather small.
599
600 Argument: pointer to the compile data block
601 Returns: 0 if all went well, else an error number
602 */
603
604 static int
605 expand_workspace(compile_data *cd)
606 {
607 uschar *newspace;
608 int newsize = cd->workspace_size * 2;
609
610 if (newsize > COMPILE_WORK_SIZE_MAX) newsize = COMPILE_WORK_SIZE_MAX;
611 if (cd->workspace_size >= COMPILE_WORK_SIZE_MAX ||
612 newsize - cd->workspace_size < WORK_SIZE_SAFETY_MARGIN)
613 return ERR72;
614
615 newspace = (pcre_malloc)(newsize);
616 if (newspace == NULL) return ERR21;
617
618 memcpy(newspace, cd->start_workspace, cd->workspace_size);
619 cd->hwm = (uschar *)newspace + (cd->hwm - cd->start_workspace);
620 if (cd->workspace_size > COMPILE_WORK_SIZE)
621 (pcre_free)((void *)cd->start_workspace);
622 cd->start_workspace = newspace;
623 cd->workspace_size = newsize;
624 return 0;
625 }
626
627
628
629 /*************************************************
630 * Check for counted repeat *
631 *************************************************/
632
633 /* This function is called when a '{' is encountered in a place where it might
634 start a quantifier. It looks ahead to see if it really is a quantifier or not.
635 It is only a quantifier if it is one of the forms {ddd} {ddd,} or {ddd,ddd}
636 where the ddds are digits.
637
638 Arguments:
639 p pointer to the first char after '{'
640
641 Returns: TRUE or FALSE
642 */
643
644 static BOOL
645 is_counted_repeat(const uschar *p)
646 {
647 if ((digitab[*p++] & ctype_digit) == 0) return FALSE;
648 while ((digitab[*p] & ctype_digit) != 0) p++;
649 if (*p == CHAR_RIGHT_CURLY_BRACKET) return TRUE;
650
651 if (*p++ != CHAR_COMMA) return FALSE;
652 if (*p == CHAR_RIGHT_CURLY_BRACKET) return TRUE;
653
654 if ((digitab[*p++] & ctype_digit) == 0) return FALSE;
655 while ((digitab[*p] & ctype_digit) != 0) p++;
656
657 return (*p == CHAR_RIGHT_CURLY_BRACKET);
658 }
659
660
661
662 /*************************************************
663 * Handle escapes *
664 *************************************************/
665
666 /* This function is called when a \ has been encountered. It either returns a
667 positive value for a simple escape such as \n, or a negative value which
668 encodes one of the more complicated things such as \d. A backreference to group
669 n is returned as -(ESC_REF + n); ESC_REF is the highest ESC_xxx macro. When
670 UTF-8 is enabled, a positive value greater than 255 may be returned. On entry,
671 ptr is pointing at the \. On exit, it is on the final character of the escape
672 sequence.
673
674 Arguments:
675 ptrptr points to the pattern position pointer
676 errorcodeptr points to the errorcode variable
677 bracount number of previous extracting brackets
678 options the options bits
679 isclass TRUE if inside a character class
680
681 Returns: zero or positive => a data character
682 negative => a special escape sequence
683 on error, errorcodeptr is set
684 */
685
686 static int
687 check_escape(const uschar **ptrptr, int *errorcodeptr, int bracount,
688 int options, BOOL isclass)
689 {
690 BOOL utf8 = (options & PCRE_UTF8) != 0;
691 const uschar *ptr = *ptrptr + 1;
692 int c, i;
693
694 GETCHARINCTEST(c, ptr); /* Get character value, increment pointer */
695 ptr--; /* Set pointer back to the last byte */
696
697 /* If backslash is at the end of the pattern, it's an error. */
698
699 if (c == 0) *errorcodeptr = ERR1;
700
701 /* Non-alphanumerics are literals. For digits or letters, do an initial lookup
702 in a table. A non-zero result is something that can be returned immediately.
703 Otherwise further processing may be required. */
704
705 #ifndef EBCDIC /* ASCII/UTF-8 coding */
706 else if (c < CHAR_0 || c > CHAR_z) {} /* Not alphanumeric */
707 else if ((i = escapes[c - CHAR_0]) != 0) c = i;
708
709 #else /* EBCDIC coding */
710 else if (c < 'a' || (ebcdic_chartab[c] & 0x0E) == 0) {} /* Not alphanumeric */
711 else if ((i = escapes[c - 0x48]) != 0) c = i;
712 #endif
713
714 /* Escapes that need further processing, or are illegal. */
715
716 else
717 {
718 const uschar *oldptr;
719 BOOL braced, negated;
720
721 switch (c)
722 {
723 /* A number of Perl escapes are not handled by PCRE. We give an explicit
724 error. */
725
726 case CHAR_l:
727 case CHAR_L:
728 *errorcodeptr = ERR37;
729 break;
730
731 case CHAR_u:
732 if ((options & PCRE_JAVASCRIPT_COMPAT) != 0)
733 {
734 /* In JavaScript, \u must be followed by four hexadecimal numbers.
735 Otherwise it is a lowercase u letter. */
736 if ((digitab[ptr[1]] & ctype_xdigit) != 0 && (digitab[ptr[2]] & ctype_xdigit) != 0
737 && (digitab[ptr[3]] & ctype_xdigit) != 0 && (digitab[ptr[4]] & ctype_xdigit) != 0)
738 {
739 c = 0;
740 for (i = 0; i < 4; ++i)
741 {
742 register int cc = *(++ptr);
743 #ifndef EBCDIC /* ASCII/UTF-8 coding */
744 if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */
745 c = (c << 4) + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10));
746 #else /* EBCDIC coding */
747 if (cc >= CHAR_a && cc <= CHAR_z) cc += 64; /* Convert to upper case */
748 c = (c << 4) + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10));
749 #endif
750 }
751 }
752 }
753 else
754 *errorcodeptr = ERR37;
755 break;
756
757 case CHAR_U:
758 /* In JavaScript, \U is an uppercase U letter. */
759 if ((options & PCRE_JAVASCRIPT_COMPAT) == 0) *errorcodeptr = ERR37;
760 break;
761
762 /* In a character class, \g is just a literal "g". Outside a character
763 class, \g must be followed by one of a number of specific things:
764
765 (1) A number, either plain or braced. If positive, it is an absolute
766 backreference. If negative, it is a relative backreference. This is a Perl
767 5.10 feature.
768
769 (2) Perl 5.10 also supports \g{name} as a reference to a named group. This
770 is part of Perl's movement towards a unified syntax for back references. As
771 this is synonymous with \k{name}, we fudge it up by pretending it really
772 was \k.
773
774 (3) For Oniguruma compatibility we also support \g followed by a name or a
775 number either in angle brackets or in single quotes. However, these are
776 (possibly recursive) subroutine calls, _not_ backreferences. Just return
777 the -ESC_g code (cf \k). */
778
779 case CHAR_g:
780 if (isclass) break;
781 if (ptr[1] == CHAR_LESS_THAN_SIGN || ptr[1] == CHAR_APOSTROPHE)
782 {
783 c = -ESC_g;
784 break;
785 }
786
787 /* Handle the Perl-compatible cases */
788
789 if (ptr[1] == CHAR_LEFT_CURLY_BRACKET)
790 {
791 const uschar *p;
792 for (p = ptr+2; *p != 0 && *p != CHAR_RIGHT_CURLY_BRACKET; p++)
793 if (*p != CHAR_MINUS && (digitab[*p] & ctype_digit) == 0) break;
794 if (*p != 0 && *p != CHAR_RIGHT_CURLY_BRACKET)
795 {
796 c = -ESC_k;
797 break;
798 }
799 braced = TRUE;
800 ptr++;
801 }
802 else braced = FALSE;
803
804 if (ptr[1] == CHAR_MINUS)
805 {
806 negated = TRUE;
807 ptr++;
808 }
809 else negated = FALSE;
810
811 c = 0;
812 while ((digitab[ptr[1]] & ctype_digit) != 0)
813 c = c * 10 + *(++ptr) - CHAR_0;
814
815 if (c < 0) /* Integer overflow */
816 {
817 *errorcodeptr = ERR61;
818 break;
819 }
820
821 if (braced && *(++ptr) != CHAR_RIGHT_CURLY_BRACKET)
822 {
823 *errorcodeptr = ERR57;
824 break;
825 }
826
827 if (c == 0)
828 {
829 *errorcodeptr = ERR58;
830 break;
831 }
832
833 if (negated)
834 {
835 if (c > bracount)
836 {
837 *errorcodeptr = ERR15;
838 break;
839 }
840 c = bracount - (c - 1);
841 }
842
843 c = -(ESC_REF + c);
844 break;
845
846 /* The handling of escape sequences consisting of a string of digits
847 starting with one that is not zero is not straightforward. By experiment,
848 the way Perl works seems to be as follows:
849
850 Outside a character class, the digits are read as a decimal number. If the
851 number is less than 10, or if there are that many previous extracting
852 left brackets, then it is a back reference. Otherwise, up to three octal
853 digits are read to form an escaped byte. Thus \123 is likely to be octal
854 123 (cf \0123, which is octal 012 followed by the literal 3). If the octal
855 value is greater than 377, the least significant 8 bits are taken. Inside a
856 character class, \ followed by a digit is always an octal number. */
857
858 case CHAR_1: case CHAR_2: case CHAR_3: case CHAR_4: case CHAR_5:
859 case CHAR_6: case CHAR_7: case CHAR_8: case CHAR_9:
860
861 if (!isclass)
862 {
863 oldptr = ptr;
864 c -= CHAR_0;
865 while ((digitab[ptr[1]] & ctype_digit) != 0)
866 c = c * 10 + *(++ptr) - CHAR_0;
867 if (c < 0) /* Integer overflow */
868 {
869 *errorcodeptr = ERR61;
870 break;
871 }
872 if (c < 10 || c <= bracount)
873 {
874 c = -(ESC_REF + c);
875 break;
876 }
877 ptr = oldptr; /* Put the pointer back and fall through */
878 }
879
880 /* Handle an octal number following \. If the first digit is 8 or 9, Perl
881 generates a binary zero byte and treats the digit as a following literal.
882 Thus we have to pull back the pointer by one. */
883
884 if ((c = *ptr) >= CHAR_8)
885 {
886 ptr--;
887 c = 0;
888 break;
889 }
890
891 /* \0 always starts an octal number, but we may drop through to here with a
892 larger first octal digit. The original code used just to take the least
893 significant 8 bits of octal numbers (I think this is what early Perls used
894 to do). Nowadays we allow for larger numbers in UTF-8 mode, but no more
895 than 3 octal digits. */
896
897 case CHAR_0:
898 c -= CHAR_0;
899 while(i++ < 2 && ptr[1] >= CHAR_0 && ptr[1] <= CHAR_7)
900 c = c * 8 + *(++ptr) - CHAR_0;
901 if (!utf8 && c > 255) *errorcodeptr = ERR51;
902 break;
903
904 /* \x is complicated. \x{ddd} is a character number which can be greater
905 than 0xff in utf8 mode, but only if the ddd are hex digits. If not, { is
906 treated as a data character. */
907
908 case CHAR_x:
909 if ((options & PCRE_JAVASCRIPT_COMPAT) != 0)
910 {
911 /* In JavaScript, \x must be followed by two hexadecimal numbers.
912 Otherwise it is a lowercase x letter. */
913 if ((digitab[ptr[1]] & ctype_xdigit) != 0 && (digitab[ptr[2]] & ctype_xdigit) != 0)
914 {
915 c = 0;
916 for (i = 0; i < 2; ++i)
917 {
918 register int cc = *(++ptr);
919 #ifndef EBCDIC /* ASCII/UTF-8 coding */
920 if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */
921 c = (c << 4) + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10));
922 #else /* EBCDIC coding */
923 if (cc >= CHAR_a && cc <= CHAR_z) cc += 64; /* Convert to upper case */
924 c = (c << 4) + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10));
925 #endif
926 }
927 }
928 break;
929 }
930
931 if (ptr[1] == CHAR_LEFT_CURLY_BRACKET)
932 {
933 const uschar *pt = ptr + 2;
934 int count = 0;
935
936 c = 0;
937 while ((digitab[*pt] & ctype_xdigit) != 0)
938 {
939 register int cc = *pt++;
940 if (c == 0 && cc == CHAR_0) continue; /* Leading zeroes */
941 count++;
942
943 #ifndef EBCDIC /* ASCII/UTF-8 coding */
944 if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */
945 c = (c << 4) + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10));
946 #else /* EBCDIC coding */
947 if (cc >= CHAR_a && cc <= CHAR_z) cc += 64; /* Convert to upper case */
948 c = (c << 4) + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10));
949 #endif
950 }
951
952 if (*pt == CHAR_RIGHT_CURLY_BRACKET)
953 {
954 if (c < 0 || count > (utf8? 8 : 2)) *errorcodeptr = ERR34;
955 ptr = pt;
956 break;
957 }
958
959 /* If the sequence of hex digits does not end with '}', then we don't
960 recognize this construct; fall through to the normal \x handling. */
961 }
962
963 /* Read just a single-byte hex-defined char */
964
965 c = 0;
966 while (i++ < 2 && (digitab[ptr[1]] & ctype_xdigit) != 0)
967 {
968 int cc; /* Some compilers don't like */
969 cc = *(++ptr); /* ++ in initializers */
970 #ifndef EBCDIC /* ASCII/UTF-8 coding */
971 if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */
972 c = c * 16 + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10));
973 #else /* EBCDIC coding */
974 if (cc <= CHAR_z) cc += 64; /* Convert to upper case */
975 c = c * 16 + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10));
976 #endif
977 }
978 break;
979
980 /* For \c, a following letter is upper-cased; then the 0x40 bit is flipped.
981 An error is given if the byte following \c is not an ASCII character. This
982 coding is ASCII-specific, but then the whole concept of \cx is
983 ASCII-specific. (However, an EBCDIC equivalent has now been added.) */
984
985 case CHAR_c:
986 c = *(++ptr);
987 if (c == 0)
988 {
989 *errorcodeptr = ERR2;
990 break;
991 }
992 #ifndef EBCDIC /* ASCII/UTF-8 coding */
993 if (c > 127) /* Excludes all non-ASCII in either mode */
994 {
995 *errorcodeptr = ERR68;
996 break;
997 }
998 if (c >= CHAR_a && c <= CHAR_z) c -= 32;
999 c ^= 0x40;
1000 #else /* EBCDIC coding */
1001 if (c >= CHAR_a && c <= CHAR_z) c += 64;
1002 c ^= 0xC0;
1003 #endif
1004 break;
1005
1006 /* PCRE_EXTRA enables extensions to Perl in the matter of escapes. Any
1007 other alphanumeric following \ is an error if PCRE_EXTRA was set;
1008 otherwise, for Perl compatibility, it is a literal. This code looks a bit
1009 odd, but there used to be some cases other than the default, and there may
1010 be again in future, so I haven't "optimized" it. */
1011
1012 default:
1013 if ((options & PCRE_EXTRA) != 0) switch(c)
1014 {
1015 default:
1016 *errorcodeptr = ERR3;
1017 break;
1018 }
1019 break;
1020 }
1021 }
1022
1023 /* Perl supports \N{name} for character names, as well as plain \N for "not
1024 newline". PCRE does not support \N{name}. However, it does support
1025 quantification such as \N{2,3}. */
1026
1027 if (c == -ESC_N && ptr[1] == CHAR_LEFT_CURLY_BRACKET &&
1028 !is_counted_repeat(ptr+2))
1029 *errorcodeptr = ERR37;
1030
1031 /* If PCRE_UCP is set, we change the values for \d etc. */
1032
1033 if ((options & PCRE_UCP) != 0 && c <= -ESC_D && c >= -ESC_w)
1034 c -= (ESC_DU - ESC_D);
1035
1036 /* Set the pointer to the final character before returning. */
1037
1038 *ptrptr = ptr;
1039 return c;
1040 }
1041
1042
1043
1044 #ifdef SUPPORT_UCP
1045 /*************************************************
1046 * Handle \P and \p *
1047 *************************************************/
1048
1049 /* This function is called after \P or \p has been encountered, provided that
1050 PCRE is compiled with support for Unicode properties. On entry, ptrptr is
1051 pointing at the P or p. On exit, it is pointing at the final character of the
1052 escape sequence.
1053
1054 Argument:
1055 ptrptr points to the pattern position pointer
1056 negptr points to a boolean that is set TRUE for negation else FALSE
1057 dptr points to an int that is set to the detailed property value
1058 errorcodeptr points to the error code variable
1059
1060 Returns: type value from ucp_type_table, or -1 for an invalid type
1061 */
1062
1063 static int
1064 get_ucp(const uschar **ptrptr, BOOL *negptr, int *dptr, int *errorcodeptr)
1065 {
1066 int c, i, bot, top;
1067 const uschar *ptr = *ptrptr;
1068 char name[32];
1069
1070 c = *(++ptr);
1071 if (c == 0) goto ERROR_RETURN;
1072
1073 *negptr = FALSE;
1074
1075 /* \P or \p can be followed by a name in {}, optionally preceded by ^ for
1076 negation. */
1077
1078 if (c == CHAR_LEFT_CURLY_BRACKET)
1079 {
1080 if (ptr[1] == CHAR_CIRCUMFLEX_ACCENT)
1081 {
1082 *negptr = TRUE;
1083 ptr++;
1084 }
1085 for (i = 0; i < (int)sizeof(name) - 1; i++)
1086 {
1087 c = *(++ptr);
1088 if (c == 0) goto ERROR_RETURN;
1089 if (c == CHAR_RIGHT_CURLY_BRACKET) break;
1090 name[i] = c;
1091 }
1092 if (c != CHAR_RIGHT_CURLY_BRACKET) goto ERROR_RETURN;
1093 name[i] = 0;
1094 }
1095
1096 /* Otherwise there is just one following character */
1097
1098 else
1099 {
1100 name[0] = c;
1101 name[1] = 0;
1102 }
1103
1104 *ptrptr = ptr;
1105
1106 /* Search for a recognized property name using binary chop */
1107
1108 bot = 0;
1109 top = _pcre_utt_size;
1110
1111 while (bot < top)
1112 {
1113 i = (bot + top) >> 1;
1114 c = strcmp(name, _pcre_utt_names + _pcre_utt[i].name_offset);
1115 if (c == 0)
1116 {
1117 *dptr = _pcre_utt[i].value;
1118 return _pcre_utt[i].type;
1119 }
1120 if (c > 0) bot = i + 1; else top = i;
1121 }
1122
1123 *errorcodeptr = ERR47;
1124 *ptrptr = ptr;
1125 return -1;
1126
1127 ERROR_RETURN:
1128 *errorcodeptr = ERR46;
1129 *ptrptr = ptr;
1130 return -1;
1131 }
1132 #endif
1133
1134
1135
1136
1137 /*************************************************
1138 * Read repeat counts *
1139 *************************************************/
1140
1141 /* Read an item of the form {n,m} and return the values. This is called only
1142 after is_counted_repeat() has confirmed that a repeat-count quantifier exists,
1143 so the syntax is guaranteed to be correct, but we need to check the values.
1144
1145 Arguments:
1146 p pointer to first char after '{'
1147 minp pointer to int for min
1148 maxp pointer to int for max
1149 returned as -1 if no max
1150 errorcodeptr points to error code variable
1151
1152 Returns: pointer to '}' on success;
1153 current ptr on error, with errorcodeptr set non-zero
1154 */
1155
1156 static const uschar *
1157 read_repeat_counts(const uschar *p, int *minp, int *maxp, int *errorcodeptr)
1158 {
1159 int min = 0;
1160 int max = -1;
1161
1162 /* Read the minimum value and do a paranoid check: a negative value indicates
1163 an integer overflow. */
1164
1165 while ((digitab[*p] & ctype_digit) != 0) min = min * 10 + *p++ - CHAR_0;
1166 if (min < 0 || min > 65535)
1167 {
1168 *errorcodeptr = ERR5;
1169 return p;
1170 }
1171
1172 /* Read the maximum value if there is one, and again do a paranoid on its size.
1173 Also, max must not be less than min. */
1174
1175 if (*p == CHAR_RIGHT_CURLY_BRACKET) max = min; else
1176 {
1177 if (*(++p) != CHAR_RIGHT_CURLY_BRACKET)
1178 {
1179 max = 0;
1180 while((digitab[*p] & ctype_digit) != 0) max = max * 10 + *p++ - CHAR_0;
1181 if (max < 0 || max > 65535)
1182 {
1183 *errorcodeptr = ERR5;
1184 return p;
1185 }
1186 if (max < min)
1187 {
1188 *errorcodeptr = ERR4;
1189 return p;
1190 }
1191 }
1192 }
1193
1194 /* Fill in the required variables, and pass back the pointer to the terminating
1195 '}'. */
1196
1197 *minp = min;
1198 *maxp = max;
1199 return p;
1200 }
1201
1202
1203
1204 /*************************************************
1205 * Subroutine for finding forward reference *
1206 *************************************************/
1207
1208 /* This recursive function is called only from find_parens() below. The
1209 top-level call starts at the beginning of the pattern. All other calls must
1210 start at a parenthesis. It scans along a pattern's text looking for capturing
1211 subpatterns, and counting them. If it finds a named pattern that matches the
1212 name it is given, it returns its number. Alternatively, if the name is NULL, it
1213 returns when it reaches a given numbered subpattern. Recursion is used to keep
1214 track of subpatterns that reset the capturing group numbers - the (?| feature.
1215
1216 This function was originally called only from the second pass, in which we know
1217 that if (?< or (?' or (?P< is encountered, the name will be correctly
1218 terminated because that is checked in the first pass. There is now one call to
1219 this function in the first pass, to check for a recursive back reference by
1220 name (so that we can make the whole group atomic). In this case, we need check
1221 only up to the current position in the pattern, and that is still OK because
1222 and previous occurrences will have been checked. To make this work, the test
1223 for "end of pattern" is a check against cd->end_pattern in the main loop,
1224 instead of looking for a binary zero. This means that the special first-pass
1225 call can adjust cd->end_pattern temporarily. (Checks for binary zero while
1226 processing items within the loop are OK, because afterwards the main loop will
1227 terminate.)
1228
1229 Arguments:
1230 ptrptr address of the current character pointer (updated)
1231 cd compile background data
1232 name name to seek, or NULL if seeking a numbered subpattern
1233 lorn name length, or subpattern number if name is NULL
1234 xmode TRUE if we are in /x mode
1235 utf8 TRUE if we are in UTF-8 mode
1236 count pointer to the current capturing subpattern number (updated)
1237
1238 Returns: the number of the named subpattern, or -1 if not found
1239 */
1240
1241 static int
1242 find_parens_sub(uschar **ptrptr, compile_data *cd, const uschar *name, int lorn,
1243 BOOL xmode, BOOL utf8, int *count)
1244 {
1245 uschar *ptr = *ptrptr;
1246 int start_count = *count;
1247 int hwm_count = start_count;
1248 BOOL dup_parens = FALSE;
1249
1250 /* If the first character is a parenthesis, check on the type of group we are
1251 dealing with. The very first call may not start with a parenthesis. */
1252
1253 if (ptr[0] == CHAR_LEFT_PARENTHESIS)
1254 {
1255 /* Handle specials such as (*SKIP) or (*UTF8) etc. */
1256
1257 if (ptr[1] == CHAR_ASTERISK) ptr += 2;
1258
1259 /* Handle a normal, unnamed capturing parenthesis. */
1260
1261 else if (ptr[1] != CHAR_QUESTION_MARK)
1262 {
1263 *count += 1;
1264 if (name == NULL && *count == lorn) return *count;
1265 ptr++;
1266 }
1267
1268 /* All cases now have (? at the start. Remember when we are in a group
1269 where the parenthesis numbers are duplicated. */
1270
1271 else if (ptr[2] == CHAR_VERTICAL_LINE)
1272 {
1273 ptr += 3;
1274 dup_parens = TRUE;
1275 }
1276
1277 /* Handle comments; all characters are allowed until a ket is reached. */
1278
1279 else if (ptr[2] == CHAR_NUMBER_SIGN)
1280 {
1281 for (ptr += 3; *ptr != 0; ptr++) if (*ptr == CHAR_RIGHT_PARENTHESIS) break;
1282 goto FAIL_EXIT;
1283 }
1284
1285 /* Handle a condition. If it is an assertion, just carry on so that it
1286 is processed as normal. If not, skip to the closing parenthesis of the
1287 condition (there can't be any nested parens). */
1288
1289 else if (ptr[2] == CHAR_LEFT_PARENTHESIS)
1290 {
1291 ptr += 2;
1292 if (ptr[1] != CHAR_QUESTION_MARK)
1293 {
1294 while (*ptr != 0 && *ptr != CHAR_RIGHT_PARENTHESIS) ptr++;
1295 if (*ptr != 0) ptr++;
1296 }
1297 }
1298
1299 /* Start with (? but not a condition. */
1300
1301 else
1302 {
1303 ptr += 2;
1304 if (*ptr == CHAR_P) ptr++; /* Allow optional P */
1305
1306 /* We have to disambiguate (?<! and (?<= from (?<name> for named groups */
1307
1308 if ((*ptr == CHAR_LESS_THAN_SIGN && ptr[1] != CHAR_EXCLAMATION_MARK &&
1309 ptr[1] != CHAR_EQUALS_SIGN) || *ptr == CHAR_APOSTROPHE)
1310 {
1311 int term;
1312 const uschar *thisname;
1313 *count += 1;
1314 if (name == NULL && *count == lorn) return *count;
1315 term = *ptr++;
1316 if (term == CHAR_LESS_THAN_SIGN) term = CHAR_GREATER_THAN_SIGN;
1317 thisname = ptr;
1318 while (*ptr != term) ptr++;
1319 if (name != NULL && lorn == ptr - thisname &&
1320 strncmp((const char *)name, (const char *)thisname, lorn) == 0)
1321 return *count;
1322 term++;
1323 }
1324 }
1325 }
1326
1327 /* Past any initial parenthesis handling, scan for parentheses or vertical
1328 bars. Stop if we get to cd->end_pattern. Note that this is important for the
1329 first-pass call when this value is temporarily adjusted to stop at the current
1330 position. So DO NOT change this to a test for binary zero. */
1331
1332 for (; ptr < cd->end_pattern; ptr++)
1333 {
1334 /* Skip over backslashed characters and also entire \Q...\E */
1335
1336 if (*ptr == CHAR_BACKSLASH)
1337 {
1338 if (*(++ptr) == 0) goto FAIL_EXIT;
1339 if (*ptr == CHAR_Q) for (;;)
1340 {
1341 while (*(++ptr) != 0 && *ptr != CHAR_BACKSLASH) {};
1342 if (*ptr == 0) goto FAIL_EXIT;
1343 if (*(++ptr) == CHAR_E) break;
1344 }
1345 continue;
1346 }
1347
1348 /* Skip over character classes; this logic must be similar to the way they
1349 are handled for real. If the first character is '^', skip it. Also, if the
1350 first few characters (either before or after ^) are \Q\E or \E we skip them
1351 too. This makes for compatibility with Perl. Note the use of STR macros to
1352 encode "Q\\E" so that it works in UTF-8 on EBCDIC platforms. */
1353
1354 if (*ptr == CHAR_LEFT_SQUARE_BRACKET)
1355 {
1356 BOOL negate_class = FALSE;
1357 for (;;)
1358 {
1359 if (ptr[1] == CHAR_BACKSLASH)
1360 {
1361 if (ptr[2] == CHAR_E)
1362 ptr+= 2;
1363 else if (strncmp((const char *)ptr+2,
1364 STR_Q STR_BACKSLASH STR_E, 3) == 0)
1365 ptr += 4;
1366 else
1367 break;
1368 }
1369 else if (!negate_class && ptr[1] == CHAR_CIRCUMFLEX_ACCENT)
1370 {
1371 negate_class = TRUE;
1372 ptr++;
1373 }
1374 else break;
1375 }
1376
1377 /* If the next character is ']', it is a data character that must be
1378 skipped, except in JavaScript compatibility mode. */
1379
1380 if (ptr[1] == CHAR_RIGHT_SQUARE_BRACKET &&
1381 (cd->external_options & PCRE_JAVASCRIPT_COMPAT) == 0)
1382 ptr++;
1383
1384 while (*(++ptr) != CHAR_RIGHT_SQUARE_BRACKET)
1385 {
1386 if (*ptr == 0) return -1;
1387 if (*ptr == CHAR_BACKSLASH)
1388 {
1389 if (*(++ptr) == 0) goto FAIL_EXIT;
1390 if (*ptr == CHAR_Q) for (;;)
1391 {
1392 while (*(++ptr) != 0 && *ptr != CHAR_BACKSLASH) {};
1393 if (*ptr == 0) goto FAIL_EXIT;
1394 if (*(++ptr) == CHAR_E) break;
1395 }
1396 continue;
1397 }
1398 }
1399 continue;
1400 }
1401
1402 /* Skip comments in /x mode */
1403
1404 if (xmode && *ptr == CHAR_NUMBER_SIGN)
1405 {
1406 ptr++;
1407 while (*ptr != 0)
1408 {
1409 if (IS_NEWLINE(ptr)) { ptr += cd->nllen - 1; break; }
1410 ptr++;
1411 #ifdef SUPPORT_UTF8
1412 if (utf8) while ((*ptr & 0xc0) == 0x80) ptr++;
1413 #endif
1414 }
1415 if (*ptr == 0) goto FAIL_EXIT;
1416 continue;
1417 }
1418
1419 /* Check for the special metacharacters */
1420
1421 if (*ptr == CHAR_LEFT_PARENTHESIS)
1422 {
1423 int rc = find_parens_sub(&ptr, cd, name, lorn, xmode, utf8, count);
1424 if (rc > 0) return rc;
1425 if (*ptr == 0) goto FAIL_EXIT;
1426 }
1427
1428 else if (*ptr == CHAR_RIGHT_PARENTHESIS)
1429 {
1430 if (dup_parens && *count < hwm_count) *count = hwm_count;
1431 goto FAIL_EXIT;
1432 }
1433
1434 else if (*ptr == CHAR_VERTICAL_LINE && dup_parens)
1435 {
1436 if (*count > hwm_count) hwm_count = *count;
1437 *count = start_count;
1438 }
1439 }
1440
1441 FAIL_EXIT:
1442 *ptrptr = ptr;
1443 return -1;
1444 }
1445
1446
1447
1448
1449 /*************************************************
1450 * Find forward referenced subpattern *
1451 *************************************************/
1452
1453 /* This function scans along a pattern's text looking for capturing
1454 subpatterns, and counting them. If it finds a named pattern that matches the
1455 name it is given, it returns its number. Alternatively, if the name is NULL, it
1456 returns when it reaches a given numbered subpattern. This is used for forward
1457 references to subpatterns. We used to be able to start this scan from the
1458 current compiling point, using the current count value from cd->bracount, and
1459 do it all in a single loop, but the addition of the possibility of duplicate
1460 subpattern numbers means that we have to scan from the very start, in order to
1461 take account of such duplicates, and to use a recursive function to keep track
1462 of the different types of group.
1463
1464 Arguments:
1465 cd compile background data
1466 name name to seek, or NULL if seeking a numbered subpattern
1467 lorn name length, or subpattern number if name is NULL
1468 xmode TRUE if we are in /x mode
1469 utf8 TRUE if we are in UTF-8 mode
1470
1471 Returns: the number of the found subpattern, or -1 if not found
1472 */
1473
1474 static int
1475 find_parens(compile_data *cd, const uschar *name, int lorn, BOOL xmode,
1476 BOOL utf8)
1477 {
1478 uschar *ptr = (uschar *)cd->start_pattern;
1479 int count = 0;
1480 int rc;
1481
1482 /* If the pattern does not start with an opening parenthesis, the first call
1483 to find_parens_sub() will scan right to the end (if necessary). However, if it
1484 does start with a parenthesis, find_parens_sub() will return when it hits the
1485 matching closing parens. That is why we have to have a loop. */
1486
1487 for (;;)
1488 {
1489 rc = find_parens_sub(&ptr, cd, name, lorn, xmode, utf8, &count);
1490 if (rc > 0 || *ptr++ == 0) break;
1491 }
1492
1493 return rc;
1494 }
1495
1496
1497
1498
1499 /*************************************************
1500 * Find first significant op code *
1501 *************************************************/
1502
1503 /* This is called by several functions that scan a compiled expression looking
1504 for a fixed first character, or an anchoring op code etc. It skips over things
1505 that do not influence this. For some calls, it makes sense to skip negative
1506 forward and all backward assertions, and also the \b assertion; for others it
1507 does not.
1508
1509 Arguments:
1510 code pointer to the start of the group
1511 skipassert TRUE if certain assertions are to be skipped
1512
1513 Returns: pointer to the first significant opcode
1514 */
1515
1516 static const uschar*
1517 first_significant_code(const uschar *code, BOOL skipassert)
1518 {
1519 for (;;)
1520 {
1521 switch ((int)*code)
1522 {
1523 case OP_ASSERT_NOT:
1524 case OP_ASSERTBACK:
1525 case OP_ASSERTBACK_NOT:
1526 if (!skipassert) return code;
1527 do code += GET(code, 1); while (*code == OP_ALT);
1528 code += _pcre_OP_lengths[*code];
1529 break;
1530
1531 case OP_WORD_BOUNDARY:
1532 case OP_NOT_WORD_BOUNDARY:
1533 if (!skipassert) return code;
1534 /* Fall through */
1535
1536 case OP_CALLOUT:
1537 case OP_CREF:
1538 case OP_NCREF:
1539 case OP_RREF:
1540 case OP_NRREF:
1541 case OP_DEF:
1542 code += _pcre_OP_lengths[*code];
1543 break;
1544
1545 default:
1546 return code;
1547 }
1548 }
1549 /* Control never reaches here */
1550 }
1551
1552
1553
1554
1555 /*************************************************
1556 * Find the fixed length of a branch *
1557 *************************************************/
1558
1559 /* Scan a branch and compute the fixed length of subject that will match it,
1560 if the length is fixed. This is needed for dealing with backward assertions.
1561 In UTF8 mode, the result is in characters rather than bytes. The branch is
1562 temporarily terminated with OP_END when this function is called.
1563
1564 This function is called when a backward assertion is encountered, so that if it
1565 fails, the error message can point to the correct place in the pattern.
1566 However, we cannot do this when the assertion contains subroutine calls,
1567 because they can be forward references. We solve this by remembering this case
1568 and doing the check at the end; a flag specifies which mode we are running in.
1569
1570 Arguments:
1571 code points to the start of the pattern (the bracket)
1572 utf8 TRUE in UTF-8 mode
1573 atend TRUE if called when the pattern is complete
1574 cd the "compile data" structure
1575
1576 Returns: the fixed length,
1577 or -1 if there is no fixed length,
1578 or -2 if \C was encountered (in UTF-8 mode only)
1579 or -3 if an OP_RECURSE item was encountered and atend is FALSE
1580 or -4 if an unknown opcode was encountered (internal error)
1581 */
1582
1583 static int
1584 find_fixedlength(uschar *code, BOOL utf8, BOOL atend, compile_data *cd)
1585 {
1586 int length = -1;
1587
1588 register int branchlength = 0;
1589 register uschar *cc = code + 1 + LINK_SIZE;
1590
1591 /* Scan along the opcodes for this branch. If we get to the end of the
1592 branch, check the length against that of the other branches. */
1593
1594 for (;;)
1595 {
1596 int d;
1597 uschar *ce, *cs;
1598 register int op = *cc;
1599 switch (op)
1600 {
1601 /* We only need to continue for OP_CBRA (normal capturing bracket) and
1602 OP_BRA (normal non-capturing bracket) because the other variants of these
1603 opcodes are all concerned with unlimited repeated groups, which of course
1604 are not of fixed length. */
1605
1606 case OP_CBRA:
1607 case OP_BRA:
1608 case OP_ONCE:
1609 case OP_ONCE_NC:
1610 case OP_COND:
1611 d = find_fixedlength(cc + ((op == OP_CBRA)? 2:0), utf8, atend, cd);
1612 if (d < 0) return d;
1613 branchlength += d;
1614 do cc += GET(cc, 1); while (*cc == OP_ALT);
1615 cc += 1 + LINK_SIZE;
1616 break;
1617
1618 /* Reached end of a branch; if it's a ket it is the end of a nested call.
1619 If it's ALT it is an alternation in a nested call. An ACCEPT is effectively
1620 an ALT. If it is END it's the end of the outer call. All can be handled by
1621 the same code. Note that we must not include the OP_KETRxxx opcodes here,
1622 because they all imply an unlimited repeat. */
1623
1624 case OP_ALT:
1625 case OP_KET:
1626 case OP_END:
1627 case OP_ACCEPT:
1628 case OP_ASSERT_ACCEPT:
1629 if (length < 0) length = branchlength;
1630 else if (length != branchlength) return -1;
1631 if (*cc != OP_ALT) return length;
1632 cc += 1 + LINK_SIZE;
1633 branchlength = 0;
1634 break;
1635
1636 /* A true recursion implies not fixed length, but a subroutine call may
1637 be OK. If the subroutine is a forward reference, we can't deal with
1638 it until the end of the pattern, so return -3. */
1639
1640 case OP_RECURSE:
1641 if (!atend) return -3;
1642 cs = ce = (uschar *)cd->start_code + GET(cc, 1); /* Start subpattern */
1643 do ce += GET(ce, 1); while (*ce == OP_ALT); /* End subpattern */
1644 if (cc > cs && cc < ce) return -1; /* Recursion */
1645 d = find_fixedlength(cs + 2, utf8, atend, cd);
1646 if (d < 0) return d;
1647 branchlength += d;
1648 cc += 1 + LINK_SIZE;
1649 break;
1650
1651 /* Skip over assertive subpatterns */
1652
1653 case OP_ASSERT:
1654 case OP_ASSERT_NOT:
1655 case OP_ASSERTBACK:
1656 case OP_ASSERTBACK_NOT:
1657 do cc += GET(cc, 1); while (*cc == OP_ALT);
1658 /* Fall through */
1659
1660 /* Skip over things that don't match chars */
1661
1662 case OP_MARK:
1663 case OP_PRUNE_ARG:
1664 case OP_SKIP_ARG:
1665 case OP_THEN_ARG:
1666 cc += cc[1] + _pcre_OP_lengths[*cc];
1667 break;
1668
1669 case OP_CALLOUT:
1670 case OP_CIRC:
1671 case OP_CIRCM:
1672 case OP_CLOSE:
1673 case OP_COMMIT:
1674 case OP_CREF:
1675 case OP_DEF:
1676 case OP_DOLL:
1677 case OP_DOLLM:
1678 case OP_EOD:
1679 case OP_EODN:
1680 case OP_FAIL:
1681 case OP_NCREF:
1682 case OP_NRREF:
1683 case OP_NOT_WORD_BOUNDARY:
1684 case OP_PRUNE:
1685 case OP_REVERSE:
1686 case OP_RREF:
1687 case OP_SET_SOM:
1688 case OP_SKIP:
1689 case OP_SOD:
1690 case OP_SOM:
1691 case OP_THEN:
1692 case OP_WORD_BOUNDARY:
1693 cc += _pcre_OP_lengths[*cc];
1694 break;
1695
1696 /* Handle literal characters */
1697
1698 case OP_CHAR:
1699 case OP_CHARI:
1700 case OP_NOT:
1701 case OP_NOTI:
1702 branchlength++;
1703 cc += 2;
1704 #ifdef SUPPORT_UTF8
1705 if (utf8 && cc[-1] >= 0xc0) cc += _pcre_utf8_table4[cc[-1] & 0x3f];
1706 #endif
1707 break;
1708
1709 /* Handle exact repetitions. The count is already in characters, but we
1710 need to skip over a multibyte character in UTF8 mode. */
1711
1712 case OP_EXACT:
1713 case OP_EXACTI:
1714 case OP_NOTEXACT:
1715 case OP_NOTEXACTI:
1716 branchlength += GET2(cc,1);
1717 cc += 4;
1718 #ifdef SUPPORT_UTF8
1719 if (utf8 && cc[-1] >= 0xc0) cc += _pcre_utf8_table4[cc[-1] & 0x3f];
1720 #endif
1721 break;
1722
1723 case OP_TYPEEXACT:
1724 branchlength += GET2(cc,1);
1725 if (cc[3] == OP_PROP || cc[3] == OP_NOTPROP) cc += 2;
1726 cc += 4;
1727 break;
1728
1729 /* Handle single-char matchers */
1730
1731 case OP_PROP:
1732 case OP_NOTPROP:
1733 cc += 2;
1734 /* Fall through */
1735
1736 case OP_HSPACE:
1737 case OP_VSPACE:
1738 case OP_NOT_HSPACE:
1739 case OP_NOT_VSPACE:
1740 case OP_NOT_DIGIT:
1741 case OP_DIGIT:
1742 case OP_NOT_WHITESPACE:
1743 case OP_WHITESPACE:
1744 case OP_NOT_WORDCHAR:
1745 case OP_WORDCHAR:
1746 case OP_ANY:
1747 case OP_ALLANY:
1748 branchlength++;
1749 cc++;
1750 break;
1751
1752 /* The single-byte matcher isn't allowed. This only happens in UTF-8 mode;
1753 otherwise \C is coded as OP_ALLANY. */
1754
1755 case OP_ANYBYTE:
1756 return -2;
1757
1758 /* Check a class for variable quantification */
1759
1760 #ifdef SUPPORT_UTF8
1761 case OP_XCLASS:
1762 cc += GET(cc, 1) - 33;
1763 /* Fall through */
1764 #endif
1765
1766 case OP_CLASS:
1767 case OP_NCLASS:
1768 cc += 33;
1769
1770 switch (*cc)
1771 {
1772 case OP_CRPLUS:
1773 case OP_CRMINPLUS:
1774 case OP_CRSTAR:
1775 case OP_CRMINSTAR:
1776 case OP_CRQUERY:
1777 case OP_CRMINQUERY:
1778 return -1;
1779
1780 case OP_CRRANGE:
1781 case OP_CRMINRANGE:
1782 if (GET2(cc,1) != GET2(cc,3)) return -1;
1783 branchlength += GET2(cc,1);
1784 cc += 5;
1785 break;
1786
1787 default:
1788 branchlength++;
1789 }
1790 break;
1791
1792 /* Anything else is variable length */
1793
1794 case OP_ANYNL:
1795 case OP_BRAMINZERO:
1796 case OP_BRAPOS:
1797 case OP_BRAPOSZERO:
1798 case OP_BRAZERO:
1799 case OP_CBRAPOS:
1800 case OP_EXTUNI:
1801 case OP_KETRMAX:
1802 case OP_KETRMIN:
1803 case OP_KETRPOS:
1804 case OP_MINPLUS:
1805 case OP_MINPLUSI:
1806 case OP_MINQUERY:
1807 case OP_MINQUERYI:
1808 case OP_MINSTAR:
1809 case OP_MINSTARI:
1810 case OP_MINUPTO:
1811 case OP_MINUPTOI:
1812 case OP_NOTMINPLUS:
1813 case OP_NOTMINPLUSI:
1814 case OP_NOTMINQUERY:
1815 case OP_NOTMINQUERYI:
1816 case OP_NOTMINSTAR:
1817 case OP_NOTMINSTARI:
1818 case OP_NOTMINUPTO:
1819 case OP_NOTMINUPTOI:
1820 case OP_NOTPLUS:
1821 case OP_NOTPLUSI:
1822 case OP_NOTPOSPLUS:
1823 case OP_NOTPOSPLUSI:
1824 case OP_NOTPOSQUERY:
1825 case OP_NOTPOSQUERYI:
1826 case OP_NOTPOSSTAR:
1827 case OP_NOTPOSSTARI:
1828 case OP_NOTPOSUPTO:
1829 case OP_NOTPOSUPTOI:
1830 case OP_NOTQUERY:
1831 case OP_NOTQUERYI:
1832 case OP_NOTSTAR:
1833 case OP_NOTSTARI:
1834 case OP_NOTUPTO:
1835 case OP_NOTUPTOI:
1836 case OP_PLUS:
1837 case OP_PLUSI:
1838 case OP_POSPLUS:
1839 case OP_POSPLUSI:
1840 case OP_POSQUERY:
1841 case OP_POSQUERYI:
1842 case OP_POSSTAR:
1843 case OP_POSSTARI:
1844 case OP_POSUPTO:
1845 case OP_POSUPTOI:
1846 case OP_QUERY:
1847 case OP_QUERYI:
1848 case OP_REF:
1849 case OP_REFI:
1850 case OP_SBRA:
1851 case OP_SBRAPOS:
1852 case OP_SCBRA:
1853 case OP_SCBRAPOS:
1854 case OP_SCOND:
1855 case OP_SKIPZERO:
1856 case OP_STAR:
1857 case OP_STARI:
1858 case OP_TYPEMINPLUS:
1859 case OP_TYPEMINQUERY:
1860 case OP_TYPEMINSTAR:
1861 case OP_TYPEMINUPTO:
1862 case OP_TYPEPLUS:
1863 case OP_TYPEPOSPLUS:
1864 case OP_TYPEPOSQUERY:
1865 case OP_TYPEPOSSTAR:
1866 case OP_TYPEPOSUPTO:
1867 case OP_TYPEQUERY:
1868 case OP_TYPESTAR:
1869 case OP_TYPEUPTO:
1870 case OP_UPTO:
1871 case OP_UPTOI:
1872 return -1;
1873
1874 /* Catch unrecognized opcodes so that when new ones are added they
1875 are not forgotten, as has happened in the past. */
1876
1877 default:
1878 return -4;
1879 }
1880 }
1881 /* Control never gets here */
1882 }
1883
1884
1885
1886
1887 /*************************************************
1888 * Scan compiled regex for specific bracket *
1889 *************************************************/
1890
1891 /* This little function scans through a compiled pattern until it finds a
1892 capturing bracket with the given number, or, if the number is negative, an
1893 instance of OP_REVERSE for a lookbehind. The function is global in the C sense
1894 so that it can be called from pcre_study() when finding the minimum matching
1895 length.
1896
1897 Arguments:
1898 code points to start of expression
1899 utf8 TRUE in UTF-8 mode
1900 number the required bracket number or negative to find a lookbehind
1901
1902 Returns: pointer to the opcode for the bracket, or NULL if not found
1903 */
1904
1905 const uschar *
1906 _pcre_find_bracket(const uschar *code, BOOL utf8, int number)
1907 {
1908 for (;;)
1909 {
1910 register int c = *code;
1911
1912 if (c == OP_END) return NULL;
1913
1914 /* XCLASS is used for classes that cannot be represented just by a bit
1915 map. This includes negated single high-valued characters. The length in
1916 the table is zero; the actual length is stored in the compiled code. */
1917
1918 if (c == OP_XCLASS) code += GET(code, 1);
1919
1920 /* Handle recursion */
1921
1922 else if (c == OP_REVERSE)
1923 {
1924 if (number < 0) return (uschar *)code;
1925 code += _pcre_OP_lengths[c];
1926 }
1927
1928 /* Handle capturing bracket */
1929
1930 else if (c == OP_CBRA || c == OP_SCBRA ||
1931 c == OP_CBRAPOS || c == OP_SCBRAPOS)
1932 {
1933 int n = GET2(code, 1+LINK_SIZE);
1934 if (n == number) return (uschar *)code;
1935 code += _pcre_OP_lengths[c];
1936 }
1937
1938 /* Otherwise, we can get the item's length from the table, except that for
1939 repeated character types, we have to test for \p and \P, which have an extra
1940 two bytes of parameters, and for MARK/PRUNE/SKIP/THEN with an argument, we
1941 must add in its length. */
1942
1943 else
1944 {
1945 switch(c)
1946 {
1947 case OP_TYPESTAR:
1948 case OP_TYPEMINSTAR:
1949 case OP_TYPEPLUS:
1950 case OP_TYPEMINPLUS:
1951 case OP_TYPEQUERY:
1952 case OP_TYPEMINQUERY:
1953 case OP_TYPEPOSSTAR:
1954 case OP_TYPEPOSPLUS:
1955 case OP_TYPEPOSQUERY:
1956 if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2;
1957 break;
1958
1959 case OP_TYPEUPTO:
1960 case OP_TYPEMINUPTO:
1961 case OP_TYPEEXACT:
1962 case OP_TYPEPOSUPTO:
1963 if (code[3] == OP_PROP || code[3] == OP_NOTPROP) code += 2;
1964 break;
1965
1966 case OP_MARK:
1967 case OP_PRUNE_ARG:
1968 case OP_SKIP_ARG:
1969 code += code[1];
1970 break;
1971
1972 case OP_THEN_ARG:
1973 code += code[1];
1974 break;
1975 }
1976
1977 /* Add in the fixed length from the table */
1978
1979 code += _pcre_OP_lengths[c];
1980
1981 /* In UTF-8 mode, opcodes that are followed by a character may be followed by
1982 a multi-byte character. The length in the table is a minimum, so we have to
1983 arrange to skip the extra bytes. */
1984
1985 #ifdef SUPPORT_UTF8
1986 if (utf8) switch(c)
1987 {
1988 case OP_CHAR:
1989 case OP_CHARI:
1990 case OP_EXACT:
1991 case OP_EXACTI:
1992 case OP_UPTO:
1993 case OP_UPTOI:
1994 case OP_MINUPTO:
1995 case OP_MINUPTOI:
1996 case OP_POSUPTO:
1997 case OP_POSUPTOI:
1998 case OP_STAR:
1999 case OP_STARI:
2000 case OP_MINSTAR:
2001 case OP_MINSTARI:
2002 case OP_POSSTAR:
2003 case OP_POSSTARI:
2004 case OP_PLUS:
2005 case OP_PLUSI:
2006 case OP_MINPLUS:
2007 case OP_MINPLUSI:
2008 case OP_POSPLUS:
2009 case OP_POSPLUSI:
2010 case OP_QUERY:
2011 case OP_QUERYI:
2012 case OP_MINQUERY:
2013 case OP_MINQUERYI:
2014 case OP_POSQUERY:
2015 case OP_POSQUERYI:
2016 if (code[-1] >= 0xc0) code += _pcre_utf8_table4[code[-1] & 0x3f];
2017 break;
2018 }
2019 #else
2020 (void)(utf8); /* Keep compiler happy by referencing function argument */
2021 #endif
2022 }
2023 }
2024 }
2025
2026
2027
2028 /*************************************************
2029 * Scan compiled regex for recursion reference *
2030 *************************************************/
2031
2032 /* This little function scans through a compiled pattern until it finds an
2033 instance of OP_RECURSE.
2034
2035 Arguments:
2036 code points to start of expression
2037 utf8 TRUE in UTF-8 mode
2038
2039 Returns: pointer to the opcode for OP_RECURSE, or NULL if not found
2040 */
2041
2042 static const uschar *
2043 find_recurse(const uschar *code, BOOL utf8)
2044 {
2045 for (;;)
2046 {
2047 register int c = *code;
2048 if (c == OP_END) return NULL;
2049 if (c == OP_RECURSE) return code;
2050
2051 /* XCLASS is used for classes that cannot be represented just by a bit
2052 map. This includes negated single high-valued characters. The length in
2053 the table is zero; the actual length is stored in the compiled code. */
2054
2055 if (c == OP_XCLASS) code += GET(code, 1);
2056
2057 /* Otherwise, we can get the item's length from the table, except that for
2058 repeated character types, we have to test for \p and \P, which have an extra
2059 two bytes of parameters, and for MARK/PRUNE/SKIP/THEN with an argument, we
2060 must add in its length. */
2061
2062 else
2063 {
2064 switch(c)
2065 {
2066 case OP_TYPESTAR:
2067 case OP_TYPEMINSTAR:
2068 case OP_TYPEPLUS:
2069 case OP_TYPEMINPLUS:
2070 case OP_TYPEQUERY:
2071 case OP_TYPEMINQUERY:
2072 case OP_TYPEPOSSTAR:
2073 case OP_TYPEPOSPLUS:
2074 case OP_TYPEPOSQUERY:
2075 if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2;
2076 break;
2077
2078 case OP_TYPEPOSUPTO:
2079 case OP_TYPEUPTO:
2080 case OP_TYPEMINUPTO:
2081 case OP_TYPEEXACT:
2082 if (code[3] == OP_PROP || code[3] == OP_NOTPROP) code += 2;
2083 break;
2084
2085 case OP_MARK:
2086 case OP_PRUNE_ARG:
2087 case OP_SKIP_ARG:
2088 code += code[1];
2089 break;
2090
2091 case OP_THEN_ARG:
2092 code += code[1];
2093 break;
2094 }
2095
2096 /* Add in the fixed length from the table */
2097
2098 code += _pcre_OP_lengths[c];
2099
2100 /* In UTF-8 mode, opcodes that are followed by a character may be followed
2101 by a multi-byte character. The length in the table is a minimum, so we have
2102 to arrange to skip the extra bytes. */
2103
2104 #ifdef SUPPORT_UTF8
2105 if (utf8) switch(c)
2106 {
2107 case OP_CHAR:
2108 case OP_CHARI:
2109 case OP_EXACT:
2110 case OP_EXACTI:
2111 case OP_UPTO:
2112 case OP_UPTOI:
2113 case OP_MINUPTO:
2114 case OP_MINUPTOI:
2115 case OP_POSUPTO:
2116 case OP_POSUPTOI:
2117 case OP_STAR:
2118 case OP_STARI:
2119 case OP_MINSTAR:
2120 case OP_MINSTARI:
2121 case OP_POSSTAR:
2122 case OP_POSSTARI:
2123 case OP_PLUS:
2124 case OP_PLUSI:
2125 case OP_MINPLUS:
2126 case OP_MINPLUSI:
2127 case OP_POSPLUS:
2128 case OP_POSPLUSI:
2129 case OP_QUERY:
2130 case OP_QUERYI:
2131 case OP_MINQUERY:
2132 case OP_MINQUERYI:
2133 case OP_POSQUERY:
2134 case OP_POSQUERYI:
2135 if (code[-1] >= 0xc0) code += _pcre_utf8_table4[code[-1] & 0x3f];
2136 break;
2137 }
2138 #else
2139 (void)(utf8); /* Keep compiler happy by referencing function argument */
2140 #endif
2141 }
2142 }
2143 }
2144
2145
2146
2147 /*************************************************
2148 * Scan compiled branch for non-emptiness *
2149 *************************************************/
2150
2151 /* This function scans through a branch of a compiled pattern to see whether it
2152 can match the empty string or not. It is called from could_be_empty()
2153 below and from compile_branch() when checking for an unlimited repeat of a
2154 group that can match nothing. Note that first_significant_code() skips over
2155 backward and negative forward assertions when its final argument is TRUE. If we
2156 hit an unclosed bracket, we return "empty" - this means we've struck an inner
2157 bracket whose current branch will already have been scanned.
2158
2159 Arguments:
2160 code points to start of search
2161 endcode points to where to stop
2162 utf8 TRUE if in UTF8 mode
2163 cd contains pointers to tables etc.
2164
2165 Returns: TRUE if what is matched could be empty
2166 */
2167
2168 static BOOL
2169 could_be_empty_branch(const uschar *code, const uschar *endcode, BOOL utf8,
2170 compile_data *cd)
2171 {
2172 register int c;
2173 for (code = first_significant_code(code + _pcre_OP_lengths[*code], TRUE);
2174 code < endcode;
2175 code = first_significant_code(code + _pcre_OP_lengths[c], TRUE))
2176 {
2177 const uschar *ccode;
2178
2179 c = *code;
2180
2181 /* Skip over forward assertions; the other assertions are skipped by
2182 first_significant_code() with a TRUE final argument. */
2183
2184 if (c == OP_ASSERT)
2185 {
2186 do code += GET(code, 1); while (*code == OP_ALT);
2187 c = *code;
2188 continue;
2189 }
2190
2191 /* For a recursion/subroutine call, if its end has been reached, which
2192 implies a backward reference subroutine call, we can scan it. If it's a
2193 forward reference subroutine call, we can't. To detect forward reference
2194 we have to scan up the list that is kept in the workspace. This function is
2195 called only when doing the real compile, not during the pre-compile that
2196 measures the size of the compiled pattern. */
2197
2198 if (c == OP_RECURSE)
2199 {
2200 const uschar *scode;
2201 BOOL empty_branch;
2202
2203 /* Test for forward reference */
2204
2205 for (scode = cd->start_workspace; scode < cd->hwm; scode += LINK_SIZE)
2206 if (GET(scode, 0) == code + 1 - cd->start_code) return TRUE;
2207
2208 /* Not a forward reference, test for completed backward reference */
2209
2210 empty_branch = FALSE;
2211 scode = cd->start_code + GET(code, 1);
2212 if (GET(scode, 1) == 0) return TRUE; /* Unclosed */
2213
2214 /* Completed backwards reference */
2215
2216 do
2217 {
2218 if (could_be_empty_branch(scode, endcode, utf8, cd))
2219 {
2220 empty_branch = TRUE;
2221 break;
2222 }
2223 scode += GET(scode, 1);
2224 }
2225 while (*scode == OP_ALT);
2226
2227 if (!empty_branch) return FALSE; /* All branches are non-empty */
2228 continue;
2229 }
2230
2231 /* Groups with zero repeats can of course be empty; skip them. */
2232
2233 if (c == OP_BRAZERO || c == OP_BRAMINZERO || c == OP_SKIPZERO ||
2234 c == OP_BRAPOSZERO)
2235 {
2236 code += _pcre_OP_lengths[c];
2237 do code += GET(code, 1); while (*code == OP_ALT);
2238 c = *code;
2239 continue;
2240 }
2241
2242 /* A nested group that is already marked as "could be empty" can just be
2243 skipped. */
2244
2245 if (c == OP_SBRA || c == OP_SBRAPOS ||
2246 c == OP_SCBRA || c == OP_SCBRAPOS)
2247 {
2248 do code += GET(code, 1); while (*code == OP_ALT);
2249 c = *code;
2250 continue;
2251 }
2252
2253 /* For other groups, scan the branches. */
2254
2255 if (c == OP_BRA || c == OP_BRAPOS ||
2256 c == OP_CBRA || c == OP_CBRAPOS ||
2257 c == OP_ONCE || c == OP_ONCE_NC ||
2258 c == OP_COND)
2259 {
2260 BOOL empty_branch;
2261 if (GET(code, 1) == 0) return TRUE; /* Hit unclosed bracket */
2262
2263 /* If a conditional group has only one branch, there is a second, implied,
2264 empty branch, so just skip over the conditional, because it could be empty.
2265 Otherwise, scan the individual branches of the group. */
2266
2267 if (c == OP_COND && code[GET(code, 1)] != OP_ALT)
2268 code += GET(code, 1);
2269 else
2270 {
2271 empty_branch = FALSE;
2272 do
2273 {
2274 if (!empty_branch && could_be_empty_branch(code, endcode, utf8, cd))
2275 empty_branch = TRUE;
2276 code += GET(code, 1);
2277 }
2278 while (*code == OP_ALT);
2279 if (!empty_branch) return FALSE; /* All branches are non-empty */
2280 }
2281
2282 c = *code;
2283 continue;
2284 }
2285
2286 /* Handle the other opcodes */
2287
2288 switch (c)
2289 {
2290 /* Check for quantifiers after a class. XCLASS is used for classes that
2291 cannot be represented just by a bit map. This includes negated single
2292 high-valued characters. The length in _pcre_OP_lengths[] is zero; the
2293 actual length is stored in the compiled code, so we must update "code"
2294 here. */
2295
2296 #ifdef SUPPORT_UTF8
2297 case OP_XCLASS:
2298 ccode = code += GET(code, 1);
2299 goto CHECK_CLASS_REPEAT;
2300 #endif
2301
2302 case OP_CLASS:
2303 case OP_NCLASS:
2304 ccode = code + 33;
2305
2306 #ifdef SUPPORT_UTF8
2307 CHECK_CLASS_REPEAT:
2308 #endif
2309
2310 switch (*ccode)
2311 {
2312 case OP_CRSTAR: /* These could be empty; continue */
2313 case OP_CRMINSTAR:
2314 case OP_CRQUERY:
2315 case OP_CRMINQUERY:
2316 break;
2317
2318 default: /* Non-repeat => class must match */
2319 case OP_CRPLUS: /* These repeats aren't empty */
2320 case OP_CRMINPLUS:
2321 return FALSE;
2322
2323 case OP_CRRANGE:
2324 case OP_CRMINRANGE:
2325 if (GET2(ccode, 1) > 0) return FALSE; /* Minimum > 0 */
2326 break;
2327 }
2328 break;
2329
2330 /* Opcodes that must match a character */
2331
2332 case OP_PROP:
2333 case OP_NOTPROP:
2334 case OP_EXTUNI:
2335 case OP_NOT_DIGIT:
2336 case OP_DIGIT:
2337 case OP_NOT_WHITESPACE:
2338 case OP_WHITESPACE:
2339 case OP_NOT_WORDCHAR:
2340 case OP_WORDCHAR:
2341 case OP_ANY:
2342 case OP_ALLANY:
2343 case OP_ANYBYTE:
2344 case OP_CHAR:
2345 case OP_CHARI:
2346 case OP_NOT:
2347 case OP_NOTI:
2348 case OP_PLUS:
2349 case OP_MINPLUS:
2350 case OP_POSPLUS:
2351 case OP_EXACT:
2352 case OP_NOTPLUS:
2353 case OP_NOTMINPLUS:
2354 case OP_NOTPOSPLUS:
2355 case OP_NOTEXACT:
2356 case OP_TYPEPLUS:
2357 case OP_TYPEMINPLUS:
2358 case OP_TYPEPOSPLUS:
2359 case OP_TYPEEXACT:
2360 return FALSE;
2361
2362 /* These are going to continue, as they may be empty, but we have to
2363 fudge the length for the \p and \P cases. */
2364
2365 case OP_TYPESTAR:
2366 case OP_TYPEMINSTAR:
2367 case OP_TYPEPOSSTAR:
2368 case OP_TYPEQUERY:
2369 case OP_TYPEMINQUERY:
2370 case OP_TYPEPOSQUERY:
2371 if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2;
2372 break;
2373
2374 /* Same for these */
2375
2376 case OP_TYPEUPTO:
2377 case OP_TYPEMINUPTO:
2378 case OP_TYPEPOSUPTO:
2379 if (code[3] == OP_PROP || code[3] == OP_NOTPROP) code += 2;
2380 break;
2381
2382 /* End of branch */
2383
2384 case OP_KET:
2385 case OP_KETRMAX:
2386 case OP_KETRMIN:
2387 case OP_KETRPOS:
2388 case OP_ALT:
2389 return TRUE;
2390
2391 /* In UTF-8 mode, STAR, MINSTAR, POSSTAR, QUERY, MINQUERY, POSQUERY, UPTO,
2392 MINUPTO, and POSUPTO may be followed by a multibyte character */
2393
2394 #ifdef SUPPORT_UTF8
2395 case OP_STAR:
2396 case OP_STARI:
2397 case OP_MINSTAR:
2398 case OP_MINSTARI:
2399 case OP_POSSTAR:
2400 case OP_POSSTARI:
2401 case OP_QUERY:
2402 case OP_QUERYI:
2403 case OP_MINQUERY:
2404 case OP_MINQUERYI:
2405 case OP_POSQUERY:
2406 case OP_POSQUERYI:
2407 if (utf8 && code[1] >= 0xc0) code += _pcre_utf8_table4[code[1] & 0x3f];
2408 break;
2409
2410 case OP_UPTO:
2411 case OP_UPTOI:
2412 case OP_MINUPTO:
2413 case OP_MINUPTOI:
2414 case OP_POSUPTO:
2415 case OP_POSUPTOI:
2416 if (utf8 && code[3] >= 0xc0) code += _pcre_utf8_table4[code[3] & 0x3f];
2417 break;
2418 #endif
2419
2420 /* MARK, and PRUNE/SKIP/THEN with an argument must skip over the argument
2421 string. */
2422
2423 case OP_MARK:
2424 case OP_PRUNE_ARG:
2425 case OP_SKIP_ARG:
2426 code += code[1];
2427 break;
2428
2429 case OP_THEN_ARG:
2430 code += code[1];
2431 break;
2432
2433 /* None of the remaining opcodes are required to match a character. */
2434
2435 default:
2436 break;
2437 }
2438 }
2439
2440 return TRUE;
2441 }
2442
2443
2444
2445 /*************************************************
2446 * Scan compiled regex for non-emptiness *
2447 *************************************************/
2448
2449 /* This function is called to check for left recursive calls. We want to check
2450 the current branch of the current pattern to see if it could match the empty
2451 string. If it could, we must look outwards for branches at other levels,
2452 stopping when we pass beyond the bracket which is the subject of the recursion.
2453 This function is called only during the real compile, not during the
2454 pre-compile.
2455
2456 Arguments:
2457 code points to start of the recursion
2458 endcode points to where to stop (current RECURSE item)
2459 bcptr points to the chain of current (unclosed) branch starts
2460 utf8 TRUE if in UTF-8 mode
2461 cd pointers to tables etc
2462
2463 Returns: TRUE if what is matched could be empty
2464 */
2465
2466 static BOOL
2467 could_be_empty(const uschar *code, const uschar *endcode, branch_chain *bcptr,
2468 BOOL utf8, compile_data *cd)
2469 {
2470 while (bcptr != NULL && bcptr->current_branch >= code)
2471 {
2472 if (!could_be_empty_branch(bcptr->current_branch, endcode, utf8, cd))
2473 return FALSE;
2474 bcptr = bcptr->outer;
2475 }
2476 return TRUE;
2477 }
2478
2479
2480
2481 /*************************************************
2482 * Check for POSIX class syntax *
2483 *************************************************/
2484
2485 /* This function is called when the sequence "[:" or "[." or "[=" is
2486 encountered in a character class. It checks whether this is followed by a
2487 sequence of characters terminated by a matching ":]" or ".]" or "=]". If we
2488 reach an unescaped ']' without the special preceding character, return FALSE.
2489
2490 Originally, this function only recognized a sequence of letters between the
2491 terminators, but it seems that Perl recognizes any sequence of characters,
2492 though of course unknown POSIX names are subsequently rejected. Perl gives an
2493 "Unknown POSIX class" error for [:f\oo:] for example, where previously PCRE
2494 didn't consider this to be a POSIX class. Likewise for [:1234:].
2495
2496 The problem in trying to be exactly like Perl is in the handling of escapes. We
2497 have to be sure that [abc[:x\]pqr] is *not* treated as containing a POSIX
2498 class, but [abc[:x\]pqr:]] is (so that an error can be generated). The code
2499 below handles the special case of \], but does not try to do any other escape
2500 processing. This makes it different from Perl for cases such as [:l\ower:]
2501 where Perl recognizes it as the POSIX class "lower" but PCRE does not recognize
2502 "l\ower". This is a lesser evil that not diagnosing bad classes when Perl does,
2503 I think.
2504
2505 A user pointed out that PCRE was rejecting [:a[:digit:]] whereas Perl was not.
2506 It seems that the appearance of a nested POSIX class supersedes an apparent
2507 external class. For example, [:a[:digit:]b:] matches "a", "b", ":", or
2508 a digit.
2509
2510 In Perl, unescaped square brackets may also appear as part of class names. For
2511 example, [:a[:abc]b:] gives unknown POSIX class "[:abc]b:]". However, for
2512 [:a[:abc]b][b:] it gives unknown POSIX class "[:abc]b][b:]", which does not
2513 seem right at all. PCRE does not allow closing square brackets in POSIX class
2514 names.
2515
2516 Arguments:
2517 ptr pointer to the initial [
2518 endptr where to return the end pointer
2519
2520 Returns: TRUE or FALSE
2521 */
2522
2523 static BOOL
2524 check_posix_syntax(const uschar *ptr, const uschar **endptr)
2525 {
2526 int terminator; /* Don't combine these lines; the Solaris cc */
2527 terminator = *(++ptr); /* compiler warns about "non-constant" initializer. */
2528 for (++ptr; *ptr != 0; ptr++)
2529 {
2530 if (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_RIGHT_SQUARE_BRACKET)
2531 ptr++;
2532 else if (*ptr == CHAR_RIGHT_SQUARE_BRACKET) return FALSE;
2533 else
2534 {
2535 if (*ptr == terminator && ptr[1] == CHAR_RIGHT_SQUARE_BRACKET)
2536 {
2537 *endptr = ptr;
2538 return TRUE;
2539 }
2540 if (*ptr == CHAR_LEFT_SQUARE_BRACKET &&
2541 (ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT ||
2542 ptr[1] == CHAR_EQUALS_SIGN) &&
2543 check_posix_syntax(ptr, endptr))
2544 return FALSE;
2545 }
2546 }
2547 return FALSE;
2548 }
2549
2550
2551
2552
2553 /*************************************************
2554 * Check POSIX class name *
2555 *************************************************/
2556
2557 /* This function is called to check the name given in a POSIX-style class entry
2558 such as [:alnum:].
2559
2560 Arguments:
2561 ptr points to the first letter
2562 len the length of the name
2563
2564 Returns: a value representing the name, or -1 if unknown
2565 */
2566
2567 static int
2568 check_posix_name(const uschar *ptr, int len)
2569 {
2570 const char *pn = posix_names;
2571 register int yield = 0;
2572 while (posix_name_lengths[yield] != 0)
2573 {
2574 if (len == posix_name_lengths[yield] &&
2575 strncmp((const char *)ptr, pn, len) == 0) return yield;
2576 pn += posix_name_lengths[yield] + 1;
2577 yield++;
2578 }
2579 return -1;
2580 }
2581
2582
2583 /*************************************************
2584 * Adjust OP_RECURSE items in repeated group *
2585 *************************************************/
2586
2587 /* OP_RECURSE items contain an offset from the start of the regex to the group
2588 that is referenced. This means that groups can be replicated for fixed
2589 repetition simply by copying (because the recursion is allowed to refer to
2590 earlier groups that are outside the current group). However, when a group is
2591 optional (i.e. the minimum quantifier is zero), OP_BRAZERO or OP_SKIPZERO is
2592 inserted before it, after it has been compiled. This means that any OP_RECURSE
2593 items within it that refer to the group itself or any contained groups have to
2594 have their offsets adjusted. That one of the jobs of this function. Before it
2595 is called, the partially compiled regex must be temporarily terminated with
2596 OP_END.
2597
2598 This function has been extended with the possibility of forward references for
2599 recursions and subroutine calls. It must also check the list of such references
2600 for the group we are dealing with. If it finds that one of the recursions in
2601 the current group is on this list, it adjusts the offset in the list, not the
2602 value in the reference (which is a group number).
2603
2604 Arguments:
2605 group points to the start of the group
2606 adjust the amount by which the group is to be moved
2607 utf8 TRUE in UTF-8 mode
2608 cd contains pointers to tables etc.
2609 save_hwm the hwm forward reference pointer at the start of the group
2610
2611 Returns: nothing
2612 */
2613
2614 static void
2615 adjust_recurse(uschar *group, int adjust, BOOL utf8, compile_data *cd,
2616 uschar *save_hwm)
2617 {
2618 uschar *ptr = group;
2619
2620 while ((ptr = (uschar *)find_recurse(ptr, utf8)) != NULL)
2621 {
2622 int offset;
2623 uschar *hc;
2624
2625 /* See if this recursion is on the forward reference list. If so, adjust the
2626 reference. */
2627
2628 for (hc = save_hwm; hc < cd->hwm; hc += LINK_SIZE)
2629 {
2630 offset = GET(hc, 0);
2631 if (cd->start_code + offset == ptr + 1)
2632 {
2633 PUT(hc, 0, offset + adjust);
2634 break;
2635 }
2636 }
2637
2638 /* Otherwise, adjust the recursion offset if it's after the start of this
2639 group. */
2640
2641 if (hc >= cd->hwm)
2642 {
2643 offset = GET(ptr, 1);
2644 if (cd->start_code + offset >= group) PUT(ptr, 1, offset + adjust);
2645 }
2646
2647 ptr += 1 + LINK_SIZE;
2648 }
2649 }
2650
2651
2652
2653 /*************************************************
2654 * Insert an automatic callout point *
2655 *************************************************/
2656
2657 /* This function is called when the PCRE_AUTO_CALLOUT option is set, to insert
2658 callout points before each pattern item.
2659
2660 Arguments:
2661 code current code pointer
2662 ptr current pattern pointer
2663 cd pointers to tables etc
2664
2665 Returns: new code pointer
2666 */
2667
2668 static uschar *
2669 auto_callout(uschar *code, const uschar *ptr, compile_data *cd)
2670 {
2671 *code++ = OP_CALLOUT;
2672 *code++ = 255;
2673 PUT(code, 0, (int)(ptr - cd->start_pattern)); /* Pattern offset */
2674 PUT(code, LINK_SIZE, 0); /* Default length */
2675 return code + 2*LINK_SIZE;
2676 }
2677
2678
2679
2680 /*************************************************
2681 * Complete a callout item *
2682 *************************************************/
2683
2684 /* A callout item contains the length of the next item in the pattern, which
2685 we can't fill in till after we have reached the relevant point. This is used
2686 for both automatic and manual callouts.
2687
2688 Arguments:
2689 previous_callout points to previous callout item
2690 ptr current pattern pointer
2691 cd pointers to tables etc
2692
2693 Returns: nothing
2694 */
2695
2696 static void
2697 complete_callout(uschar *previous_callout, const uschar *ptr, compile_data *cd)
2698 {
2699 int length = (int)(ptr - cd->start_pattern - GET(previous_callout, 2));
2700 PUT(previous_callout, 2 + LINK_SIZE, length);
2701 }
2702
2703
2704
2705 #ifdef SUPPORT_UCP
2706 /*************************************************
2707 * Get othercase range *
2708 *************************************************/
2709
2710 /* This function is passed the start and end of a class range, in UTF-8 mode
2711 with UCP support. It searches up the characters, looking for internal ranges of
2712 characters in the "other" case. Each call returns the next one, updating the
2713 start address.
2714
2715 Arguments:
2716 cptr points to starting character value; updated
2717 d end value
2718 ocptr where to put start of othercase range
2719 odptr where to put end of othercase range
2720
2721 Yield: TRUE when range returned; FALSE when no more
2722 */
2723
2724 static BOOL
2725 get_othercase_range(unsigned int *cptr, unsigned int d, unsigned int *ocptr,
2726 unsigned int *odptr)
2727 {
2728 unsigned int c, othercase, next;
2729
2730 for (c = *cptr; c <= d; c++)
2731 { if ((othercase = UCD_OTHERCASE(c)) != c) break; }
2732
2733 if (c > d) return FALSE;
2734
2735 *ocptr = othercase;
2736 next = othercase + 1;
2737
2738 for (++c; c <= d; c++)
2739 {
2740 if (UCD_OTHERCASE(c) != next) break;
2741 next++;
2742 }
2743
2744 *odptr = next - 1;
2745 *cptr = c;
2746
2747 return TRUE;
2748 }
2749
2750
2751
2752 /*************************************************
2753 * Check a character and a property *
2754 *************************************************/
2755
2756 /* This function is called by check_auto_possessive() when a property item
2757 is adjacent to a fixed character.
2758
2759 Arguments:
2760 c the character
2761 ptype the property type
2762 pdata the data for the type
2763 negated TRUE if it's a negated property (\P or \p{^)
2764
2765 Returns: TRUE if auto-possessifying is OK
2766 */
2767
2768 static BOOL
2769 check_char_prop(int c, int ptype, int pdata, BOOL negated)
2770 {
2771 const ucd_record *prop = GET_UCD(c);
2772 switch(ptype)
2773 {
2774 case PT_LAMP:
2775 return (prop->chartype == ucp_Lu ||
2776 prop->chartype == ucp_Ll ||
2777 prop->chartype == ucp_Lt) == negated;
2778
2779 case PT_GC:
2780 return (pdata == _pcre_ucp_gentype[prop->chartype]) == negated;
2781
2782 case PT_PC:
2783 return (pdata == prop->chartype) == negated;
2784
2785 case PT_SC:
2786 return (pdata == prop->script) == negated;
2787
2788 /* These are specials */
2789
2790 case PT_ALNUM:
2791 return (_pcre_ucp_gentype[prop->chartype] == ucp_L ||
2792 _pcre_ucp_gentype[prop->chartype] == ucp_N) == negated;
2793
2794 case PT_SPACE: /* Perl space */
2795 return (_pcre_ucp_gentype[prop->chartype] == ucp_Z ||
2796 c == CHAR_HT || c == CHAR_NL || c == CHAR_FF || c == CHAR_CR)
2797 == negated;
2798
2799 case PT_PXSPACE: /* POSIX space */
2800 return (_pcre_ucp_gentype[prop->chartype] == ucp_Z ||
2801 c == CHAR_HT || c == CHAR_NL || c == CHAR_VT ||
2802 c == CHAR_FF || c == CHAR_CR)
2803 == negated;
2804
2805 case PT_WORD:
2806 return (_pcre_ucp_gentype[prop->chartype] == ucp_L ||
2807 _pcre_ucp_gentype[prop->chartype] == ucp_N ||
2808 c == CHAR_UNDERSCORE) == negated;
2809 }
2810 return FALSE;
2811 }
2812 #endif /* SUPPORT_UCP */
2813
2814
2815
2816 /*************************************************
2817 * Check if auto-possessifying is possible *
2818 *************************************************/
2819
2820 /* This function is called for unlimited repeats of certain items, to see
2821 whether the next thing could possibly match the repeated item. If not, it makes
2822 sense to automatically possessify the repeated item.
2823
2824 Arguments:
2825 previous pointer to the repeated opcode
2826 utf8 TRUE in UTF-8 mode
2827 ptr next character in pattern
2828 options options bits
2829 cd contains pointers to tables etc.
2830
2831 Returns: TRUE if possessifying is wanted
2832 */
2833
2834 static BOOL
2835 check_auto_possessive(const uschar *previous, BOOL utf8, const uschar *ptr,
2836 int options, compile_data *cd)
2837 {
2838 int c, next;
2839 int op_code = *previous++;
2840
2841 /* Skip whitespace and comments in extended mode */
2842
2843 if ((options & PCRE_EXTENDED) != 0)
2844 {
2845 for (;;)
2846 {
2847 while ((cd->ctypes[*ptr] & ctype_space) != 0) ptr++;
2848 if (*ptr == CHAR_NUMBER_SIGN)
2849 {
2850 ptr++;
2851 while (*ptr != 0)
2852 {
2853 if (IS_NEWLINE(ptr)) { ptr += cd->nllen; break; }
2854 ptr++;
2855 #ifdef SUPPORT_UTF8
2856 if (utf8) while ((*ptr & 0xc0) == 0x80) ptr++;
2857 #endif
2858 }
2859 }
2860 else break;
2861 }
2862 }
2863
2864 /* If the next item is one that we can handle, get its value. A non-negative
2865 value is a character, a negative value is an escape value. */
2866
2867 if (*ptr == CHAR_BACKSLASH)
2868 {
2869 int temperrorcode = 0;
2870 next = check_escape(&ptr, &temperrorcode, cd->bracount, options, FALSE);
2871 if (temperrorcode != 0) return FALSE;
2872 ptr++; /* Point after the escape sequence */
2873 }
2874
2875 else if ((cd->ctypes[*ptr] & ctype_meta) == 0)
2876 {
2877 #ifdef SUPPORT_UTF8
2878 if (utf8) { GETCHARINC(next, ptr); } else
2879 #endif
2880 next = *ptr++;
2881 }
2882
2883 else return FALSE;
2884
2885 /* Skip whitespace and comments in extended mode */
2886
2887 if ((options & PCRE_EXTENDED) != 0)
2888 {
2889 for (;;)
2890 {
2891 while ((cd->ctypes[*ptr] & ctype_space) != 0) ptr++;
2892 if (*ptr == CHAR_NUMBER_SIGN)
2893 {
2894 ptr++;
2895 while (*ptr != 0)
2896 {
2897 if (IS_NEWLINE(ptr)) { ptr += cd->nllen; break; }
2898 ptr++;
2899 #ifdef SUPPORT_UTF8
2900 if (utf8) while ((*ptr & 0xc0) == 0x80) ptr++;
2901 #endif
2902 }
2903 }
2904 else break;
2905 }
2906 }
2907
2908 /* If the next thing is itself optional, we have to give up. */
2909
2910 if (*ptr == CHAR_ASTERISK || *ptr == CHAR_QUESTION_MARK ||
2911 strncmp((char *)ptr, STR_LEFT_CURLY_BRACKET STR_0 STR_COMMA, 3) == 0)
2912 return FALSE;
2913
2914 /* Now compare the next item with the previous opcode. First, handle cases when
2915 the next item is a character. */
2916
2917 if (next >= 0) switch(op_code)
2918 {
2919 case OP_CHAR:
2920 #ifdef SUPPORT_UTF8
2921 GETCHARTEST(c, previous);
2922 #else
2923 c = *previous;
2924 #endif
2925 return c != next;
2926
2927 /* For CHARI (caseless character) we must check the other case. If we have
2928 Unicode property support, we can use it to test the other case of
2929 high-valued characters. */
2930
2931 case OP_CHARI:
2932 #ifdef SUPPORT_UTF8
2933 GETCHARTEST(c, previous);
2934 #else
2935 c = *previous;
2936 #endif
2937 if (c == next) return FALSE;
2938 #ifdef SUPPORT_UTF8
2939 if (utf8)
2940 {
2941 unsigned int othercase;
2942 if (next < 128) othercase = cd->fcc[next]; else
2943 #ifdef SUPPORT_UCP
2944 othercase = UCD_OTHERCASE((unsigned int)next);
2945 #else
2946 othercase = NOTACHAR;
2947 #endif
2948 return (unsigned int)c != othercase;
2949 }
2950 else
2951 #endif /* SUPPORT_UTF8 */
2952 return (c != cd->fcc[next]); /* Non-UTF-8 mode */
2953
2954 /* For OP_NOT and OP_NOTI, the data is always a single-byte character. These
2955 opcodes are not used for multi-byte characters, because they are coded using
2956 an XCLASS instead. */
2957
2958 case OP_NOT:
2959 return (c = *previous) == next;
2960
2961 case OP_NOTI:
2962 if ((c = *previous) == next) return TRUE;
2963 #ifdef SUPPORT_UTF8
2964 if (utf8)
2965 {
2966 unsigned int othercase;
2967 if (next < 128) othercase = cd->fcc[next]; else
2968 #ifdef SUPPORT_UCP
2969 othercase = UCD_OTHERCASE(next);
2970 #else
2971 othercase = NOTACHAR;
2972 #endif
2973 return (unsigned int)c == othercase;
2974 }
2975 else
2976 #endif /* SUPPORT_UTF8 */
2977 return (c == cd->fcc[next]); /* Non-UTF-8 mode */
2978
2979 /* Note that OP_DIGIT etc. are generated only when PCRE_UCP is *not* set.
2980 When it is set, \d etc. are converted into OP_(NOT_)PROP codes. */
2981
2982 case OP_DIGIT:
2983 return next > 127 || (cd->ctypes[next] & ctype_digit) == 0;
2984
2985 case OP_NOT_DIGIT:
2986 return next <= 127 && (cd->ctypes[next] & ctype_digit) != 0;
2987
2988 case OP_WHITESPACE:
2989 return next > 127 || (cd->ctypes[next] & ctype_space) == 0;
2990
2991 case OP_NOT_WHITESPACE:
2992 return next <= 127 && (cd->ctypes[next] & ctype_space) != 0;
2993
2994 case OP_WORDCHAR:
2995 return next > 127 || (cd->ctypes[next] & ctype_word) == 0;
2996
2997 case OP_NOT_WORDCHAR:
2998 return next <= 127 && (cd->ctypes[next] & ctype_word) != 0;
2999
3000 case OP_HSPACE:
3001 case OP_NOT_HSPACE:
3002 switch(next)
3003 {
3004 case 0x09:
3005 case 0x20:
3006 case 0xa0:
3007 case 0x1680:
3008 case 0x180e:
3009 case 0x2000:
3010 case 0x2001:
3011 case 0x2002:
3012 case 0x2003:
3013 case 0x2004:
3014 case 0x2005:
3015 case 0x2006:
3016 case 0x2007:
3017 case 0x2008:
3018 case 0x2009:
3019 case 0x200A:
3020 case 0x202f:
3021 case 0x205f:
3022 case 0x3000:
3023 return op_code == OP_NOT_HSPACE;
3024 default:
3025 return op_code != OP_NOT_HSPACE;
3026 }
3027
3028 case OP_ANYNL:
3029 case OP_VSPACE:
3030 case OP_NOT_VSPACE:
3031 switch(next)
3032 {
3033 case 0x0a:
3034 case 0x0b:
3035 case 0x0c:
3036 case 0x0d:
3037 case 0x85:
3038 case 0x2028:
3039 case 0x2029:
3040 return op_code == OP_NOT_VSPACE;
3041 default:
3042 return op_code != OP_NOT_VSPACE;
3043 }
3044
3045 #ifdef SUPPORT_UCP
3046 case OP_PROP:
3047 return check_char_prop(next, previous[0], previous[1], FALSE);
3048
3049 case OP_NOTPROP:
3050 return check_char_prop(next, previous[0], previous[1], TRUE);
3051 #endif
3052
3053 default:
3054 return FALSE;
3055 }
3056
3057
3058 /* Handle the case when the next item is \d, \s, etc. Note that when PCRE_UCP
3059 is set, \d turns into ESC_du rather than ESC_d, etc., so ESC_d etc. are
3060 generated only when PCRE_UCP is *not* set, that is, when only ASCII
3061 characteristics are recognized. Similarly, the opcodes OP_DIGIT etc. are
3062 replaced by OP_PROP codes when PCRE_UCP is set. */
3063
3064 switch(op_code)
3065 {
3066 case OP_CHAR:
3067 case OP_CHARI:
3068 #ifdef SUPPORT_UTF8
3069 GETCHARTEST(c, previous);
3070 #else
3071 c = *previous;
3072 #endif
3073 switch(-next)
3074 {
3075 case ESC_d:
3076 return c > 127 || (cd->ctypes[c] & ctype_digit) == 0;
3077
3078 case ESC_D:
3079 return c <= 127 && (cd->ctypes[c] & ctype_digit) != 0;
3080
3081 case ESC_s:
3082 return c > 127 || (cd->ctypes[c] & ctype_space) == 0;
3083
3084 case ESC_S:
3085 return c <= 127 && (cd->ctypes[c] & ctype_space) != 0;
3086
3087 case ESC_w:
3088 return c > 127 || (cd->ctypes[c] & ctype_word) == 0;
3089
3090 case ESC_W:
3091 return c <= 127 && (cd->ctypes[c] & ctype_word) != 0;
3092
3093 case ESC_h:
3094 case ESC_H:
3095 switch(c)
3096 {
3097 case 0x09:
3098 case 0x20:
3099 case 0xa0:
3100 case 0x1680:
3101 case 0x180e:
3102 case 0x2000:
3103 case 0x2001:
3104 case 0x2002:
3105 case 0x2003:
3106 case 0x2004:
3107 case 0x2005:
3108 case 0x2006:
3109 case 0x2007:
3110 case 0x2008:
3111 case 0x2009:
3112 case 0x200A:
3113 case 0x202f:
3114 case 0x205f:
3115 case 0x3000:
3116 return -next != ESC_h;
3117 default:
3118 return -next == ESC_h;
3119 }
3120
3121 case ESC_v:
3122 case ESC_V:
3123 switch(c)
3124 {
3125 case 0x0a:
3126 case 0x0b:
3127 case 0x0c:
3128 case 0x0d:
3129 case 0x85:
3130 case 0x2028:
3131 case 0x2029:
3132 return -next != ESC_v;
3133 default:
3134 return -next == ESC_v;
3135 }
3136
3137 /* When PCRE_UCP is set, these values get generated for \d etc. Find
3138 their substitutions and process them. The result will always be either
3139 -ESC_p or -ESC_P. Then fall through to process those values. */
3140
3141 #ifdef SUPPORT_UCP
3142 case ESC_du:
3143 case ESC_DU:
3144 case ESC_wu:
3145 case ESC_WU:
3146 case ESC_su:
3147 case ESC_SU:
3148 {
3149 int temperrorcode = 0;
3150 ptr = substitutes[-next - ESC_DU];
3151 next = check_escape(&ptr, &temperrorcode, 0, options, FALSE);
3152 if (temperrorcode != 0) return FALSE;
3153 ptr++; /* For compatibility */
3154 }
3155 /* Fall through */
3156
3157 case ESC_p:
3158 case ESC_P:
3159 {
3160 int ptype, pdata, errorcodeptr;
3161 BOOL negated;
3162
3163 ptr--; /* Make ptr point at the p or P */
3164 ptype = get_ucp(&ptr, &negated, &pdata, &errorcodeptr);
3165 if (ptype < 0) return FALSE;
3166 ptr++; /* Point past the final curly ket */
3167
3168 /* If the property item is optional, we have to give up. (When generated
3169 from \d etc by PCRE_UCP, this test will have been applied much earlier,
3170 to the original \d etc. At this point, ptr will point to a zero byte. */
3171
3172 if (*ptr == CHAR_ASTERISK || *ptr == CHAR_QUESTION_MARK ||
3173 strncmp((char *)ptr, STR_LEFT_CURLY_BRACKET STR_0 STR_COMMA, 3) == 0)
3174 return FALSE;
3175
3176 /* Do the property check. */
3177
3178 return check_char_prop(c, ptype, pdata, (next == -ESC_P) != negated);
3179 }
3180 #endif
3181
3182 default:
3183 return FALSE;
3184 }
3185
3186 /* In principle, support for Unicode properties should be integrated here as
3187 well. It means re-organizing the above code so as to get hold of the property
3188 values before switching on the op-code. However, I wonder how many patterns
3189 combine ASCII \d etc with Unicode properties? (Note that if PCRE_UCP is set,
3190 these op-codes are never generated.) */
3191
3192 case OP_DIGIT:
3193 return next == -ESC_D || next == -ESC_s || next == -ESC_W ||
3194 next == -ESC_h || next == -ESC_v || next == -ESC_R;
3195
3196 case OP_NOT_DIGIT:
3197 return next == -ESC_d;
3198
3199 case OP_WHITESPACE:
3200 return next == -ESC_S || next == -ESC_d || next == -ESC_w || next == -ESC_R;
3201
3202 case OP_NOT_WHITESPACE:
3203 return next == -ESC_s || next == -ESC_h || next == -ESC_v;
3204
3205 case OP_HSPACE:
3206 return next == -ESC_S || next == -ESC_H || next == -ESC_d ||
3207 next == -ESC_w || next == -ESC_v || next == -ESC_R;
3208
3209 case OP_NOT_HSPACE:
3210 return next == -ESC_h;
3211
3212 /* Can't have \S in here because VT matches \S (Perl anomaly) */
3213 case OP_ANYNL:
3214 case OP_VSPACE:
3215 return next == -ESC_V || next == -ESC_d || next == -ESC_w;
3216
3217 case OP_NOT_VSPACE:
3218 return next == -ESC_v || next == -ESC_R;
3219
3220 case OP_WORDCHAR:
3221 return next == -ESC_W || next == -ESC_s || next == -ESC_h ||
3222 next == -ESC_v || next == -ESC_R;
3223
3224 case OP_NOT_WORDCHAR:
3225 return next == -ESC_w || next == -ESC_d;
3226
3227 default:
3228 return FALSE;
3229 }
3230
3231 /* Control does not reach here */
3232 }
3233
3234
3235
3236 /*************************************************
3237 * Compile one branch *
3238 *************************************************/
3239
3240 /* Scan the pattern, compiling it into the a vector. If the options are
3241 changed during the branch, the pointer is used to change the external options
3242 bits. This function is used during the pre-compile phase when we are trying
3243 to find out the amount of memory needed, as well as during the real compile
3244 phase. The value of lengthptr distinguishes the two phases.
3245
3246 Arguments:
3247 optionsptr pointer to the option bits
3248 codeptr points to the pointer to the current code point
3249 ptrptr points to the current pattern pointer
3250 errorcodeptr points to error code variable
3251 firstbyteptr set to initial literal character, or < 0 (REQ_UNSET, REQ_NONE)
3252 reqbyteptr set to the last literal character required, else < 0
3253 bcptr points to current branch chain
3254 cond_depth conditional nesting depth
3255 cd contains pointers to tables etc.
3256 lengthptr NULL during the real compile phase
3257 points to length accumulator during pre-compile phase
3258
3259 Returns: TRUE on success
3260 FALSE, with *errorcodeptr set non-zero on error
3261 */
3262
3263 static BOOL
3264 compile_branch(int *optionsptr, uschar **codeptr, const uschar **ptrptr,
3265 int *errorcodeptr, int *firstbyteptr, int *reqbyteptr, branch_chain *bcptr,
3266 int cond_depth, compile_data *cd, int *lengthptr)
3267 {
3268 int repeat_type, op_type;
3269 int repeat_min = 0, repeat_max = 0; /* To please picky compilers */
3270 int bravalue = 0;
3271 int greedy_default, greedy_non_default;
3272 int firstbyte, reqbyte;
3273 int zeroreqbyte, zerofirstbyte;
3274 int req_caseopt, reqvary, tempreqvary;
3275 int options = *optionsptr; /* May change dynamically */
3276 int after_manual_callout = 0;
3277 int length_prevgroup = 0;
3278 register int c;
3279 register uschar *code = *codeptr;
3280 uschar *last_code = code;
3281 uschar *orig_code = code;
3282 uschar *tempcode;
3283 BOOL inescq = FALSE;
3284 BOOL groupsetfirstbyte = FALSE;
3285 const uschar *ptr = *ptrptr;
3286 const uschar *tempptr;
3287 const uschar *nestptr = NULL;
3288 uschar *previous = NULL;
3289 uschar *previous_callout = NULL;
3290 uschar *save_hwm = NULL;
3291 uschar classbits[32];
3292
3293 /* We can fish out the UTF-8 setting once and for all into a BOOL, but we
3294 must not do this for other options (e.g. PCRE_EXTENDED) because they may change
3295 dynamically as we process the pattern. */
3296
3297 #ifdef SUPPORT_UTF8
3298 BOOL class_utf8;
3299 BOOL utf8 = (options & PCRE_UTF8) != 0;
3300 uschar *class_utf8data;
3301 uschar *class_utf8data_base;
3302 uschar utf8_char[6];
3303 #else
3304 BOOL utf8 = FALSE;
3305 #endif
3306
3307 #ifdef PCRE_DEBUG
3308 if (lengthptr != NULL) DPRINTF((">> start branch\n"));
3309 #endif
3310
3311 /* Set up the default and non-default settings for greediness */
3312
3313 greedy_default = ((options & PCRE_UNGREEDY) != 0);
3314 greedy_non_default = greedy_default ^ 1;
3315
3316 /* Initialize no first byte, no required byte. REQ_UNSET means "no char
3317 matching encountered yet". It gets changed to REQ_NONE if we hit something that
3318 matches a non-fixed char first char; reqbyte just remains unset if we never
3319 find one.
3320
3321 When we hit a repeat whose minimum is zero, we may have to adjust these values
3322 to take the zero repeat into account. This is implemented by setting them to
3323 zerofirstbyte and zeroreqbyte when such a repeat is encountered. The individual
3324 item types that can be repeated set these backoff variables appropriately. */
3325
3326 firstbyte = reqbyte = zerofirstbyte = zeroreqbyte = REQ_UNSET;
3327
3328 /* The variable req_caseopt contains either the REQ_CASELESS value or zero,
3329 according to the current setting of the caseless flag. REQ_CASELESS is a bit
3330 value > 255. It is added into the firstbyte or reqbyte variables to record the
3331 case status of the value. This is used only for ASCII characters. */
3332
3333 req_caseopt = ((options & PCRE_CASELESS) != 0)? REQ_CASELESS : 0;
3334
3335 /* Switch on next character until the end of the branch */
3336
3337 for (;; ptr++)
3338 {
3339 BOOL negate_class;
3340 BOOL should_flip_negation;
3341 BOOL possessive_quantifier;
3342 BOOL is_quantifier;
3343 BOOL is_recurse;
3344 BOOL reset_bracount;
3345 int class_charcount;
3346 int class_lastchar;
3347 int newoptions;
3348 int recno;
3349 int refsign;
3350 int skipbytes;
3351 int subreqbyte;
3352 int subfirstbyte;
3353 int terminator;
3354 int mclength;
3355 int tempbracount;
3356 uschar mcbuffer[8];
3357
3358 /* Get next byte in the pattern */
3359
3360 c = *ptr;
3361
3362 /* If we are at the end of a nested substitution, revert to the outer level
3363 string. Nesting only happens one level deep. */
3364
3365 if (c == 0 && nestptr != NULL)
3366 {
3367 ptr = nestptr;
3368 nestptr = NULL;
3369 c = *ptr;
3370 }
3371
3372 /* If we are in the pre-compile phase, accumulate the length used for the
3373 previous cycle of this loop. */
3374
3375 if (lengthptr != NULL)
3376 {
3377 #ifdef PCRE_DEBUG
3378 if (code > cd->hwm) cd->hwm = code; /* High water info */
3379 #endif
3380 if (code > cd->start_workspace + cd->workspace_size -
3381 WORK_SIZE_SAFETY_MARGIN) /* Check for overrun */
3382 {
3383 *errorcodeptr = ERR52;
3384 goto FAILED;
3385 }
3386
3387 /* There is at least one situation where code goes backwards: this is the
3388 case of a zero quantifier after a class (e.g. [ab]{0}). At compile time,
3389 the class is simply eliminated. However, it is created first, so we have to
3390 allow memory for it. Therefore, don't ever reduce the length at this point.
3391 */
3392
3393 if (code < last_code) code = last_code;
3394
3395 /* Paranoid check for integer overflow */
3396
3397 if (OFLOW_MAX - *lengthptr < code - last_code)
3398 {
3399 *errorcodeptr = ERR20;
3400 goto FAILED;
3401 }
3402
3403 *lengthptr += (int)(code - last_code);
3404 DPRINTF(("length=%d added %d c=%c\n", *lengthptr, (int)(code - last_code),
3405 c));
3406
3407 /* If "previous" is set and it is not at the start of the work space, move
3408 it back to there, in order to avoid filling up the work space. Otherwise,
3409 if "previous" is NULL, reset the current code pointer to the start. */
3410
3411 if (previous != NULL)
3412 {
3413 if (previous > orig_code)
3414 {
3415 memmove(orig_code, previous, code - previous);
3416 code -= previous - orig_code;
3417 previous = orig_code;
3418 }
3419 }
3420 else code = orig_code;
3421
3422 /* Remember where this code item starts so we can pick up the length
3423 next time round. */
3424
3425 last_code = code;
3426 }
3427
3428 /* In the real compile phase, just check the workspace used by the forward
3429 reference list. */
3430
3431 else if (cd->hwm > cd->start_workspace + cd->workspace_size -
3432 WORK_SIZE_SAFETY_MARGIN)
3433 {
3434 *errorcodeptr = ERR52;
3435 goto FAILED;
3436 }
3437
3438 /* If in \Q...\E, check for the end; if not, we have a literal */
3439
3440 if (inescq && c != 0)
3441 {
3442 if (c == CHAR_BACKSLASH && ptr[1] == CHAR_E)
3443 {
3444 inescq = FALSE;
3445 ptr++;
3446 continue;
3447 }
3448 else
3449 {
3450 if (previous_callout != NULL)
3451 {
3452 if (lengthptr == NULL) /* Don't attempt in pre-compile phase */
3453 complete_callout(previous_callout, ptr, cd);
3454 previous_callout = NULL;
3455 }
3456 if ((options & PCRE_AUTO_CALLOUT) != 0)
3457 {
3458 previous_callout = code;
3459 code = auto_callout(code, ptr, cd);
3460 }
3461 goto NORMAL_CHAR;
3462 }
3463 }
3464
3465 /* Fill in length of a previous callout, except when the next thing is
3466 a quantifier. */
3467
3468 is_quantifier =
3469 c == CHAR_ASTERISK || c == CHAR_PLUS || c == CHAR_QUESTION_MARK ||
3470 (c == CHAR_LEFT_CURLY_BRACKET && is_counted_repeat(ptr+1));
3471
3472 if (!is_quantifier && previous_callout != NULL &&
3473 after_manual_callout-- <= 0)
3474 {
3475 if (lengthptr == NULL) /* Don't attempt in pre-compile phase */
3476 complete_callout(previous_callout, ptr, cd);
3477 previous_callout = NULL;
3478 }
3479
3480 /* In extended mode, skip white space and comments. */
3481
3482 if ((options & PCRE_EXTENDED) != 0)
3483 {
3484 if ((cd->ctypes[c] & ctype_space) != 0) continue;
3485 if (c == CHAR_NUMBER_SIGN)
3486 {
3487 ptr++;
3488 while (*ptr != 0)
3489 {
3490 if (IS_NEWLINE(ptr)) { ptr += cd->nllen - 1; break; }
3491 ptr++;
3492 #ifdef SUPPORT_UTF8
3493 if (utf8) while ((*ptr & 0xc0) == 0x80) ptr++;
3494 #endif
3495 }
3496 if (*ptr != 0) continue;
3497
3498 /* Else fall through to handle end of string */
3499 c = 0;
3500 }
3501 }
3502
3503 /* No auto callout for quantifiers. */
3504
3505 if ((options & PCRE_AUTO_CALLOUT) != 0 && !is_quantifier)
3506 {
3507 previous_callout = code;
3508 code = auto_callout(code, ptr, cd);
3509 }
3510
3511 switch(c)
3512 {
3513 /* ===================================================================*/
3514 case 0: /* The branch terminates at string end */
3515 case CHAR_VERTICAL_LINE: /* or | or ) */
3516 case CHAR_RIGHT_PARENTHESIS:
3517 *firstbyteptr = firstbyte;
3518 *reqbyteptr = reqbyte;
3519 *codeptr = code;
3520 *ptrptr = ptr;
3521 if (lengthptr != NULL)
3522 {
3523 if (OFLOW_MAX - *lengthptr < code - last_code)
3524 {
3525 *errorcodeptr = ERR20;
3526 goto FAILED;
3527 }
3528 *lengthptr += (int)(code - last_code); /* To include callout length */
3529 DPRINTF((">> end branch\n"));
3530 }
3531 return TRUE;
3532
3533
3534 /* ===================================================================*/
3535 /* Handle single-character metacharacters. In multiline mode, ^ disables
3536 the setting of any following char as a first character. */
3537
3538 case CHAR_CIRCUMFLEX_ACCENT:
3539 previous = NULL;
3540 if ((options & PCRE_MULTILINE) != 0)
3541 {
3542 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
3543 *code++ = OP_CIRCM;
3544 }
3545 else *code++ = OP_CIRC;
3546 break;
3547
3548 case CHAR_DOLLAR_SIGN:
3549 previous = NULL;
3550 *code++ = ((options & PCRE_MULTILINE) != 0)? OP_DOLLM : OP_DOLL;
3551 break;
3552
3553 /* There can never be a first char if '.' is first, whatever happens about
3554 repeats. The value of reqbyte doesn't change either. */
3555
3556 case CHAR_DOT:
3557 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
3558 zerofirstbyte = firstbyte;
3559 zeroreqbyte = reqbyte;
3560 previous = code;
3561 *code++ = ((options & PCRE_DOTALL) != 0)? OP_ALLANY: OP_ANY;
3562 break;
3563
3564
3565 /* ===================================================================*/
3566 /* Character classes. If the included characters are all < 256, we build a
3567 32-byte bitmap of the permitted characters, except in the special case
3568 where there is only one such character. For negated classes, we build the
3569 map as usual, then invert it at the end. However, we use a different opcode
3570 so that data characters > 255 can be handled correctly.
3571
3572 If the class contains characters outside the 0-255 range, a different
3573 opcode is compiled. It may optionally have a bit map for characters < 256,
3574 but those above are are explicitly listed afterwards. A flag byte tells
3575 whether the bitmap is present, and whether this is a negated class or not.
3576
3577 In JavaScript compatibility mode, an isolated ']' causes an error. In
3578 default (Perl) mode, it is treated as a data character. */
3579
3580 case CHAR_RIGHT_SQUARE_BRACKET:
3581 if ((cd->external_options & PCRE_JAVASCRIPT_COMPAT) != 0)
3582 {
3583 *errorcodeptr = ERR64;
3584 goto FAILED;
3585 }
3586 goto NORMAL_CHAR;
3587
3588 case CHAR_LEFT_SQUARE_BRACKET:
3589 previous = code;
3590
3591 /* PCRE supports POSIX class stuff inside a class. Perl gives an error if
3592 they are encountered at the top level, so we'll do that too. */
3593
3594 if ((ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT ||
3595 ptr[1] == CHAR_EQUALS_SIGN) &&
3596 check_posix_syntax(ptr, &tempptr))
3597 {
3598 *errorcodeptr = (ptr[1] == CHAR_COLON)? ERR13 : ERR31;
3599 goto FAILED;
3600 }
3601
3602 /* If the first character is '^', set the negation flag and skip it. Also,
3603 if the first few characters (either before or after ^) are \Q\E or \E we
3604 skip them too. This makes for compatibility with Perl. */
3605
3606 negate_class = FALSE;
3607 for (;;)
3608 {
3609 c = *(++ptr);
3610 if (c == CHAR_BACKSLASH)
3611 {
3612 if (ptr[1] == CHAR_E)
3613 ptr++;
3614 else if (strncmp((const char *)ptr+1,
3615 STR_Q STR_BACKSLASH STR_E, 3) == 0)
3616 ptr += 3;
3617 else
3618 break;
3619 }
3620 else if (!negate_class && c == CHAR_CIRCUMFLEX_ACCENT)
3621 negate_class = TRUE;
3622 else break;
3623 }
3624
3625 /* Empty classes are allowed in JavaScript compatibility mode. Otherwise,
3626 an initial ']' is taken as a data character -- the code below handles
3627 that. In JS mode, [] must always fail, so generate OP_FAIL, whereas
3628 [^] must match any character, so generate OP_ALLANY. */
3629
3630 if (c == CHAR_RIGHT_SQUARE_BRACKET &&
3631 (cd->external_options & PCRE_JAVASCRIPT_COMPAT) != 0)
3632 {
3633 *code++ = negate_class? OP_ALLANY : OP_FAIL;
3634 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
3635 zerofirstbyte = firstbyte;
3636 break;
3637 }
3638
3639 /* If a class contains a negative special such as \S, we need to flip the
3640 negation flag at the end, so that support for characters > 255 works
3641 correctly (they are all included in the class). */
3642
3643 should_flip_negation = FALSE;
3644
3645 /* Keep a count of chars with values < 256 so that we can optimize the case
3646 of just a single character (as long as it's < 256). However, For higher
3647 valued UTF-8 characters, we don't yet do any optimization. */
3648
3649 class_charcount = 0;
3650 class_lastchar = -1;
3651
3652 /* Initialize the 32-char bit map to all zeros. We build the map in a
3653 temporary bit of memory, in case the class contains only 1 character (less
3654 than 256), because in that case the compiled code doesn't use the bit map.
3655 */
3656
3657 memset(classbits, 0, 32 * sizeof(uschar));
3658
3659 #ifdef SUPPORT_UTF8
3660 class_utf8 = FALSE; /* No chars >= 256 */
3661 class_utf8data = code + LINK_SIZE + 2; /* For UTF-8 items */
3662 class_utf8data_base = class_utf8data; /* For resetting in pass 1 */
3663 #endif
3664
3665 /* Process characters until ] is reached. By writing this as a "do" it
3666 means that an initial ] is taken as a data character. At the start of the
3667 loop, c contains the first byte of the character. */
3668
3669 if (c != 0) do
3670 {
3671 const uschar *oldptr;
3672
3673 #ifdef SUPPORT_UTF8
3674 if (utf8 && c > 127)
3675 { /* Braces are required because the */
3676 GETCHARLEN(c, ptr, ptr); /* macro generates multiple statements */
3677 }
3678
3679 /* In the pre-compile phase, accumulate the length of any UTF-8 extra
3680 data and reset the pointer. This is so that very large classes that
3681 contain a zillion UTF-8 characters no longer overwrite the work space
3682 (which is on the stack). */
3683
3684 if (lengthptr != NULL)
3685 {
3686 *lengthptr += (int)(class_utf8data - class_utf8data_base);
3687 class_utf8data = class_utf8data_base;
3688 }
3689
3690 #endif
3691
3692 /* Inside \Q...\E everything is literal except \E */
3693
3694 if (inescq)
3695 {
3696 if (c == CHAR_BACKSLASH && ptr[1] == CHAR_E) /* If we are at \E */
3697 {
3698 inescq = FALSE; /* Reset literal state */
3699 ptr++; /* Skip the 'E' */
3700 continue; /* Carry on with next */
3701 }
3702 goto CHECK_RANGE; /* Could be range if \E follows */
3703 }
3704
3705 /* Handle POSIX class names. Perl allows a negation extension of the
3706 form [:^name:]. A square bracket that doesn't match the syntax is
3707 treated as a literal. We also recognize the POSIX constructions
3708 [.ch.] and [=ch=] ("collating elements") and fault them, as Perl
3709 5.6 and 5.8 do. */
3710
3711 if (c == CHAR_LEFT_SQUARE_BRACKET &&
3712 (ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT ||
3713 ptr[1] == CHAR_EQUALS_SIGN) && check_posix_syntax(ptr, &tempptr))
3714 {
3715 BOOL local_negate = FALSE;
3716 int posix_class, taboffset, tabopt;
3717 register const uschar *cbits = cd->cbits;
3718 uschar pbits[32];
3719
3720 if (ptr[1] != CHAR_COLON)
3721 {
3722 *errorcodeptr = ERR31;
3723 goto FAILED;
3724 }
3725
3726 ptr += 2;
3727 if (*ptr == CHAR_CIRCUMFLEX_ACCENT)
3728 {
3729 local_negate = TRUE;
3730 should_flip_negation = TRUE; /* Note negative special */
3731 ptr++;
3732 }
3733
3734 posix_class = check_posix_name(ptr, (int)(tempptr - ptr));
3735 if (posix_class < 0)
3736 {
3737 *errorcodeptr = ERR30;
3738 goto FAILED;
3739 }
3740
3741 /* If matching is caseless, upper and lower are converted to
3742 alpha. This relies on the fact that the class table starts with
3743 alpha, lower, upper as the first 3 entries. */
3744
3745 if ((options & PCRE_CASELESS) != 0 && posix_class <= 2)
3746 posix_class = 0;
3747
3748 /* When PCRE_UCP is set, some of the POSIX classes are converted to
3749 different escape sequences that use Unicode properties. */
3750
3751 #ifdef SUPPORT_UCP
3752 if ((options & PCRE_UCP) != 0)
3753 {
3754 int pc = posix_class + ((local_negate)? POSIX_SUBSIZE/2 : 0);
3755 if (posix_substitutes[pc] != NULL)
3756 {
3757 nestptr = tempptr + 1;
3758 ptr = posix_substitutes[pc] - 1;
3759 continue;
3760 }
3761 }
3762 #endif
3763 /* In the non-UCP case, we build the bit map for the POSIX class in a
3764 chunk of local store because we may be adding and subtracting from it,
3765 and we don't want to subtract bits that may be in the main map already.
3766 At the end we or the result into the bit map that is being built. */
3767
3768 posix_class *= 3;
3769
3770 /* Copy in the first table (always present) */
3771
3772 memcpy(pbits, cbits + posix_class_maps[posix_class],
3773 32 * sizeof(uschar));
3774
3775 /* If there is a second table, add or remove it as required. */
3776
3777 taboffset = posix_class_maps[posix_class + 1];
3778 tabopt = posix_class_maps[posix_class + 2];
3779
3780 if (taboffset >= 0)
3781 {
3782 if (tabopt >= 0)
3783 for (c = 0; c < 32; c++) pbits[c] |= cbits[c + taboffset];
3784 else
3785 for (c = 0; c < 32; c++) pbits[c] &= ~cbits[c + taboffset];
3786 }
3787
3788 /* Not see if we need to remove any special characters. An option
3789 value of 1 removes vertical space and 2 removes underscore. */
3790
3791 if (tabopt < 0) tabopt = -tabopt;
3792 if (tabopt == 1) pbits[1] &= ~0x3c;
3793 else if (tabopt == 2) pbits[11] &= 0x7f;
3794
3795 /* Add the POSIX table or its complement into the main table that is
3796 being built and we are done. */
3797
3798 if (local_negate)
3799 for (c = 0; c < 32; c++) classbits[c] |= ~pbits[c];
3800 else
3801 for (c = 0; c < 32; c++) classbits[c] |= pbits[c];
3802
3803 ptr = tempptr + 1;
3804 class_charcount = 10; /* Set > 1; assumes more than 1 per class */
3805 continue; /* End of POSIX syntax handling */
3806 }
3807
3808 /* Backslash may introduce a single character, or it may introduce one
3809 of the specials, which just set a flag. The sequence \b is a special
3810 case. Inside a class (and only there) it is treated as backspace. We
3811 assume that other escapes have more than one character in them, so set
3812 class_charcount bigger than one. Unrecognized escapes fall through and
3813 are either treated as literal characters (by default), or are faulted if
3814 PCRE_EXTRA is set. */
3815
3816 if (c == CHAR_BACKSLASH)
3817 {
3818 c = check_escape(&ptr, errorcodeptr, cd->bracount, options, TRUE);
3819 if (*errorcodeptr != 0) goto FAILED;
3820
3821 if (-c == ESC_b) c = CHAR_BS; /* \b is backspace in a class */
3822 else if (-c == ESC_N) /* \N is not supported in a class */
3823 {
3824 *errorcodeptr = ERR71;
3825 goto FAILED;
3826 }
3827 else if (-c == ESC_Q) /* Handle start of quoted string */
3828 {
3829 if (ptr[1] == CHAR_BACKSLASH && ptr[2] == CHAR_E)
3830 {
3831 ptr += 2; /* avoid empty string */
3832 }
3833 else inescq = TRUE;
3834 continue;
3835 }
3836 else if (-c == ESC_E) continue; /* Ignore orphan \E */
3837
3838 if (c < 0)
3839 {
3840 register const uschar *cbits = cd->cbits;
3841 class_charcount += 2; /* Greater than 1 is what matters */
3842
3843 switch (-c)
3844 {
3845 #ifdef SUPPORT_UCP
3846 case ESC_du: /* These are the values given for \d etc */
3847 case ESC_DU: /* when PCRE_UCP is set. We replace the */
3848 case ESC_wu: /* escape sequence with an appropriate \p */
3849 case ESC_WU: /* or \P to test Unicode properties instead */
3850 case ESC_su: /* of the default ASCII testing. */
3851 case ESC_SU:
3852 nestptr = ptr;
3853 ptr = substitutes[-c - ESC_DU] - 1; /* Just before substitute */
3854 class_charcount -= 2; /* Undo! */
3855 continue;
3856 #endif
3857 case ESC_d:
3858 for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_digit];
3859 continue;
3860
3861 case ESC_D:
3862 should_flip_negation = TRUE;
3863 for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_digit];
3864 continue;
3865
3866 case ESC_w:
3867 for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_word];
3868 continue;
3869
3870 case ESC_W:
3871 should_flip_negation = TRUE;
3872 for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_word];
3873 continue;
3874
3875 /* Perl 5.004 onwards omits VT from \s, but we must preserve it
3876 if it was previously set by something earlier in the character
3877 class. */
3878
3879 case ESC_s:
3880 classbits[0] |= cbits[cbit_space];
3881 classbits[1] |= cbits[cbit_space+1] & ~0x08;
3882 for (c = 2; c < 32; c++) classbits[c] |= cbits[c+cbit_space];
3883 continue;
3884
3885 case ESC_S:
3886 should_flip_negation = TRUE;
3887 for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_space];
3888 classbits[1] |= 0x08; /* Perl 5.004 onwards omits VT from \s */
3889 continue;
3890
3891 case ESC_h:
3892 SETBIT(classbits, 0x09); /* VT */
3893 SETBIT(classbits, 0x20); /* SPACE */
3894 SETBIT(classbits, 0xa0); /* NSBP */
3895 #ifdef SUPPORT_UTF8
3896 if (utf8)
3897 {
3898 class_utf8 = TRUE;
3899 *class_utf8data++ = XCL_SINGLE;
3900 class_utf8data += _pcre_ord2utf8(0x1680, class_utf8data);
3901 *class_utf8data++ = XCL_SINGLE;
3902 class_utf8data += _pcre_ord2utf8(0x180e, class_utf8data);
3903 *class_utf8data++ = XCL_RANGE;
3904 class_utf8data += _pcre_ord2utf8(0x2000, class_utf8data);
3905 class_utf8data += _pcre_ord2utf8(0x200A, class_utf8data);
3906 *class_utf8data++ = XCL_SINGLE;
3907 class_utf8data += _pcre_ord2utf8(0x202f, class_utf8data);
3908 *class_utf8data++ = XCL_SINGLE;
3909 class_utf8data += _pcre_ord2utf8(0x205f, class_utf8data);
3910 *class_utf8data++ = XCL_SINGLE;
3911 class_utf8data += _pcre_ord2utf8(0x3000, class_utf8data);
3912 }
3913 #endif
3914 continue;
3915
3916 case ESC_H:
3917 for (c = 0; c < 32; c++)
3918 {
3919 int x = 0xff;
3920 switch (c)
3921 {
3922 case 0x09/8: x ^= 1 << (0x09%8); break;
3923 case 0x20/8: x ^= 1 << (0x20%8); break;
3924 case 0xa0/8: x ^= 1 << (0xa0%8); break;
3925 default: break;
3926 }
3927 classbits[c] |= x;
3928 }
3929
3930 #ifdef SUPPORT_UTF8
3931 if (utf8)
3932 {
3933 class_utf8 = TRUE;
3934 *class_utf8data++ = XCL_RANGE;
3935 class_utf8data += _pcre_ord2utf8(0x0100, class_utf8data);
3936 class_utf8data += _pcre_ord2utf8(0x167f, class_utf8data);
3937 *class_utf8data++ = XCL_RANGE;
3938 class_utf8data += _pcre_ord2utf8(0x1681, class_utf8data);
3939 class_utf8data += _pcre_ord2utf8(0x180d, class_utf8data);
3940 *class_utf8data++ = XCL_RANGE;
3941 class_utf8data += _pcre_ord2utf8(0x180f, class_utf8data);
3942 class_utf8data += _pcre_ord2utf8(0x1fff, class_utf8data);
3943 *class_utf8data++ = XCL_RANGE;
3944 class_utf8data += _pcre_ord2utf8(0x200B, class_utf8data);
3945 class_utf8data += _pcre_ord2utf8(0x202e, class_utf8data);
3946 *class_utf8data++ = XCL_RANGE;
3947 class_utf8data += _pcre_ord2utf8(0x2030, class_utf8data);
3948 class_utf8data += _pcre_ord2utf8(0x205e, class_utf8data);
3949 *class_utf8data++ = XCL_RANGE;
3950 class_utf8data += _pcre_ord2utf8(0x2060, class_utf8data);
3951 class_utf8data += _pcre_ord2utf8(0x2fff, class_utf8data);
3952 *class_utf8data++ = XCL_RANGE;
3953 class_utf8data += _pcre_ord2utf8(0x3001, class_utf8data);
3954 class_utf8data += _pcre_ord2utf8(0x7fffffff, class_utf8data);
3955 }
3956 #endif
3957 continue;
3958
3959 case ESC_v:
3960 SETBIT(classbits, 0x0a); /* LF */
3961 SETBIT(classbits, 0x0b); /* VT */
3962 SETBIT(classbits, 0x0c); /* FF */
3963 SETBIT(classbits, 0x0d); /* CR */
3964 SETBIT(classbits, 0x85); /* NEL */
3965 #ifdef SUPPORT_UTF8
3966 if (utf8)
3967 {
3968 class_utf8 = TRUE;
3969 *class_utf8data++ = XCL_RANGE;
3970 class_utf8data += _pcre_ord2utf8(0x2028, class_utf8data);
3971 class_utf8data += _pcre_ord2utf8(0x2029, class_utf8data);
3972 }
3973 #endif
3974 continue;
3975
3976 case ESC_V:
3977 for (c = 0; c < 32; c++)
3978 {
3979 int x = 0xff;
3980 switch (c)
3981 {
3982 case 0x0a/8: x ^= 1 << (0x0a%8);
3983 x ^= 1 << (0x0b%8);
3984 x ^= 1 << (0x0c%8);
3985 x ^= 1 << (0x0d%8);
3986 break;
3987 case 0x85/8: x ^= 1 << (0x85%8); break;
3988 default: break;
3989 }
3990 classbits[c] |= x;
3991 }
3992
3993 #ifdef SUPPORT_UTF8
3994 if (utf8)
3995 {
3996 class_utf8 = TRUE;
3997 *class_utf8data++ = XCL_RANGE;
3998 class_utf8data += _pcre_ord2utf8(0x0100, class_utf8data);
3999 class_utf8data += _pcre_ord2utf8(0x2027, class_utf8data);
4000 *class_utf8data++ = XCL_RANGE;
4001 class_utf8data += _pcre_ord2utf8(0x2029, class_utf8data);
4002 class_utf8data += _pcre_ord2utf8(0x7fffffff, class_utf8data);
4003 }
4004 #endif
4005 continue;
4006
4007 #ifdef SUPPORT_UCP
4008 case ESC_p:
4009 case ESC_P:
4010 {
4011 BOOL negated;
4012 int pdata;
4013 int ptype = get_ucp(&ptr, &negated, &pdata, errorcodeptr);
4014 if (ptype < 0) goto FAILED;
4015 class_utf8 = TRUE;
4016 *class_utf8data++ = ((-c == ESC_p) != negated)?
4017 XCL_PROP : XCL_NOTPROP;
4018 *class_utf8data++ = ptype;
4019 *class_utf8data++ = pdata;
4020 class_charcount -= 2; /* Not a < 256 character */
4021 continue;
4022 }
4023 #endif
4024 /* Unrecognized escapes are faulted if PCRE is running in its
4025 strict mode. By default, for compatibility with Perl, they are
4026 treated as literals. */
4027
4028 default:
4029 if ((options & PCRE_EXTRA) != 0)
4030 {
4031 *errorcodeptr = ERR7;
4032 goto FAILED;
4033 }
4034 class_charcount -= 2; /* Undo the default count from above */
4035 c = *ptr; /* Get the final character and fall through */
4036 break;
4037 }
4038 }
4039
4040 /* Fall through if we have a single character (c >= 0). This may be
4041 greater than 256 in UTF-8 mode. */
4042
4043 } /* End of backslash handling */
4044
4045 /* A single character may be followed by '-' to form a range. However,
4046 Perl does not permit ']' to be the end of the range. A '-' character
4047 at the end is treated as a literal. Perl ignores orphaned \E sequences
4048 entirely. The code for handling \Q and \E is messy. */
4049
4050 CHECK_RANGE:
4051 while (ptr[1] == CHAR_BACKSLASH && ptr[2] == CHAR_E)
4052 {
4053 inescq = FALSE;
4054 ptr += 2;
4055 }
4056
4057 oldptr = ptr;
4058
4059 /* Remember \r or \n */
4060
4061 if (c == CHAR_CR || c == CHAR_NL) cd->external_flags |= PCRE_HASCRORLF;
4062
4063 /* Check for range */
4064
4065 if (!inescq && ptr[1] == CHAR_MINUS)
4066 {
4067 int d;
4068 ptr += 2;
4069 while (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_E) ptr += 2;
4070
4071 /* If we hit \Q (not followed by \E) at this point, go into escaped
4072 mode. */
4073
4074 while (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_Q)
4075 {
4076 ptr += 2;
4077 if (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_E)
4078 { ptr += 2; continue; }
4079 inescq = TRUE;
4080 break;
4081 }
4082
4083 if (*ptr == 0 || (!inescq && *ptr == CHAR_RIGHT_SQUARE_BRACKET))
4084 {
4085 ptr = oldptr;
4086 goto LONE_SINGLE_CHARACTER;
4087 }
4088
4089 #ifdef SUPPORT_UTF8
4090 if (utf8)
4091 { /* Braces are required because the */
4092 GETCHARLEN(d, ptr, ptr); /* macro generates multiple statements */
4093 }
4094 else
4095 #endif
4096 d = *ptr; /* Not UTF-8 mode */
4097
4098 /* The second part of a range can be a single-character escape, but
4099 not any of the other escapes. Perl 5.6 treats a hyphen as a literal
4100 in such circumstances. */
4101
4102 if (!inescq && d == CHAR_BACKSLASH)
4103 {
4104 d = check_escape(&ptr, errorcodeptr, cd->bracount, options, TRUE);
4105 if (*errorcodeptr != 0) goto FAILED;
4106
4107 /* \b is backspace; any other special means the '-' was literal */
4108
4109 if (d < 0)
4110 {
4111 if (d == -ESC_b) d = CHAR_BS; else
4112 {
4113 ptr = oldptr;
4114 goto LONE_SINGLE_CHARACTER; /* A few lines below */
4115 }
4116 }
4117 }
4118
4119 /* Check that the two values are in the correct order. Optimize
4120 one-character ranges */
4121
4122 if (d < c)
4123 {
4124 *errorcodeptr = ERR8;
4125 goto FAILED;
4126 }
4127
4128 if (d == c) goto LONE_SINGLE_CHARACTER; /* A few lines below */
4129
4130 /* Remember \r or \n */
4131
4132 if (d == CHAR_CR || d == CHAR_NL) cd->external_flags |= PCRE_HASCRORLF;
4133
4134 /* In UTF-8 mode, if the upper limit is > 255, or > 127 for caseless
4135 matching, we have to use an XCLASS with extra data items. Caseless
4136 matching for characters > 127 is available only if UCP support is
4137 available. */
4138
4139 #ifdef SUPPORT_UTF8
4140 if (utf8 && (d > 255 || ((options & PCRE_CASELESS) != 0 && d > 127)))
4141 {
4142 class_utf8 = TRUE;
4143
4144 /* With UCP support, we can find the other case equivalents of
4145 the relevant characters. There may be several ranges. Optimize how
4146 they fit with the basic range. */
4147
4148 #ifdef SUPPORT_UCP
4149 if ((options & PCRE_CASELESS) != 0)
4150 {
4151 unsigned int occ, ocd;
4152 unsigned int cc = c;
4153 unsigned int origd = d;
4154 while (get_othercase_range(&cc, origd, &occ, &ocd))
4155 {
4156 if (occ >= (unsigned int)c &&
4157 ocd <= (unsigned int)d)
4158 continue; /* Skip embedded ranges */
4159
4160 if (occ < (unsigned int)c &&
4161 ocd >= (unsigned int)c - 1) /* Extend the basic range */
4162 { /* if there is overlap, */
4163 c = occ; /* noting that if occ < c */
4164 continue; /* we can't have ocd > d */
4165 } /* because a subrange is */
4166 if (ocd > (unsigned int)d &&
4167 occ <= (unsigned int)d + 1) /* always shorter than */
4168 { /* the basic range. */
4169 d = ocd;
4170 continue;
4171 }
4172
4173 if (occ == ocd)
4174 {
4175 *class_utf8data++ = XCL_SINGLE;
4176 }
4177 else
4178 {
4179 *class_utf8data++ = XCL_RANGE;
4180 class_utf8data += _pcre_ord2utf8(occ, class_utf8data);
4181 }
4182 class_utf8data += _pcre_ord2utf8(ocd, class_utf8data);
4183 }
4184 }
4185 #endif /* SUPPORT_UCP */
4186
4187 /* Now record the original range, possibly modified for UCP caseless
4188 overlapping ranges. */
4189
4190 *class_utf8data++ = XCL_RANGE;
4191 class_utf8data += _pcre_ord2utf8(c, class_utf8data);
4192 class_utf8data += _pcre_ord2utf8(d, class_utf8data);
4193
4194 /* With UCP support, we are done. Without UCP support, there is no
4195 caseless matching for UTF-8 characters > 127; we can use the bit map
4196 for the smaller ones. */
4197
4198 #ifdef SUPPORT_UCP
4199 continue; /* With next character in the class */
4200 #else
4201 if ((options & PCRE_CASELESS) == 0 || c > 127) continue;
4202
4203 /* Adjust upper limit and fall through to set up the map */
4204
4205 d = 127;
4206
4207 #endif /* SUPPORT_UCP */
4208 }
4209 #endif /* SUPPORT_UTF8 */
4210
4211 /* We use the bit map for all cases when not in UTF-8 mode; else
4212 ranges that lie entirely within 0-127 when there is UCP support; else
4213 for partial ranges without UCP support. */
4214
4215 class_charcount += d - c + 1;
4216 class_lastchar = d;
4217
4218 /* We can save a bit of time by skipping this in the pre-compile. */
4219
4220 if (lengthptr == NULL) for (; c <= d; c++)
4221 {
4222 classbits[c/8] |= (1 << (c&7));
4223 if ((options & PCRE_CASELESS) != 0)
4224 {
4225 int uc = cd->fcc[c]; /* flip case */
4226 classbits[uc/8] |= (1 << (uc&7));
4227 }
4228 }
4229
4230 continue; /* Go get the next char in the class */
4231 }
4232
4233 /* Handle a lone single character - we can get here for a normal
4234 non-escape char, or after \ that introduces a single character or for an
4235 apparent range that isn't. */
4236
4237 LONE_SINGLE_CHARACTER:
4238
4239 /* Handle a character that cannot go in the bit map */
4240
4241 #ifdef SUPPORT_UTF8
4242 if (utf8 && (c > 255 || ((options & PCRE_CASELESS) != 0 && c > 127)))
4243 {
4244 class_utf8 = TRUE;
4245 *class_utf8data++ = XCL_SINGLE;
4246 class_utf8data += _pcre_ord2utf8(c, class_utf8data);
4247
4248 #ifdef SUPPORT_UCP
4249 if ((options & PCRE_CASELESS) != 0)
4250 {
4251 unsigned int othercase;
4252 if ((othercase = UCD_OTHERCASE(c)) != c)
4253 {
4254 *class_utf8data++ = XCL_SINGLE;
4255 class_utf8data += _pcre_ord2utf8(othercase, class_utf8data);
4256 }
4257 }
4258 #endif /* SUPPORT_UCP */
4259
4260 }
4261 else
4262 #endif /* SUPPORT_UTF8 */
4263
4264 /* Handle a single-byte character */
4265 {
4266 classbits[c/8] |= (1 << (c&7));
4267 if ((options & PCRE_CASELESS) != 0)
4268 {
4269 c = cd->fcc[c]; /* flip case */
4270 classbits[c/8] |= (1 << (c&7));
4271 }
4272 class_charcount++;
4273 class_lastchar = c;
4274 }
4275 }
4276
4277 /* Loop until ']' reached. This "while" is the end of the "do" far above.
4278 If we are at the end of an internal nested string, revert to the outer
4279 string. */
4280
4281 while (((c = *(++ptr)) != 0 ||
4282 (nestptr != NULL &&
4283 (ptr = nestptr, nestptr = NULL, c = *(++ptr)) != 0)) &&
4284 (c != CHAR_RIGHT_SQUARE_BRACKET || inescq));
4285
4286 /* Check for missing terminating ']' */
4287
4288 if (c == 0)
4289 {
4290 *errorcodeptr = ERR6;
4291 goto FAILED;
4292 }
4293
4294 /* If class_charcount is 1, we saw precisely one character whose value is
4295 less than 256. As long as there were no characters >= 128 and there was no
4296 use of \p or \P, in other words, no use of any XCLASS features, we can
4297 optimize.
4298
4299 In UTF-8 mode, we can optimize the negative case only if there were no
4300 characters >= 128 because OP_NOT and the related opcodes like OP_NOTSTAR
4301 operate on single-bytes characters only. This is an historical hangover.
4302 Maybe one day we can tidy these opcodes to handle multi-byte characters.
4303
4304 The optimization throws away the bit map. We turn the item into a
4305 1-character OP_CHAR[I] if it's positive, or OP_NOT[I] if it's negative.
4306 Note that OP_NOT[I] does not support multibyte characters. In the positive
4307 case, it can cause firstbyte to be set. Otherwise, there can be no first
4308 char if this item is first, whatever repeat count may follow. In the case
4309 of reqbyte, save the previous value for reinstating. */
4310
4311 #ifdef SUPPORT_UTF8
4312 if (class_charcount == 1 && !class_utf8 &&
4313 (!utf8 || !negate_class || class_lastchar < 128))
4314 #else
4315 if (class_charcount == 1)
4316 #endif
4317 {
4318 zeroreqbyte = reqbyte;
4319
4320 /* The OP_NOT[I] opcodes work on one-byte characters only. */
4321
4322 if (negate_class)
4323 {
4324 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
4325 zerofirstbyte = firstbyte;
4326 *code++ = ((options & PCRE_CASELESS) != 0)? OP_NOTI: OP_NOT;
4327 *code++ = class_lastchar;
4328 break;
4329 }
4330
4331 /* For a single, positive character, get the value into mcbuffer, and
4332 then we can handle this with the normal one-character code. */
4333
4334 #ifdef SUPPORT_UTF8
4335 if (utf8 && class_lastchar > 127)
4336 mclength = _pcre_ord2utf8(class_lastchar, mcbuffer);
4337 else
4338 #endif
4339 {
4340 mcbuffer[0] = class_lastchar;
4341 mclength = 1;
4342 }
4343 goto ONE_CHAR;
4344 } /* End of 1-char optimization */
4345
4346 /* The general case - not the one-char optimization. If this is the first
4347 thing in the branch, there can be no first char setting, whatever the
4348 repeat count. Any reqbyte setting must remain unchanged after any kind of
4349 repeat. */
4350
4351 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
4352 zerofirstbyte = firstbyte;
4353 zeroreqbyte = reqbyte;
4354
4355 /* If there are characters with values > 255, we have to compile an
4356 extended class, with its own opcode, unless there was a negated special
4357 such as \S in the class, and PCRE_UCP is not set, because in that case all
4358 characters > 255 are in the class, so any that were explicitly given as
4359 well can be ignored. If (when there are explicit characters > 255 that must
4360 be listed) there are no characters < 256, we can omit the bitmap in the
4361 actual compiled code. */
4362
4363 #ifdef SUPPORT_UTF8
4364 if (class_utf8 && (!should_flip_negation || (options & PCRE_UCP) != 0))
4365 {
4366 *class_utf8data++ = XCL_END; /* Marks the end of extra data */
4367 *code++ = OP_XCLASS;
4368 code += LINK_SIZE;
4369 *code = negate_class? XCL_NOT : 0;
4370
4371 /* If the map is required, move up the extra data to make room for it;
4372 otherwise just move the code pointer to the end of the extra data. */
4373
4374 if (class_charcount > 0)
4375 {
4376 *code++ |= XCL_MAP;
4377 memmove(code + 32, code, class_utf8data - code);
4378 memcpy(code, classbits, 32);
4379 code = class_utf8data + 32;
4380 }
4381 else code = class_utf8data;
4382
4383 /* Now fill in the complete length of the item */
4384
4385 PUT(previous, 1, (int)(code - previous));
4386 break; /* End of class handling */
4387 }
4388 #endif
4389
4390 /* If there are no characters > 255, or they are all to be included or
4391 excluded, set the opcode to OP_CLASS or OP_NCLASS, depending on whether the
4392 whole class was negated and whether there were negative specials such as \S
4393 (non-UCP) in the class. Then copy the 32-byte map into the code vector,
4394 negating it if necessary. */
4395
4396 *code++ = (negate_class == should_flip_negation) ? OP_CLASS : OP_NCLASS;
4397 if (negate_class)
4398 {
4399 if (lengthptr == NULL) /* Save time in the pre-compile phase */
4400 for (c = 0; c < 32; c++) code[c] = ~classbits[c];
4401 }
4402 else
4403 {
4404 memcpy(code, classbits, 32);
4405 }
4406 code += 32;
4407 break;
4408
4409
4410 /* ===================================================================*/
4411 /* Various kinds of repeat; '{' is not necessarily a quantifier, but this
4412 has been tested above. */
4413
4414 case CHAR_LEFT_CURLY_BRACKET:
4415 if (!is_quantifier) goto NORMAL_CHAR;
4416 ptr = read_repeat_counts(ptr+1, &repeat_min, &repeat_max, errorcodeptr);
4417 if (*errorcodeptr != 0) goto FAILED;
4418 goto REPEAT;
4419
4420 case CHAR_ASTERISK:
4421 repeat_min = 0;
4422 repeat_max = -1;
4423 goto REPEAT;
4424
4425 case CHAR_PLUS:
4426 repeat_min = 1;
4427 repeat_max = -1;
4428 goto REPEAT;
4429
4430 case CHAR_QUESTION_MARK:
4431 repeat_min = 0;
4432 repeat_max = 1;
4433
4434 REPEAT:
4435 if (previous == NULL)
4436 {
4437 *errorcodeptr = ERR9;
4438 goto FAILED;
4439 }
4440
4441 if (repeat_min == 0)
4442 {
4443 firstbyte = zerofirstbyte; /* Adjust for zero repeat */
4444 reqbyte = zeroreqbyte; /* Ditto */
4445 }
4446
4447 /* Remember whether this is a variable length repeat */
4448
4449 reqvary = (repeat_min == repeat_max)? 0 : REQ_VARY;
4450
4451 op_type = 0; /* Default single-char op codes */
4452 possessive_quantifier = FALSE; /* Default not possessive quantifier */
4453
4454 /* Save start of previous item, in case we have to move it up in order to
4455 insert something before it. */
4456
4457 tempcode = previous;
4458
4459 /* If the next character is '+', we have a possessive quantifier. This
4460 implies greediness, whatever the setting of the PCRE_UNGREEDY option.
4461 If the next character is '?' this is a minimizing repeat, by default,
4462 but if PCRE_UNGREEDY is set, it works the other way round. We change the
4463 repeat type to the non-default. */
4464
4465 if (ptr[1] == CHAR_PLUS)
4466 {
4467 repeat_type = 0; /* Force greedy */
4468 possessive_quantifier = TRUE;
4469 ptr++;
4470 }
4471 else if (ptr[1] == CHAR_QUESTION_MARK)
4472 {
4473 repeat_type = greedy_non_default;
4474 ptr++;
4475 }
4476 else repeat_type = greedy_default;
4477
4478 /* If previous was a recursion call, wrap it in atomic brackets so that
4479 previous becomes the atomic group. All recursions were so wrapped in the
4480 past, but it no longer happens for non-repeated recursions. In fact, the
4481 repeated ones could be re-implemented independently so as not to need this,
4482 but for the moment we rely on the code for repeating groups. */
4483
4484 if (*previous == OP_RECURSE)
4485 {
4486 memmove(previous + 1 + LINK_SIZE, previous, 1 + LINK_SIZE);
4487 *previous = OP_ONCE;
4488 PUT(previous, 1, 2 + 2*LINK_SIZE);
4489 previous[2 + 2*LINK_SIZE] = OP_KET;
4490 PUT(previous, 3 + 2*LINK_SIZE, 2 + 2*LINK_SIZE);
4491 code += 2 + 2 * LINK_SIZE;
4492 length_prevgroup = 3 + 3*LINK_SIZE;
4493
4494 /* When actually compiling, we need to check whether this was a forward
4495 reference, and if so, adjust the offset. */
4496
4497 if (lengthptr == NULL && cd->hwm >= cd->start_workspace + LINK_SIZE)
4498 {
4499 int offset = GET(cd->hwm, -LINK_SIZE);
4500 if (offset == previous + 1 - cd->start_code)
4501 PUT(cd->hwm, -LINK_SIZE, offset + 1 + LINK_SIZE);
4502 }
4503 }
4504
4505 /* Now handle repetition for the different types of item. */
4506
4507 /* If previous was a character match, abolish the item and generate a
4508 repeat item instead. If a char item has a minumum of more than one, ensure
4509 that it is set in reqbyte - it might not be if a sequence such as x{3} is
4510 the first thing in a branch because the x will have gone into firstbyte
4511 instead. */
4512
4513 if (*previous == OP_CHAR || *previous == OP_CHARI)
4514 {
4515 op_type = (*previous == OP_CHAR)? 0 : OP_STARI - OP_STAR;
4516
4517 /* Deal with UTF-8 characters that take up more than one byte. It's
4518 easier to write this out separately than try to macrify it. Use c to
4519 hold the length of the character in bytes, plus 0x80 to flag that it's a
4520 length rather than a small character. */
4521
4522 #ifdef SUPPORT_UTF8
4523 if (utf8 && (code[-1] & 0x80) != 0)
4524 {
4525 uschar *lastchar = code - 1;
4526 while((*lastchar & 0xc0) == 0x80) lastchar--;
4527 c = (int)(code - lastchar); /* Length of UTF-8 character */
4528 memcpy(utf8_char, lastchar, c); /* Save the char */
4529 c |= 0x80; /* Flag c as a length */
4530 }
4531 else
4532 #endif
4533
4534 /* Handle the case of a single byte - either with no UTF8 support, or
4535 with UTF-8 disabled, or for a UTF-8 character < 128. */
4536
4537 {
4538 c = code[-1];
4539 if (repeat_min > 1) reqbyte = c | req_caseopt | cd->req_varyopt;
4540 }
4541
4542 /* If the repetition is unlimited, it pays to see if the next thing on
4543 the line is something that cannot possibly match this character. If so,
4544 automatically possessifying this item gains some performance in the case
4545 where the match fails. */
4546
4547 if (!possessive_quantifier &&
4548 repeat_max < 0 &&
4549 check_auto_possessive(previous, utf8, ptr + 1, options, cd))
4550 {
4551 repeat_type = 0; /* Force greedy */
4552 possessive_quantifier = TRUE;
4553 }
4554
4555 goto OUTPUT_SINGLE_REPEAT; /* Code shared with single character types */
4556 }
4557
4558 /* If previous was a single negated character ([^a] or similar), we use
4559 one of the special opcodes, replacing it. The code is shared with single-
4560 character repeats by setting opt_type to add a suitable offset into
4561 repeat_type. We can also test for auto-possessification. OP_NOT and OP_NOTI
4562 are currently used only for single-byte chars. */
4563
4564 else if (*previous == OP_NOT || *previous == OP_NOTI)
4565 {
4566 op_type = ((*previous == OP_NOT)? OP_NOTSTAR : OP_NOTSTARI) - OP_STAR;
4567 c = previous[1];
4568 if (!possessive_quantifier &&
4569 repeat_max < 0 &&
4570 check_auto_possessive(previous, utf8, ptr + 1, options, cd))
4571 {
4572 repeat_type = 0; /* Force greedy */
4573 possessive_quantifier = TRUE;
4574 }
4575 goto OUTPUT_SINGLE_REPEAT;
4576 }
4577
4578 /* If previous was a character type match (\d or similar), abolish it and
4579 create a suitable repeat item. The code is shared with single-character
4580 repeats by setting op_type to add a suitable offset into repeat_type. Note
4581 the the Unicode property types will be present only when SUPPORT_UCP is
4582 defined, but we don't wrap the little bits of code here because it just
4583 makes it horribly messy. */
4584
4585 else if (*previous < OP_EODN)
4586 {
4587 uschar *oldcode;
4588 int prop_type, prop_value;
4589 op_type = OP_TYPESTAR - OP_STAR; /* Use type opcodes */
4590 c = *previous;
4591
4592 if (!possessive_quantifier &&
4593 repeat_max < 0 &&
4594 check_auto_possessive(previous, utf8, ptr + 1, options, cd))
4595 {
4596 repeat_type = 0; /* Force greedy */
4597 possessive_quantifier = TRUE;
4598 }
4599
4600 OUTPUT_SINGLE_REPEAT:
4601 if (*previous == OP_PROP || *previous == OP_NOTPROP)
4602 {
4603 prop_type = previous[1];
4604 prop_value = previous[2];
4605 }
4606 else prop_type = prop_value = -1;
4607
4608 oldcode = code;
4609 code = previous; /* Usually overwrite previous item */
4610
4611 /* If the maximum is zero then the minimum must also be zero; Perl allows
4612 this case, so we do too - by simply omitting the item altogether. */
4613
4614 if (repeat_max == 0) goto END_REPEAT;
4615
4616 /*--------------------------------------------------------------------*/
4617 /* This code is obsolete from release 8.00; the restriction was finally
4618 removed: */
4619
4620 /* All real repeats make it impossible to handle partial matching (maybe
4621 one day we will be able to remove this restriction). */
4622
4623 /* if (repeat_max != 1) cd->external_flags |= PCRE_NOPARTIAL; */
4624 /*--------------------------------------------------------------------*/
4625
4626 /* Combine the op_type with the repeat_type */
4627
4628 repeat_type += op_type;
4629
4630 /* A minimum of zero is handled either as the special case * or ?, or as
4631 an UPTO, with the maximum given. */
4632
4633 if (repeat_min == 0)
4634 {
4635 if (repeat_max == -1) *code++ = OP_STAR + repeat_type;
4636 else if (repeat_max == 1) *code++ = OP_QUERY + repeat_type;
4637 else
4638 {
4639 *code++ = OP_UPTO + repeat_type;
4640 PUT2INC(code, 0, repeat_max);
4641 }
4642 }
4643
4644 /* A repeat minimum of 1 is optimized into some special cases. If the
4645 maximum is unlimited, we use OP_PLUS. Otherwise, the original item is
4646 left in place and, if the maximum is greater than 1, we use OP_UPTO with
4647 one less than the maximum. */
4648
4649 else if (repeat_min == 1)
4650 {
4651 if (repeat_max == -1)
4652 *code++ = OP_PLUS + repeat_type;
4653 else
4654 {
4655 code = oldcode; /* leave previous item in place */
4656 if (repeat_max == 1) goto END_REPEAT;
4657 *code++ = OP_UPTO + repeat_type;
4658 PUT2INC(code, 0, repeat_max - 1);
4659 }
4660 }
4661
4662 /* The case {n,n} is just an EXACT, while the general case {n,m} is
4663 handled as an EXACT followed by an UPTO. */
4664
4665 else
4666 {
4667 *code++ = OP_EXACT + op_type; /* NB EXACT doesn't have repeat_type */
4668 PUT2INC(code, 0, repeat_min);
4669
4670 /* If the maximum is unlimited, insert an OP_STAR. Before doing so,
4671 we have to insert the character for the previous code. For a repeated
4672 Unicode property match, there are two extra bytes that define the
4673 required property. In UTF-8 mode, long characters have their length in
4674 c, with the 0x80 bit as a flag. */
4675
4676 if (repeat_max < 0)
4677 {
4678 #ifdef SUPPORT_UTF8
4679 if (utf8 && c >= 128)
4680 {
4681 memcpy(code, utf8_char, c & 7);
4682 code += c & 7;
4683 }
4684 else
4685 #endif
4686 {
4687 *code++ = c;
4688 if (prop_type >= 0)
4689 {
4690 *code++ = prop_type;
4691 *code++ = prop_value;
4692 }
4693 }
4694 *code++ = OP_STAR + repeat_type;
4695 }
4696
4697 /* Else insert an UPTO if the max is greater than the min, again
4698 preceded by the character, for the previously inserted code. If the
4699 UPTO is just for 1 instance, we can use QUERY instead. */
4700
4701 else if (repeat_max != repeat_min)
4702 {
4703 #ifdef SUPPORT_UTF8
4704 if (utf8 && c >= 128)
4705 {
4706 memcpy(code, utf8_char, c & 7);
4707 code += c & 7;
4708 }
4709 else
4710 #endif
4711 *code++ = c;
4712 if (prop_type >= 0)
4713 {
4714 *code++ = prop_type;
4715 *code++ = prop_value;
4716 }
4717 repeat_max -= repeat_min;
4718
4719 if (repeat_max == 1)
4720 {
4721 *code++ = OP_QUERY + repeat_type;
4722 }
4723 else
4724 {
4725 *code++ = OP_UPTO + repeat_type;
4726 PUT2INC(code, 0, repeat_max);
4727 }
4728 }
4729 }
4730
4731 /* The character or character type itself comes last in all cases. */
4732
4733 #ifdef SUPPORT_UTF8
4734 if (utf8 && c >= 128)
4735 {
4736 memcpy(code, utf8_char, c & 7);
4737 code += c & 7;
4738 }
4739 else
4740 #endif
4741 *code++ = c;
4742
4743 /* For a repeated Unicode property match, there are two extra bytes that
4744 define the required property. */
4745
4746 #ifdef SUPPORT_UCP
4747 if (prop_type >= 0)
4748 {
4749 *code++ = prop_type;
4750 *code++ = prop_value;
4751 }
4752 #endif
4753 }
4754
4755 /* If previous was a character class or a back reference, we put the repeat
4756 stuff after it, but just skip the item if the repeat was {0,0}. */
4757
4758 else if (*previous == OP_CLASS ||
4759 *previous == OP_NCLASS ||
4760 #ifdef SUPPORT_UTF8
4761 *previous == OP_XCLASS ||
4762 #endif
4763 *previous == OP_REF ||
4764 *previous == OP_REFI)
4765 {
4766 if (repeat_max == 0)
4767 {
4768 code = previous;
4769 goto END_REPEAT;
4770 }
4771
4772 /*--------------------------------------------------------------------*/
4773 /* This code is obsolete from release 8.00; the restriction was finally
4774 removed: */
4775
4776 /* All real repeats make it impossible to handle partial matching (maybe
4777 one day we will be able to remove this restriction). */
4778
4779 /* if (repeat_max != 1) cd->external_flags |= PCRE_NOPARTIAL; */
4780 /*--------------------------------------------------------------------*/
4781
4782 if (repeat_min == 0 && repeat_max == -1)
4783 *code++ = OP_CRSTAR + repeat_type;
4784 else if (repeat_min == 1 && repeat_max == -1)
4785 *code++ = OP_CRPLUS + repeat_type;
4786 else if (repeat_min == 0 && repeat_max == 1)
4787 *code++ = OP_CRQUERY + repeat_type;
4788 else
4789 {
4790 *code++ = OP_CRRANGE + repeat_type;
4791 PUT2INC(code, 0, repeat_min);
4792 if (repeat_max == -1) repeat_max = 0; /* 2-byte encoding for max */
4793 PUT2INC(code, 0, repeat_max);
4794 }
4795 }
4796
4797 /* If previous was a bracket group, we may have to replicate it in certain
4798 cases. Note that at this point we can encounter only the "basic" bracket
4799 opcodes such as BRA and CBRA, as this is the place where they get converted
4800 into the more special varieties such as BRAPOS and SBRA. A test for >=
4801 OP_ASSERT and <= OP_COND includes ASSERT, ASSERT_NOT, ASSERTBACK,
4802 ASSERTBACK_NOT, ONCE, BRA, CBRA, and COND. Originally, PCRE did not allow
4803 repetition of assertions, but now it does, for Perl compatibility. */
4804
4805 else if (*previous >= OP_ASSERT && *previous <= OP_COND)
4806 {
4807 register int i;
4808 int len = (int)(code - previous);
4809 uschar *bralink = NULL;
4810 uschar *brazeroptr = NULL;
4811
4812 /* Repeating a DEFINE group is pointless, but Perl allows the syntax, so
4813 we just ignore the repeat. */
4814
4815 if (*previous == OP_COND && previous[LINK_SIZE+1] == OP_DEF)
4816 goto END_REPEAT;
4817
4818 /* There is no sense in actually repeating assertions. The only potential
4819 use of repetition is in cases when the assertion is optional. Therefore,
4820 if the minimum is greater than zero, just ignore the repeat. If the
4821 maximum is not not zero or one, set it to 1. */
4822
4823 if (*previous < OP_ONCE) /* Assertion */
4824 {
4825 if (repeat_min > 0) goto END_REPEAT;
4826 if (repeat_max < 0 || repeat_max > 1) repeat_max = 1;
4827 }
4828
4829 /* The case of a zero minimum is special because of the need to stick
4830 OP_BRAZERO in front of it, and because the group appears once in the
4831 data, whereas in other cases it appears the minimum number of times. For
4832 this reason, it is simplest to treat this case separately, as otherwise
4833 the code gets far too messy. There are several special subcases when the
4834 minimum is zero. */
4835
4836 if (repeat_min == 0)
4837 {
4838 /* If the maximum is also zero, we used to just omit the group from the
4839 output altogether, like this:
4840
4841 ** if (repeat_max == 0)
4842 ** {
4843 ** code = previous;
4844 ** goto END_REPEAT;
4845 ** }
4846
4847 However, that fails when a group or a subgroup within it is referenced
4848 as a subroutine from elsewhere in the pattern, so now we stick in
4849 OP_SKIPZERO in front of it so that it is skipped on execution. As we
4850 don't have a list of which groups are referenced, we cannot do this
4851 selectively.
4852
4853 If the maximum is 1 or unlimited, we just have to stick in the BRAZERO
4854 and do no more at this point. However, we do need to adjust any
4855 OP_RECURSE calls inside the group that refer to the group itself or any
4856 internal or forward referenced group, because the offset is from the
4857 start of the whole regex. Temporarily terminate the pattern while doing
4858 this. */
4859
4860 if (repeat_max <= 1) /* Covers 0, 1, and unlimited */
4861 {
4862 *code = OP_END;
4863 adjust_recurse(previous, 1, utf8, cd, save_hwm);
4864 memmove(previous+1, previous, len);
4865 code++;
4866 if (repeat_max == 0)
4867 {
4868 *previous++ = OP_SKIPZERO;
4869 goto END_REPEAT;
4870 }
4871 brazeroptr = previous; /* Save for possessive optimizing */
4872 *previous++ = OP_BRAZERO + repeat_type;
4873 }
4874
4875 /* If the maximum is greater than 1 and limited, we have to replicate
4876 in a nested fashion, sticking OP_BRAZERO before each set of brackets.
4877 The first one has to be handled carefully because it's the original
4878 copy, which has to be moved up. The remainder can be handled by code
4879 that is common with the non-zero minimum case below. We have to
4880 adjust the value or repeat_max, since one less copy is required. Once
4881 again, we may have to adjust any OP_RECURSE calls inside the group. */
4882
4883 else
4884 {
4885 int offset;
4886 *code = OP_END;
4887 adjust_recurse(previous, 2 + LINK_SIZE, utf8, cd, save_hwm);
4888 memmove(previous + 2 + LINK_SIZE, previous, len);
4889 code += 2 + LINK_SIZE;
4890 *previous++ = OP_BRAZERO + repeat_type;
4891 *previous++ = OP_BRA;
4892
4893 /* We chain together the bracket offset fields that have to be
4894 filled in later when the ends of the brackets are reached. */
4895
4896 offset = (bralink == NULL)? 0 : (int)(previous - bralink);
4897 bralink = previous;
4898 PUTINC(previous, 0, offset);
4899 }
4900
4901 repeat_max--;
4902 }
4903
4904 /* If the minimum is greater than zero, replicate the group as many
4905 times as necessary, and adjust the maximum to the number of subsequent
4906 copies that we need. If we set a first char from the group, and didn't
4907 set a required char, copy the latter from the former. If there are any
4908 forward reference subroutine calls in the group, there will be entries on
4909 the workspace list; replicate these with an appropriate increment. */
4910
4911 else
4912 {
4913 if (repeat_min > 1)
4914 {
4915 /* In the pre-compile phase, we don't actually do the replication. We
4916 just adjust the length as if we had. Do some paranoid checks for
4917 potential integer overflow. The INT64_OR_DOUBLE type is a 64-bit
4918 integer type when available, otherwise double. */
4919
4920 if (lengthptr != NULL)
4921 {
4922 int delta = (repeat_min - 1)*length_prevgroup;
4923 if ((INT64_OR_DOUBLE)(repeat_min - 1)*
4924 (INT64_OR_DOUBLE)length_prevgroup >
4925 (INT64_OR_DOUBLE)INT_MAX ||
4926 OFLOW_MAX - *lengthptr < delta)
4927 {
4928 *errorcodeptr = ERR20;
4929 goto FAILED;
4930 }
4931 *lengthptr += delta;
4932 }
4933
4934 /* This is compiling for real. If there is a set first byte for
4935 the group, and we have not yet set a "required byte", set it. Make
4936 sure there is enough workspace for copying forward references before
4937 doing the copy. */
4938
4939 else
4940 {
4941 if (groupsetfirstbyte && reqbyte < 0) reqbyte = firstbyte;
4942
4943 for (i = 1; i < repeat_min; i++)
4944 {
4945 uschar *hc;
4946 uschar *this_hwm = cd->hwm;
4947 memcpy(code, previous, len);
4948
4949 while (cd->hwm > cd->start_workspace + cd->workspace_size -
4950 WORK_SIZE_SAFETY_MARGIN - (this_hwm - save_hwm))
4951 {
4952 int save_offset = save_hwm - cd->start_workspace;
4953 int this_offset = this_hwm - cd->start_workspace;
4954 *errorcodeptr = expand_workspace(cd);
4955 if (*errorcodeptr != 0) goto FAILED;
4956 save_hwm = (uschar *)cd->start_workspace + save_offset;
4957 this_hwm = (uschar *)cd->start_workspace + this_offset;
4958 }
4959
4960 for (hc = save_hwm; hc < this_hwm; hc += LINK_SIZE)
4961 {
4962 PUT(cd->hwm, 0, GET(hc, 0) + len);
4963 cd->hwm += LINK_SIZE;
4964 }
4965 save_hwm = this_hwm;
4966 code += len;
4967 }
4968 }
4969 }
4970
4971 if (repeat_max > 0) repeat_max -= repeat_min;
4972 }
4973
4974 /* This code is common to both the zero and non-zero minimum cases. If
4975 the maximum is limited, it replicates the group in a nested fashion,
4976 remembering the bracket starts on a stack. In the case of a zero minimum,
4977 the first one was set up above. In all cases the repeat_max now specifies
4978 the number of additional copies needed. Again, we must remember to
4979 replicate entries on the forward reference list. */
4980
4981 if (repeat_max >= 0)
4982 {
4983 /* In the pre-compile phase, we don't actually do the replication. We
4984 just adjust the length as if we had. For each repetition we must add 1
4985 to the length for BRAZERO and for all but the last repetition we must
4986 add 2 + 2*LINKSIZE to allow for the nesting that occurs. Do some
4987 paranoid checks to avoid integer overflow. The INT64_OR_DOUBLE type is
4988 a 64-bit integer type when available, otherwise double. */
4989
4990 if (lengthptr != NULL && repeat_max > 0)
4991 {
4992 int delta = repeat_max * (length_prevgroup + 1 + 2 + 2*LINK_SIZE) -
4993 2 - 2*LINK_SIZE; /* Last one doesn't nest */
4994 if ((INT64_OR_DOUBLE)repeat_max *
4995 (INT64_OR_DOUBLE)(length_prevgroup + 1 + 2 + 2*LINK_SIZE)
4996 > (INT64_OR_DOUBLE)INT_MAX ||
4997 OFLOW_MAX - *lengthptr < delta)
4998 {
4999 *errorcodeptr = ERR20;
5000 goto FAILED;
5001 }
5002 *lengthptr += delta;
5003 }
5004
5005 /* This is compiling for real */
5006
5007 else for (i = repeat_max - 1; i >= 0; i--)
5008 {
5009 uschar *hc;
5010 uschar *this_hwm = cd->hwm;
5011
5012 *code++ = OP_BRAZERO + repeat_type;
5013
5014 /* All but the final copy start a new nesting, maintaining the
5015 chain of brackets outstanding. */
5016
5017 if (i != 0)
5018 {
5019 int offset;
5020 *code++ = OP_BRA;
5021 offset = (bralink == NULL)? 0 : (int)(code - bralink);
5022 bralink = code;
5023 PUTINC(code, 0, offset);
5024 }
5025
5026 memcpy(code, previous, len);
5027
5028 /* Ensure there is enough workspace for forward references before
5029 copying them. */
5030
5031 while (cd->hwm > cd->start_workspace + cd->workspace_size -
5032 WORK_SIZE_SAFETY_MARGIN - (this_hwm - save_hwm))
5033 {
5034 int save_offset = save_hwm - cd->start_workspace;
5035 int this_offset = this_hwm - cd->start_workspace;
5036 *errorcodeptr = expand_workspace(cd);
5037 if (*errorcodeptr != 0) goto FAILED;
5038 save_hwm = (uschar *)cd->start_workspace + save_offset;
5039 this_hwm = (uschar *)cd->start_workspace + this_offset;
5040 }
5041
5042 for (hc = save_hwm; hc < this_hwm; hc += LINK_SIZE)
5043 {
5044 PUT(cd->hwm, 0, GET(hc, 0) + len + ((i != 0)? 2+LINK_SIZE : 1));
5045 cd->hwm += LINK_SIZE;
5046 }
5047 save_hwm = this_hwm;
5048 code += len;
5049 }
5050
5051 /* Now chain through the pending brackets, and fill in their length
5052 fields (which are holding the chain links pro tem). */
5053
5054 while (bralink != NULL)
5055 {
5056 int oldlinkoffset;
5057 int offset = (int)(code - bralink + 1);
5058 uschar *bra = code - offset;
5059 oldlinkoffset = GET(bra, 1);
5060 bralink = (oldlinkoffset == 0)? NULL : bralink - oldlinkoffset;
5061 *code++ = OP_KET;
5062 PUTINC(code, 0, offset);
5063 PUT(bra, 1, offset);
5064 }
5065 }
5066
5067 /* If the maximum is unlimited, set a repeater in the final copy. For
5068 ONCE brackets, that's all we need to do. However, possessively repeated
5069 ONCE brackets can be converted into non-capturing brackets, as the
5070 behaviour of (?:xx)++ is the same as (?>xx)++ and this saves having to
5071 deal with possessive ONCEs specially.
5072
5073 Otherwise, when we are doing the actual compile phase, check to see
5074 whether this group is one that could match an empty string. If so,
5075 convert the initial operator to the S form (e.g. OP_BRA -> OP_SBRA) so
5076 that runtime checking can be done. [This check is also applied to ONCE
5077 groups at runtime, but in a different way.]
5078
5079 Then, if the quantifier was possessive and the bracket is not a
5080 conditional, we convert the BRA code to the POS form, and the KET code to
5081 KETRPOS. (It turns out to be convenient at runtime to detect this kind of
5082 subpattern at both the start and at the end.) The use of special opcodes
5083 makes it possible to reduce greatly the stack usage in pcre_exec(). If
5084 the group is preceded by OP_BRAZERO, convert this to OP_BRAPOSZERO.
5085
5086 Then, if the minimum number of matches is 1 or 0, cancel the possessive
5087 flag so that the default action below, of wrapping everything inside
5088 atomic brackets, does not happen. When the minimum is greater than 1,
5089 there will be earlier copies of the group, and so we still have to wrap
5090 the whole thing. */
5091
5092 else
5093 {
5094 uschar *ketcode = code - 1 - LINK_SIZE;
5095 uschar *bracode = ketcode - GET(ketcode, 1);
5096
5097 /* Convert possessive ONCE brackets to non-capturing */
5098
5099 if ((*bracode == OP_ONCE || *bracode == OP_ONCE_NC) &&
5100 possessive_quantifier) *bracode = OP_BRA;
5101
5102 /* For non-possessive ONCE brackets, all we need to do is to
5103 set the KET. */
5104
5105 if (*bracode == OP_ONCE || *bracode == OP_ONCE_NC)
5106 *ketcode = OP_KETRMAX + repeat_type;
5107
5108 /* Handle non-ONCE brackets and possessive ONCEs (which have been
5109 converted to non-capturing above). */
5110
5111 else
5112 {
5113 /* In the compile phase, check for empty string matching. */
5114
5115 if (lengthptr == NULL)
5116 {
5117 uschar *scode = bracode;
5118 do
5119 {
5120 if (could_be_empty_branch(scode, ketcode, utf8, cd))
5121 {
5122 *bracode += OP_SBRA - OP_BRA;
5123 break;
5124 }
5125 scode += GET(scode, 1);
5126 }
5127 while (*scode == OP_ALT);
5128 }
5129
5130 /* Handle possessive quantifiers. */
5131
5132 if (possessive_quantifier)
5133 {
5134 /* For COND brackets, we wrap the whole thing in a possessively
5135 repeated non-capturing bracket, because we have not invented POS
5136 versions of the COND opcodes. Because we are moving code along, we
5137 must ensure that any pending recursive references are updated. */
5138
5139 if (*bracode == OP_COND || *bracode == OP_SCOND)
5140 {
5141 int nlen = (int)(code - bracode);
5142 *code = OP_END;
5143 adjust_recurse(bracode, 1 + LINK_SIZE, utf8, cd, save_hwm);
5144 memmove(bracode + 1+LINK_SIZE, bracode, nlen);
5145 code += 1 + LINK_SIZE;
5146 nlen += 1 + LINK_SIZE;
5147 *bracode = OP_BRAPOS;
5148 *code++ = OP_KETRPOS;
5149 PUTINC(code, 0, nlen);
5150 PUT(bracode, 1, nlen);
5151 }
5152
5153 /* For non-COND brackets, we modify the BRA code and use KETRPOS. */
5154
5155 else
5156 {
5157 *bracode += 1; /* Switch to xxxPOS opcodes */
5158 *ketcode = OP_KETRPOS;
5159 }
5160
5161 /* If the minimum is zero, mark it as possessive, then unset the
5162 possessive flag when the minimum is 0 or 1. */
5163
5164 if (brazeroptr != NULL) *brazeroptr = OP_BRAPOSZERO;
5165 if (repeat_min < 2) possessive_quantifier = FALSE;
5166 }
5167
5168 /* Non-possessive quantifier */
5169
5170 else *ketcode = OP_KETRMAX + repeat_type;
5171 }
5172 }
5173 }
5174
5175 /* If previous is OP_FAIL, it was generated by an empty class [] in
5176 JavaScript mode. The other ways in which OP_FAIL can be generated, that is
5177 by (*FAIL) or (?!) set previous to NULL, which gives a "nothing to repeat"
5178 error above. We can just ignore the repeat in JS case. */
5179
5180 else if (*previous == OP_FAIL) goto END_REPEAT;
5181
5182 /* Else there's some kind of shambles */
5183
5184 else
5185 {
5186 *errorcodeptr = ERR11;
5187 goto FAILED;
5188 }
5189
5190 /* If the character following a repeat is '+', or if certain optimization
5191 tests above succeeded, possessive_quantifier is TRUE. For some opcodes,
5192 there are special alternative opcodes for this case. For anything else, we
5193 wrap the entire repeated item inside OP_ONCE brackets. Logically, the '+'
5194 notation is just syntactic sugar, taken from Sun's Java package, but the
5195 special opcodes can optimize it.
5196
5197 Some (but not all) possessively repeated subpatterns have already been
5198 completely handled in the code just above. For them, possessive_quantifier
5199 is always FALSE at this stage.
5200
5201 Note that the repeated item starts at tempcode, not at previous, which
5202 might be the first part of a string whose (former) last char we repeated.
5203
5204 Possessifying an 'exact' quantifier has no effect, so we can ignore it. But
5205 an 'upto' may follow. We skip over an 'exact' item, and then test the
5206 length of what remains before proceeding. */
5207
5208 if (possessive_quantifier)
5209 {
5210 int len;
5211
5212 if (*tempcode == OP_TYPEEXACT)
5213 tempcode += _pcre_OP_lengths[*tempcode] +
5214 ((tempcode[3] == OP_PROP || tempcode[3] == OP_NOTPROP)? 2 : 0);
5215
5216 else if (*tempcode == OP_EXACT || *tempcode == OP_NOTEXACT)
5217 {
5218 tempcode += _pcre_OP_lengths[*tempcode];
5219 #ifdef SUPPORT_UTF8
5220 if (utf8 && tempcode[-1] >= 0xc0)
5221 tempcode += _pcre_utf8_table4[tempcode[-1] & 0x3f];
5222 #endif
5223 }
5224
5225 len = (int)(code - tempcode);
5226 if (len > 0) switch (*tempcode)
5227 {
5228 case OP_STAR: *tempcode = OP_POSSTAR; break;
5229 case OP_PLUS: *tempcode = OP_POSPLUS; break;
5230 case OP_QUERY: *tempcode = OP_POSQUERY; break;
5231 case OP_UPTO: *tempcode = OP_POSUPTO; break;
5232
5233 case OP_STARI: *tempcode = OP_POSSTARI; break;
5234 case OP_PLUSI: *tempcode = OP_POSPLUSI; break;
5235 case OP_QUERYI: *tempcode = OP_POSQUERYI; break;
5236 case OP_UPTOI: *tempcode = OP_POSUPTOI; break;
5237
5238 case OP_NOTSTAR: *tempcode = OP_NOTPOSSTAR; break;
5239 case OP_NOTPLUS: *tempcode = OP_NOTPOSPLUS; break;
5240 case OP_NOTQUERY: *tempcode = OP_NOTPOSQUERY; break;
5241 case OP_NOTUPTO: *tempcode = OP_NOTPOSUPTO; break;
5242
5243 case OP_NOTSTARI: *tempcode = OP_NOTPOSSTARI; break;
5244 case OP_NOTPLUSI: *tempcode = OP_NOTPOSPLUSI; break;
5245 case OP_NOTQUERYI: *tempcode = OP_NOTPOSQUERYI; break;
5246 case OP_NOTUPTOI: *tempcode = OP_NOTPOSUPTOI; break;
5247
5248 case OP_TYPESTAR: *tempcode = OP_TYPEPOSSTAR; break;
5249 case OP_TYPEPLUS: *tempcode = OP_TYPEPOSPLUS; break;
5250 case OP_TYPEQUERY: *tempcode = OP_TYPEPOSQUERY; break;
5251 case OP_TYPEUPTO: *tempcode = OP_TYPEPOSUPTO; break;
5252
5253 /* Because we are moving code along, we must ensure that any
5254 pending recursive references are updated. */
5255
5256 default:
5257 *code = OP_END;
5258 adjust_recurse(tempcode, 1 + LINK_SIZE, utf8, cd, save_hwm);
5259 memmove(tempcode + 1+LINK_SIZE, tempcode, len);
5260 code += 1 + LINK_SIZE;
5261 len += 1 + LINK_SIZE;
5262 tempcode[0] = OP_ONCE;
5263 *code++ = OP_KET;
5264 PUTINC(code, 0, len);
5265 PUT(tempcode, 1, len);
5266 break;
5267 }
5268 }
5269
5270 /* In all case we no longer have a previous item. We also set the
5271 "follows varying string" flag for subsequently encountered reqbytes if
5272 it isn't already set and we have just passed a varying length item. */
5273
5274 END_REPEAT:
5275 previous = NULL;
5276 cd->req_varyopt |= reqvary;
5277 break;
5278
5279
5280 /* ===================================================================*/
5281 /* Start of nested parenthesized sub-expression, or comment or lookahead or
5282 lookbehind or option setting or condition or all the other extended
5283 parenthesis forms. */
5284
5285 case CHAR_LEFT_PARENTHESIS:
5286 newoptions = options;
5287 skipbytes = 0;
5288 bravalue = OP_CBRA;
5289 save_hwm = cd->hwm;
5290 reset_bracount = FALSE;
5291
5292 /* First deal with various "verbs" that can be introduced by '*'. */
5293
5294 if (*(++ptr) == CHAR_ASTERISK &&
5295 ((cd->ctypes[ptr[1]] & ctype_letter) != 0 || ptr[1] == ':'))
5296 {
5297 int i, namelen;
5298 int arglen = 0;
5299 const char *vn = verbnames;
5300 const uschar *name = ptr + 1;
5301 const uschar *arg = NULL;
5302 previous = NULL;
5303 while ((cd->ctypes[*++ptr] & ctype_letter) != 0) {};
5304 namelen = (int)(ptr - name);
5305
5306 /* It appears that Perl allows any characters whatsoever, other than
5307 a closing parenthesis, to appear in arguments, so we no longer insist on
5308 letters, digits, and underscores. */
5309
5310 if (*ptr == CHAR_COLON)
5311 {
5312 arg = ++ptr;
5313 while (*ptr != 0 && *ptr != CHAR_RIGHT_PARENTHESIS) ptr++;
5314 arglen = (int)(ptr - arg);
5315 }
5316
5317 if (*ptr != CHAR_RIGHT_PARENTHESIS)
5318 {
5319 *errorcodeptr = ERR60;
5320 goto FAILED;
5321 }
5322
5323 /* Scan the table of verb names */
5324
5325 for (i = 0; i < verbcount; i++)
5326 {
5327 if (namelen == verbs[i].len &&
5328 strncmp((char *)name, vn, namelen) == 0)
5329 {
5330 /* Check for open captures before ACCEPT and convert it to
5331 ASSERT_ACCEPT if in an assertion. */
5332
5333 if (verbs[i].op == OP_ACCEPT)
5334 {
5335 open_capitem *oc;
5336 if (arglen != 0)
5337 {
5338 *errorcodeptr = ERR59;
5339 goto FAILED;
5340 }
5341 cd->had_accept = TRUE;
5342 for (oc = cd->open_caps; oc != NULL; oc = oc->next)
5343 {
5344 *code++ = OP_CLOSE;
5345 PUT2INC(code, 0, oc->number);
5346 }
5347 *code++ = (cd->assert_depth > 0)? OP_ASSERT_ACCEPT : OP_ACCEPT;
5348
5349 /* Do not set firstbyte after *ACCEPT */
5350 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
5351 }
5352
5353 /* Handle other cases with/without an argument */
5354
5355 else if (arglen == 0)
5356 {
5357 if (verbs[i].op < 0) /* Argument is mandatory */
5358 {
5359 *errorcodeptr = ERR66;
5360 goto FAILED;
5361 }
5362 *code = verbs[i].op;
5363 if (*code++ == OP_THEN) cd->external_flags |= PCRE_HASTHEN;
5364 }
5365
5366 else
5367 {
5368 if (verbs[i].op_arg < 0) /* Argument is forbidden */
5369 {
5370 *errorcodeptr = ERR59;
5371 goto FAILED;
5372 }
5373 *code = verbs[i].op_arg;
5374 if (*code++ == OP_THEN_ARG) cd->external_flags |= PCRE_HASTHEN;
5375 *code++ = arglen;
5376 memcpy(code, arg, arglen);
5377 code += arglen;
5378 *code++ = 0;
5379 }
5380
5381 break; /* Found verb, exit loop */
5382 }
5383
5384 vn += verbs[i].len + 1;
5385 }
5386
5387 if (i < verbcount) continue; /* Successfully handled a verb */
5388 *errorcodeptr = ERR60; /* Verb not recognized */
5389 goto FAILED;
5390 }
5391
5392 /* Deal with the extended parentheses; all are introduced by '?', and the
5393 appearance of any of them means that this is not a capturing group. */
5394
5395 else if (*ptr == CHAR_QUESTION_MARK)
5396 {
5397 int i, set, unset, namelen;
5398 int *optset;
5399 const uschar *name;
5400 uschar *slot;
5401
5402 switch (*(++ptr))
5403 {
5404 case CHAR_NUMBER_SIGN: /* Comment; skip to ket */
5405 ptr++;
5406 while (*ptr != 0 && *ptr != CHAR_RIGHT_PARENTHESIS) ptr++;
5407 if (*ptr == 0)
5408 {
5409 *errorcodeptr = ERR18;
5410 goto FAILED;
5411 }
5412 continue;
5413
5414
5415 /* ------------------------------------------------------------ */
5416 case CHAR_VERTICAL_LINE: /* Reset capture count for each branch */
5417 reset_bracount = TRUE;
5418 /* Fall through */
5419
5420 /* ------------------------------------------------------------ */
5421 case CHAR_COLON: /* Non-capturing bracket */
5422 bravalue = OP_BRA;
5423 ptr++;
5424 break;
5425
5426
5427 /* ------------------------------------------------------------ */
5428 case CHAR_LEFT_PARENTHESIS:
5429 bravalue = OP_COND; /* Conditional group */
5430
5431 /* A condition can be an assertion, a number (referring to a numbered
5432 group), a name (referring to a named group), or 'R', referring to
5433 recursion. R<digits> and R&name are also permitted for recursion tests.
5434
5435 There are several syntaxes for testing a named group: (?(name)) is used
5436 by Python; Perl 5.10 onwards uses (?(<name>) or (?('name')).
5437
5438 There are two unfortunate ambiguities, caused by history. (a) 'R' can
5439 be the recursive thing or the name 'R' (and similarly for 'R' followed
5440 by digits), and (b) a number could be a name that consists of digits.
5441 In both cases, we look for a name first; if not found, we try the other
5442 cases. */
5443
5444 /* For conditions that are assertions, check the syntax, and then exit
5445 the switch. This will take control down to where bracketed groups,
5446 including assertions, are processed. */
5447
5448 if (ptr[1] == CHAR_QUESTION_MARK && (ptr[2] == CHAR_EQUALS_SIGN ||
5449 ptr[2] == CHAR_EXCLAMATION_MARK || ptr[2] == CHAR_LESS_THAN_SIGN))
5450 break;
5451
5452 /* Most other conditions use OP_CREF (a couple change to OP_RREF
5453 below), and all need to skip 3 bytes at the start of the group. */
5454
5455 code[1+LINK_SIZE] = OP_CREF;
5456 skipbytes = 3;
5457 refsign = -1;
5458
5459 /* Check for a test for recursion in a named group. */
5460
5461 if (ptr[1] == CHAR_R && ptr[2] == CHAR_AMPERSAND)
5462 {
5463 terminator = -1;
5464 ptr += 2;
5465 code[1+LINK_SIZE] = OP_RREF; /* Change the type of test */
5466 }
5467
5468 /* Check for a test for a named group's having been set, using the Perl
5469 syntax (?(<name>) or (?('name') */
5470
5471 else if (ptr[1] == CHAR_LESS_THAN_SIGN)
5472 {
5473 terminator = CHAR_GREATER_THAN_SIGN;
5474 ptr++;
5475 }
5476 else if (ptr[1] == CHAR_APOSTROPHE)
5477 {
5478 terminator = CHAR_APOSTROPHE;
5479 ptr++;
5480 }
5481 else
5482 {
5483 terminator = 0;
5484 if (ptr[1] == CHAR_MINUS || ptr[1] == CHAR_PLUS) refsign = *(++ptr);
5485 }
5486
5487 /* We now expect to read a name; any thing else is an error */
5488
5489 if ((cd->ctypes[ptr[1]] & ctype_word) == 0)
5490 {
5491 ptr += 1; /* To get the right offset */
5492 *errorcodeptr = ERR28;
5493 goto FAILED;
5494 }
5495
5496 /* Read the name, but also get it as a number if it's all digits */
5497
5498 recno = 0;
5499 name = ++ptr;
5500 while ((cd->ctypes[*ptr] & ctype_word) != 0)
5501 {
5502 if (recno >= 0)
5503 recno = ((digitab[*ptr] & ctype_digit) != 0)?
5504 recno * 10 + *ptr - CHAR_0 : -1;
5505 ptr++;
5506 }
5507 namelen = (int)(ptr - name);
5508
5509 if ((terminator > 0 && *ptr++ != terminator) ||
5510 *ptr++ != CHAR_RIGHT_PARENTHESIS)
5511 {
5512 ptr--; /* Error offset */
5513 *errorcodeptr = ERR26;
5514 goto FAILED;
5515 }
5516
5517 /* Do no further checking in the pre-compile phase. */
5518
5519 if (lengthptr != NULL) break;
5520
5521 /* In the real compile we do the work of looking for the actual
5522 reference. If the string started with "+" or "-" we require the rest to
5523 be digits, in which case recno will be set. */
5524
5525 if (refsign > 0)
5526 {
5527 if (recno <= 0)
5528 {
5529 *errorcodeptr = ERR58;
5530 goto FAILED;
5531 }
5532 recno = (refsign == CHAR_MINUS)?
5533 cd->bracount - recno + 1 : recno +cd->bracount;
5534 if (recno <= 0 || recno > cd->final_bracount)
5535 {
5536 *errorcodeptr = ERR15;
5537 goto FAILED;
5538 }
5539 PUT2(code, 2+LINK_SIZE, recno);
5540 break;
5541 }
5542
5543 /* Otherwise (did not start with "+" or "-"), start by looking for the
5544 name. If we find a name, add one to the opcode to change OP_CREF or
5545 OP_RREF into OP_NCREF or OP_NRREF. These behave exactly the same,
5546 except they record that the reference was originally to a name. The
5547 information is used to check duplicate names. */
5548
5549 slot = cd->name_table;
5550 for (i = 0; i < cd->names_found; i++)
5551 {
5552 if (strncmp((char *)name, (char *)slot+2, namelen) == 0) break;
5553 slot += cd->name_entry_size;
5554 }
5555
5556 /* Found a previous named subpattern */
5557
5558 if (i < cd->names_found)
5559 {
5560 recno = GET2(slot, 0);
5561 PUT2(code, 2+LINK_SIZE, recno);
5562 code[1+LINK_SIZE]++;
5563 }
5564
5565 /* Search the pattern for a forward reference */
5566
5567 else if ((i = find_parens(cd, name, namelen,
5568 (options & PCRE_EXTENDED) != 0, utf8)) > 0)
5569 {
5570 PUT2(code, 2+LINK_SIZE, i);
5571 code[1+LINK_SIZE]++;
5572 }
5573
5574 /* If terminator == 0 it means that the name followed directly after
5575 the opening parenthesis [e.g. (?(abc)...] and in this case there are
5576 some further alternatives to try. For the cases where terminator != 0
5577 [things like (?(<name>... or (?('name')... or (?(R&name)... ] we have
5578 now checked all the possibilities, so give an error. */
5579
5580 else if (terminator != 0)
5581 {
5582 *errorcodeptr = ERR15;
5583 goto FAILED;
5584 }
5585
5586 /* Check for (?(R) for recursion. Allow digits after R to specify a
5587 specific group number. */
5588
5589 else if (*name == CHAR_R)
5590 {
5591 recno = 0;
5592 for (i = 1; i < namelen; i++)
5593 {
5594 if ((digitab[name[i]] & ctype_digit) == 0)
5595 {
5596 *errorcodeptr = ERR15;
5597 goto FAILED;
5598 }
5599 recno = recno * 10 + name[i] - CHAR_0;
5600 }
5601 if (recno == 0) recno = RREF_ANY;
5602 code[1+LINK_SIZE] = OP_RREF; /* Change test type */
5603 PUT2(code, 2+LINK_SIZE, recno);
5604 }
5605
5606 /* Similarly, check for the (?(DEFINE) "condition", which is always
5607 false. */
5608
5609 else if (namelen == 6 && strncmp((char *)name, STRING_DEFINE, 6) == 0)
5610 {
5611 code[1+LINK_SIZE] = OP_DEF;
5612 skipbytes = 1;
5613 }
5614
5615 /* Check for the "name" actually being a subpattern number. We are
5616 in the second pass here, so final_bracount is set. */
5617
5618 else if (recno > 0 && recno <= cd->final_bracount)
5619 {
5620 PUT2(code, 2+LINK_SIZE, recno);
5621 }
5622
5623 /* Either an unidentified subpattern, or a reference to (?(0) */
5624
5625 else
5626 {
5627 *errorcodeptr = (recno == 0)? ERR35: ERR15;
5628 goto FAILED;
5629 }
5630 break;
5631
5632
5633 /* ------------------------------------------------------------ */
5634 case CHAR_EQUALS_SIGN: /* Positive lookahead */
5635 bravalue = OP_ASSERT;
5636 cd->assert_depth += 1;
5637 ptr++;
5638 break;
5639
5640
5641 /* ------------------------------------------------------------ */
5642 case CHAR_EXCLAMATION_MARK: /* Negative lookahead */
5643 ptr++;
5644 if (*ptr == CHAR_RIGHT_PARENTHESIS) /* Optimize (?!) */
5645 {
5646 *code++ = OP_FAIL;
5647 previous = NULL;
5648 continue;
5649 }
5650 bravalue = OP_ASSERT_NOT;
5651 cd->assert_depth += 1;
5652 break;
5653
5654
5655 /* ------------------------------------------------------------ */
5656 case CHAR_LESS_THAN_SIGN: /* Lookbehind or named define */
5657 switch (ptr[1])
5658 {
5659 case CHAR_EQUALS_SIGN: /* Positive lookbehind */
5660 bravalue = OP_ASSERTBACK;
5661 cd->assert_depth += 1;
5662 ptr += 2;
5663 break;
5664
5665 case CHAR_EXCLAMATION_MARK: /* Negative lookbehind */
5666 bravalue = OP_ASSERTBACK_NOT;
5667 cd->assert_depth += 1;
5668 ptr += 2;
5669 break;
5670
5671 default: /* Could be name define, else bad */
5672 if ((cd->ctypes[ptr[1]] & ctype_word) != 0) goto DEFINE_NAME;
5673 ptr++; /* Correct offset for error */
5674 *errorcodeptr = ERR24;
5675 goto FAILED;
5676 }
5677 break;
5678
5679
5680 /* ------------------------------------------------------------ */
5681 case CHAR_GREATER_THAN_SIGN: /* One-time brackets */
5682 bravalue = OP_ONCE;
5683 ptr++;
5684 break;
5685
5686
5687 /* ------------------------------------------------------------ */
5688 case CHAR_C: /* Callout - may be followed by digits; */
5689 previous_callout = code; /* Save for later completion */
5690 after_manual_callout = 1; /* Skip one item before completing */
5691 *code++ = OP_CALLOUT;
5692 {
5693 int n = 0;
5694 while ((digitab[*(++ptr)] & ctype_digit) != 0)
5695 n = n * 10 + *ptr - CHAR_0;
5696 if (*ptr != CHAR_RIGHT_PARENTHESIS)
5697 {
5698 *errorcodeptr = ERR39;
5699 goto FAILED;
5700 }
5701 if (n > 255)
5702 {
5703 *errorcodeptr = ERR38;
5704 goto FAILED;
5705 }
5706 *code++ = n;
5707 PUT(code, 0, (int)(ptr - cd->start_pattern + 1)); /* Pattern offset */
5708 PUT(code, LINK_SIZE, 0); /* Default length */
5709 code += 2 * LINK_SIZE;
5710 }
5711 previous = NULL;
5712 continue;
5713
5714
5715 /* ------------------------------------------------------------ */
5716 case CHAR_P: /* Python-style named subpattern handling */
5717 if (*(++ptr) == CHAR_EQUALS_SIGN ||
5718 *ptr == CHAR_GREATER_THAN_SIGN) /* Reference or recursion */
5719 {
5720 is_recurse = *ptr == CHAR_GREATER_THAN_SIGN;
5721 terminator = CHAR_RIGHT_PARENTHESIS;
5722 goto NAMED_REF_OR_RECURSE;
5723 }
5724 else if (*ptr != CHAR_LESS_THAN_SIGN) /* Test for Python-style defn */
5725 {
5726 *errorcodeptr = ERR41;
5727 goto FAILED;
5728 }
5729 /* Fall through to handle (?P< as (?< is handled */
5730
5731
5732 /* ------------------------------------------------------------ */
5733 DEFINE_NAME: /* Come here from (?< handling */
5734 case CHAR_APOSTROPHE:
5735 {
5736 terminator = (*ptr == CHAR_LESS_THAN_SIGN)?
5737 CHAR_GREATER_THAN_SIGN : CHAR_APOSTROPHE;
5738 name = ++ptr;
5739
5740 while ((cd->ctypes[*ptr] & ctype_word) != 0) ptr++;
5741 namelen = (int)(ptr - name);
5742
5743 /* In the pre-compile phase, just do a syntax check. */
5744
5745 if (lengthptr != NULL)
5746 {
5747 if (*ptr != terminator)
5748 {
5749 *errorcodeptr = ERR42;
5750 goto FAILED;
5751 }
5752 if (cd->names_found >= MAX_NAME_COUNT)
5753 {
5754 *errorcodeptr = ERR49;
5755 goto FAILED;
5756 }
5757 if (namelen + 3 > cd->name_entry_size)
5758 {
5759 cd->name_entry_size = namelen + 3;
5760 if (namelen > MAX_NAME_SIZE)
5761 {
5762 *errorcodeptr = ERR48;
5763 goto FAILED;
5764 }
5765 }
5766 }
5767
5768 /* In the real compile, create the entry in the table, maintaining
5769 alphabetical order. Duplicate names for different numbers are
5770 permitted only if PCRE_DUPNAMES is set. Duplicate names for the same
5771 number are always OK. (An existing number can be re-used if (?|
5772 appears in the pattern.) In either event, a duplicate name results in
5773 a duplicate entry in the table, even if the number is the same. This
5774 is because the number of names, and hence the table size, is computed
5775 in the pre-compile, and it affects various numbers and pointers which
5776 would all have to be modified, and the compiled code moved down, if
5777 duplicates with the same number were omitted from the table. This
5778 doesn't seem worth the hassle. However, *different* names for the
5779 same number are not permitted. */
5780
5781 else
5782 {
5783 BOOL dupname = FALSE;
5784 slot = cd->name_table;
5785
5786 for (i = 0; i < cd->names_found; i++)
5787 {
5788 int crc = memcmp(name, slot+2, namelen);
5789 if (crc == 0)
5790 {
5791 if (slot[2+namelen] == 0)
5792 {
5793 if (GET2(slot, 0) != cd->bracount + 1 &&
5794 (options & PCRE_DUPNAMES) == 0)
5795 {
5796 *errorcodeptr = ERR43;
5797 goto FAILED;
5798 }
5799 else dupname = TRUE;
5800 }
5801 else crc = -1; /* Current name is a substring */
5802 }
5803
5804 /* Make space in the table and break the loop for an earlier
5805 name. For a duplicate or later name, carry on. We do this for
5806 duplicates so that in the simple case (when ?(| is not used) they
5807 are in order of their numbers. */
5808
5809 if (crc < 0)
5810 {
5811 memmove(slot + cd->name_entry_size, slot,
5812 (cd->names_found - i) * cd->name_entry_size);
5813 break;
5814 }
5815
5816 /* Continue the loop for a later or duplicate name */
5817
5818 slot += cd->name_entry_size;
5819 }
5820
5821 /* For non-duplicate names, check for a duplicate number before
5822 adding the new name. */
5823
5824 if (!dupname)
5825 {
5826 uschar *cslot = cd->name_table;
5827 for (i = 0; i < cd->names_found; i++)
5828 {
5829 if (cslot != slot)
5830 {
5831 if (GET2(cslot, 0) == cd->bracount + 1)
5832 {
5833 *errorcodeptr = ERR65;
5834 goto FAILED;
5835 }
5836 }
5837 else i--;
5838 cslot += cd->name_entry_size;
5839 }
5840 }
5841
5842 PUT2(slot, 0, cd->bracount + 1);
5843 memcpy(slot + 2, name, namelen);
5844 slot[2+namelen] = 0;
5845 }
5846 }
5847
5848 /* In both pre-compile and compile, count the number of names we've
5849 encountered. */
5850
5851 cd->names_found++;
5852 ptr++; /* Move past > or ' */
5853 goto NUMBERED_GROUP;
5854
5855
5856 /* ------------------------------------------------------------ */
5857 case CHAR_AMPERSAND: /* Perl recursion/subroutine syntax */
5858 terminator = CHAR_RIGHT_PARENTHESIS;
5859 is_recurse = TRUE;
5860 /* Fall through */
5861
5862 /* We come here from the Python syntax above that handles both
5863 references (?P=name) and recursion (?P>name), as well as falling
5864 through from the Perl recursion syntax (?&name). We also come here from
5865 the Perl \k<name> or \k'name' back reference syntax and the \k{name}
5866 .NET syntax, and the Oniguruma \g<...> and \g'...' subroutine syntax. */
5867
5868 NAMED_REF_OR_RECURSE:
5869 name = ++ptr;
5870 while ((cd->ctypes[*ptr] & ctype_word) != 0) ptr++;
5871 namelen = (int)(ptr - name);
5872
5873 /* In the pre-compile phase, do a syntax check. We used to just set
5874 a dummy reference number, because it was not used in the first pass.
5875 However, with the change of recursive back references to be atomic,
5876 we have to look for the number so that this state can be identified, as
5877 otherwise the incorrect length is computed. If it's not a backwards
5878 reference, the dummy number will do. */
5879
5880 if (lengthptr != NULL)
5881 {
5882 const uschar *temp;
5883
5884 if (namelen == 0)
5885 {
5886 *errorcodeptr = ERR62;
5887 goto FAILED;
5888 }
5889 if (*ptr != terminator)
5890 {
5891 *errorcodeptr = ERR42;
5892 goto FAILED;
5893 }
5894 if (namelen > MAX_NAME_SIZE)
5895 {
5896 *errorcodeptr = ERR48;
5897 goto FAILED;
5898 }
5899
5900 /* The name table does not exist in the first pass, so we cannot
5901 do a simple search as in the code below. Instead, we have to scan the
5902 pattern to find the number. It is important that we scan it only as
5903 far as we have got because the syntax of named subpatterns has not
5904 been checked for the rest of the pattern, and find_parens() assumes
5905 correct syntax. In any case, it's a waste of resources to scan
5906 further. We stop the scan at the current point by temporarily
5907 adjusting the value of cd->endpattern. */
5908
5909 temp = cd->end_pattern;
5910 cd->end_pattern = ptr;
5911 recno = find_parens(cd, name, namelen,
5912 (options & PCRE_EXTENDED) != 0, utf8);
5913 cd->end_pattern = temp;
5914 if (recno < 0) recno = 0; /* Forward ref; set dummy number */
5915 }
5916
5917 /* In the real compile, seek the name in the table. We check the name
5918 first, and then check that we have reached the end of the name in the
5919 table. That way, if the name that is longer than any in the table,
5920 the comparison will fail without reading beyond the table entry. */
5921
5922 else
5923 {
5924 slot = cd->name_table;
5925 for (i = 0; i < cd->names_found; i++)
5926 {
5927 if (strncmp((char *)name, (char *)slot+2, namelen) == 0 &&
5928 slot[2+namelen] == 0)
5929 break;
5930 slot += cd->name_entry_size;
5931 }
5932
5933 if (i < cd->names_found) /* Back reference */
5934 {
5935 recno = GET2(slot, 0);
5936 }
5937 else if ((recno = /* Forward back reference */
5938 find_parens(cd, name, namelen,
5939 (options & PCRE_EXTENDED) != 0, utf8)) <= 0)
5940 {
5941 *errorcodeptr = ERR15;
5942 goto FAILED;
5943 }
5944 }
5945
5946 /* In both phases, we can now go to the code than handles numerical
5947 recursion or backreferences. */
5948
5949 if (is_recurse) goto HANDLE_RECURSION;
5950 else goto HANDLE_REFERENCE;
5951
5952
5953 /* ------------------------------------------------------------ */
5954 case CHAR_R: /* Recursion */
5955 ptr++; /* Same as (?0) */
5956 /* Fall through */
5957
5958
5959 /* ------------------------------------------------------------ */
5960 case CHAR_MINUS: case CHAR_PLUS: /* Recursion or subroutine */
5961 case CHAR_0: case CHAR_1: case CHAR_2: case CHAR_3: case CHAR_4:
5962 case CHAR_5: case CHAR_6: case CHAR_7: case CHAR_8: case CHAR_9:
5963 {
5964 const uschar *called;
5965 terminator = CHAR_RIGHT_PARENTHESIS;
5966
5967 /* Come here from the \g<...> and \g'...' code (Oniguruma
5968 compatibility). However, the syntax has been checked to ensure that
5969 the ... are a (signed) number, so that neither ERR63 nor ERR29 will
5970 be called on this path, nor with the jump to OTHER_CHAR_AFTER_QUERY
5971 ever be taken. */
5972
5973 HANDLE_NUMERICAL_RECURSION:
5974
5975 if ((refsign = *ptr) == CHAR_PLUS)
5976 {
5977 ptr++;
5978 if ((digitab[*ptr] & ctype_digit) == 0)
5979 {
5980 *errorcodeptr = ERR63;
5981 goto FAILED;
5982 }
5983 }
5984 else if (refsign == CHAR_MINUS)
5985 {
5986 if ((digitab[ptr[1]] & ctype_digit) == 0)
5987 goto OTHER_CHAR_AFTER_QUERY;
5988 ptr++;
5989 }
5990
5991 recno = 0;
5992 while((digitab[*ptr] & ctype_digit) != 0)
5993 recno = recno * 10 + *ptr++ - CHAR_0;
5994
5995 if (*ptr != terminator)
5996 {
5997 *errorcodeptr = ERR29;
5998 goto FAILED;
5999 }
6000
6001 if (refsign == CHAR_MINUS)
6002 {
6003 if (recno == 0)
6004 {
6005 *errorcodeptr = ERR58;
6006 goto FAILED;
6007 }
6008 recno = cd->bracount - recno + 1;
6009 if (recno <= 0)
6010 {
6011 *errorcodeptr = ERR15;
6012 goto FAILED;
6013 }
6014 }
6015 else if (refsign == CHAR_PLUS)
6016 {
6017 if (recno == 0)
6018 {
6019 *errorcodeptr = ERR58;
6020 goto FAILED;
6021 }
6022 recno += cd->bracount;
6023 }
6024
6025 /* Come here from code above that handles a named recursion */
6026
6027 HANDLE_RECURSION:
6028
6029 previous = code;
6030 called = cd->start_code;
6031
6032 /* When we are actually compiling, find the bracket that is being
6033 referenced. Temporarily end the regex in case it doesn't exist before
6034 this point. If we end up with a forward reference, first check that
6035 the bracket does occur later so we can give the error (and position)
6036 now. Then remember this forward reference in the workspace so it can
6037 be filled in at the end. */
6038
6039 if (lengthptr == NULL)
6040 {
6041 *code = OP_END;
6042 if (recno != 0)
6043 called = _pcre_find_bracket(cd->start_code, utf8, recno);
6044
6045 /* Forward reference */
6046
6047 if (called == NULL)
6048 {
6049 if (find_parens(cd, NULL, recno,
6050 (options & PCRE_EXTENDED) != 0, utf8) < 0)
6051 {
6052 *errorcodeptr = ERR15;
6053 goto FAILED;
6054 }
6055
6056 /* Fudge the value of "called" so that when it is inserted as an
6057 offset below, what it actually inserted is the reference number
6058 of the group. Then remember the forward reference. */
6059
6060 called = cd->start_code + recno;
6061 if (cd->hwm >= cd->start_workspace + cd->workspace_size -
6062 WORK_SIZE_SAFETY_MARGIN)
6063 {
6064 *errorcodeptr = expand_workspace(cd);
6065 if (*errorcodeptr != 0) goto FAILED;
6066 }
6067 PUTINC(cd->hwm, 0, (int)(code + 1 - cd->start_code));
6068 }
6069
6070 /* If not a forward reference, and the subpattern is still open,
6071 this is a recursive call. We check to see if this is a left
6072 recursion that could loop for ever, and diagnose that case. We
6073 must not, however, do this check if we are in a conditional
6074 subpattern because the condition might be testing for recursion in
6075 a pattern such as /(?(R)a+|(?R)b)/, which is perfectly valid.
6076 Forever loops are also detected at runtime, so those that occur in
6077 conditional subpatterns will be picked up then. */
6078
6079 else if (GET(called, 1) == 0 && cond_depth <= 0 &&
6080 could_be_empty(called, code, bcptr, utf8, cd))
6081 {
6082 *errorcodeptr = ERR40;
6083 goto FAILED;
6084 }
6085 }
6086
6087 /* Insert the recursion/subroutine item. It does not have a set first
6088 byte (relevant if it is repeated, because it will then be wrapped
6089 with ONCE brackets). */
6090
6091 *code = OP_RECURSE;
6092 PUT(code, 1, (int)(called - cd->start_code));
6093 code += 1 + LINK_SIZE;
6094 groupsetfirstbyte = FALSE;
6095 }
6096
6097 /* Can't determine a first byte now */
6098
6099 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
6100 continue;
6101
6102
6103 /* ------------------------------------------------------------ */
6104 default: /* Other characters: check option setting */
6105 OTHER_CHAR_AFTER_QUERY:
6106 set = unset = 0;
6107 optset = &set;
6108
6109 while (*ptr != CHAR_RIGHT_PARENTHESIS && *ptr != CHAR_COLON)
6110 {
6111 switch (*ptr++)
6112 {
6113 case CHAR_MINUS: optset = &unset; break;
6114
6115 case CHAR_J: /* Record that it changed in the external options */
6116 *optset |= PCRE_DUPNAMES;
6117 cd->external_flags |= PCRE_JCHANGED;
6118 break;
6119
6120 case CHAR_i: *optset |= PCRE_CASELESS; break;
6121 case CHAR_m: *optset |= PCRE_MULTILINE; break;
6122 case CHAR_s: *optset |= PCRE_DOTALL; break;
6123 case CHAR_x: *optset |= PCRE_EXTENDED; break;
6124 case CHAR_U: *optset |= PCRE_UNGREEDY; break;
6125 case CHAR_X: *optset |= PCRE_EXTRA; break;
6126
6127 default: *errorcodeptr = ERR12;
6128 ptr--; /* Correct the offset */
6129 goto FAILED;
6130 }
6131 }
6132
6133 /* Set up the changed option bits, but don't change anything yet. */
6134
6135 newoptions = (options | set) & (~unset);
6136
6137 /* If the options ended with ')' this is not the start of a nested
6138 group with option changes, so the options change at this level. If this
6139 item is right at the start of the pattern, the options can be
6140 abstracted and made external in the pre-compile phase, and ignored in
6141 the compile phase. This can be helpful when matching -- for instance in
6142 caseless checking of required bytes.
6143
6144 If the code pointer is not (cd->start_code + 1 + LINK_SIZE), we are
6145 definitely *not* at the start of the pattern because something has been
6146 compiled. In the pre-compile phase, however, the code pointer can have
6147 that value after the start, because it gets reset as code is discarded
6148 during the pre-compile. However, this can happen only at top level - if
6149 we are within parentheses, the starting BRA will still be present. At
6150 any parenthesis level, the length value can be used to test if anything
6151 has been compiled at that level. Thus, a test for both these conditions
6152 is necessary to ensure we correctly detect the start of the pattern in
6153 both phases.
6154
6155 If we are not at the pattern start, reset the greedy defaults and the
6156 case value for firstbyte and reqbyte. */
6157
6158 if (*ptr == CHAR_RIGHT_PARENTHESIS)
6159 {
6160 if (code == cd->start_code + 1 + LINK_SIZE &&
6161 (lengthptr == NULL || *lengthptr == 2 + 2*LINK_SIZE))
6162 {
6163 cd->external_options = newoptions;
6164 }
6165 else
6166 {
6167 greedy_default = ((newoptions & PCRE_UNGREEDY) != 0);
6168 greedy_non_default = greedy_default ^ 1;
6169 req_caseopt = ((newoptions & PCRE_CASELESS) != 0)? REQ_CASELESS : 0;
6170 }
6171
6172 /* Change options at this level, and pass them back for use
6173 in subsequent branches. */
6174
6175 *optionsptr = options = newoptions;
6176 previous = NULL; /* This item can't be repeated */
6177 continue; /* It is complete */
6178 }
6179
6180 /* If the options ended with ':' we are heading into a nested group
6181 with possible change of options. Such groups are non-capturing and are
6182 not assertions of any kind. All we need to do is skip over the ':';
6183 the newoptions value is handled below. */
6184
6185 bravalue = OP_BRA;
6186 ptr++;
6187 } /* End of switch for character following (? */
6188 } /* End of (? handling */
6189
6190 /* Opening parenthesis not followed by '*' or '?'. If PCRE_NO_AUTO_CAPTURE
6191 is set, all unadorned brackets become non-capturing and behave like (?:...)
6192 brackets. */
6193
6194 else if ((options & PCRE_NO_AUTO_CAPTURE) != 0)
6195 {
6196 bravalue = OP_BRA;
6197 }
6198
6199 /* Else we have a capturing group. */
6200
6201 else
6202 {
6203 NUMBERED_GROUP:
6204 cd->bracount += 1;
6205 PUT2(code, 1+LINK_SIZE, cd->bracount);
6206 skipbytes = 2;
6207 }
6208
6209 /* Process nested bracketed regex. Assertions used not to be repeatable,
6210 but this was changed for Perl compatibility, so all kinds can now be
6211 repeated. We copy code into a non-register variable (tempcode) in order to
6212 be able to pass its address because some compilers complain otherwise. */
6213
6214 previous = code; /* For handling repetition */
6215 *code = bravalue;
6216 tempcode = code;
6217 tempreqvary = cd->req_varyopt; /* Save value before bracket */
6218 tempbracount = cd->bracount; /* Save value before bracket */
6219 length_prevgroup = 0; /* Initialize for pre-compile phase */
6220
6221 if (!compile_regex(
6222 newoptions, /* The complete new option state */
6223 &tempcode, /* Where to put code (updated) */
6224 &ptr, /* Input pointer (updated) */
6225 errorcodeptr, /* Where to put an error message */
6226 (bravalue == OP_ASSERTBACK ||
6227 bravalue == OP_ASSERTBACK_NOT), /* TRUE if back assert */
6228 reset_bracount, /* True if (?| group */
6229 skipbytes, /* Skip over bracket number */
6230 cond_depth +
6231 ((bravalue == OP_COND)?1:0), /* Depth of condition subpatterns */
6232 &subfirstbyte, /* For possible first char */
6233 &subreqbyte, /* For possible last char */
6234 bcptr, /* Current branch chain */
6235 cd, /* Tables block */
6236 (lengthptr == NULL)? NULL : /* Actual compile phase */
6237 &length_prevgroup /* Pre-compile phase */
6238 ))
6239 goto FAILED;
6240
6241 /* If this was an atomic group and there are no capturing groups within it,
6242 generate OP_ONCE_NC instead of OP_ONCE. */
6243
6244 if (bravalue == OP_ONCE && cd->bracount <= tempbracount)
6245 *code = OP_ONCE_NC;
6246
6247 if (bravalue >= OP_ASSERT && bravalue <= OP_ASSERTBACK_NOT)
6248 cd->assert_depth -= 1;
6249
6250 /* At the end of compiling, code is still pointing to the start of the
6251 group, while tempcode has been updated to point past the end of the group.
6252 The pattern pointer (ptr) is on the bracket.
6253
6254 If this is a conditional bracket, check that there are no more than
6255 two branches in the group, or just one if it's a DEFINE group. We do this
6256 in the real compile phase, not in the pre-pass, where the whole group may
6257 not be available. */
6258
6259 if (bravalue == OP_COND && lengthptr == NULL)
6260 {
6261 uschar *tc = code;
6262 int condcount = 0;
6263
6264 do {
6265 condcount++;
6266 tc += GET(tc,1);
6267 }
6268 while (*tc != OP_KET);
6269
6270 /* A DEFINE group is never obeyed inline (the "condition" is always
6271 false). It must have only one branch. */
6272
6273 if (code[LINK_SIZE+1] == OP_DEF)
6274 {
6275 if (condcount > 1)
6276 {
6277 *errorcodeptr = ERR54;
6278 goto FAILED;
6279 }
6280 bravalue = OP_DEF; /* Just a flag to suppress char handling below */
6281 }
6282
6283 /* A "normal" conditional group. If there is just one branch, we must not
6284 make use of its firstbyte or reqbyte, because this is equivalent to an
6285 empty second branch. */
6286
6287 else
6288 {
6289 if (condcount > 2)
6290 {
6291 *errorcodeptr = ERR27;
6292 goto FAILED;
6293 }
6294 if (condcount == 1) subfirstbyte = subreqbyte = REQ_NONE;
6295 }
6296 }
6297
6298 /* Error if hit end of pattern */
6299
6300 if (*ptr != CHAR_RIGHT_PARENTHESIS)
6301 {
6302 *errorcodeptr = ERR14;
6303 goto FAILED;
6304 }
6305
6306 /* In the pre-compile phase, update the length by the length of the group,
6307 less the brackets at either end. Then reduce the compiled code to just a
6308 set of non-capturing brackets so that it doesn't use much memory if it is
6309 duplicated by a quantifier.*/
6310
6311 if (lengthptr != NULL)
6312 {
6313 if (OFLOW_MAX - *lengthptr < length_prevgroup - 2 - 2*LINK_SIZE)
6314 {
6315 *errorcodeptr = ERR20;
6316 goto FAILED;
6317 }
6318 *lengthptr += length_prevgroup - 2 - 2*LINK_SIZE;
6319 code++; /* This already contains bravalue */
6320 PUTINC(code, 0, 1 + LINK_SIZE);
6321 *code++ = OP_KET;
6322 PUTINC(code, 0, 1 + LINK_SIZE);
6323 break; /* No need to waste time with special character handling */
6324 }
6325
6326 /* Otherwise update the main code pointer to the end of the group. */
6327
6328 code = tempcode;
6329
6330 /* For a DEFINE group, required and first character settings are not
6331 relevant. */
6332
6333 if (bravalue == OP_DEF) break;
6334
6335 /* Handle updating of the required and first characters for other types of
6336 group. Update for normal brackets of all kinds, and conditions with two
6337 branches (see code above). If the bracket is followed by a quantifier with
6338 zero repeat, we have to back off. Hence the definition of zeroreqbyte and
6339 zerofirstbyte outside the main loop so that they can be accessed for the
6340 back off. */
6341
6342 zeroreqbyte = reqbyte;
6343 zerofirstbyte = firstbyte;
6344 groupsetfirstbyte = FALSE;
6345
6346 if (bravalue >= OP_ONCE)
6347 {
6348 /* If we have not yet set a firstbyte in this branch, take it from the
6349 subpattern, remembering that it was set here so that a repeat of more
6350 than one can replicate it as reqbyte if necessary. If the subpattern has
6351 no firstbyte, set "none" for the whole branch. In both cases, a zero
6352 repeat forces firstbyte to "none". */
6353
6354 if (firstbyte == REQ_UNSET)
6355 {
6356 if (subfirstbyte >= 0)
6357 {
6358 firstbyte = subfirstbyte;
6359 groupsetfirstbyte = TRUE;
6360 }
6361 else firstbyte = REQ_NONE;
6362 zerofirstbyte = REQ_NONE;
6363 }
6364
6365 /* If firstbyte was previously set, convert the subpattern's firstbyte
6366 into reqbyte if there wasn't one, using the vary flag that was in
6367 existence beforehand. */
6368
6369 else if (subfirstbyte >= 0 && subreqbyte < 0)
6370 subreqbyte = subfirstbyte | tempreqvary;
6371
6372 /* If the subpattern set a required byte (or set a first byte that isn't
6373 really the first byte - see above), set it. */
6374
6375 if (subreqbyte >= 0) reqbyte = subreqbyte;
6376 }
6377
6378 /* For a forward assertion, we take the reqbyte, if set. This can be
6379 helpful if the pattern that follows the assertion doesn't set a different
6380 char. For example, it's useful for /(?=abcde).+/. We can't set firstbyte
6381 for an assertion, however because it leads to incorrect effect for patterns
6382 such as /(?=a)a.+/ when the "real" "a" would then become a reqbyte instead
6383 of a firstbyte. This is overcome by a scan at the end if there's no
6384 firstbyte, looking for an asserted first char. */
6385
6386 else if (bravalue == OP_ASSERT && subreqbyte >= 0) reqbyte = subreqbyte;
6387 break; /* End of processing '(' */
6388
6389
6390 /* ===================================================================*/
6391 /* Handle metasequences introduced by \. For ones like \d, the ESC_ values
6392 are arranged to be the negation of the corresponding OP_values in the
6393 default case when PCRE_UCP is not set. For the back references, the values
6394 are ESC_REF plus the reference number. Only back references and those types
6395 that consume a character may be repeated. We can test for values between
6396 ESC_b and ESC_Z for the latter; this may have to change if any new ones are
6397 ever created. */
6398
6399 case CHAR_BACKSLASH:
6400 tempptr = ptr;
6401 c = check_escape(&ptr, errorcodeptr, cd->bracount, options, FALSE);
6402 if (*errorcodeptr != 0) goto FAILED;
6403
6404 if (c < 0)
6405 {
6406 if (-c == ESC_Q) /* Handle start of quoted string */
6407 {
6408 if (ptr[1] == CHAR_BACKSLASH && ptr[2] == CHAR_E)
6409 ptr += 2; /* avoid empty string */
6410 else inescq = TRUE;
6411 continue;
6412 }
6413
6414 if (-c == ESC_E) continue; /* Perl ignores an orphan \E */
6415
6416 /* For metasequences that actually match a character, we disable the
6417 setting of a first character if it hasn't already been set. */
6418
6419 if (firstbyte == REQ_UNSET && -c > ESC_b && -c < ESC_Z)
6420 firstbyte = REQ_NONE;
6421
6422 /* Set values to reset to if this is followed by a zero repeat. */
6423
6424 zerofirstbyte = firstbyte;
6425 zeroreqbyte = reqbyte;
6426
6427 /* \g<name> or \g'name' is a subroutine call by name and \g<n> or \g'n'
6428 is a subroutine call by number (Oniguruma syntax). In fact, the value
6429 -ESC_g is returned only for these cases. So we don't need to check for <
6430 or ' if the value is -ESC_g. For the Perl syntax \g{n} the value is
6431 -ESC_REF+n, and for the Perl syntax \g{name} the result is -ESC_k (as
6432 that is a synonym for a named back reference). */
6433
6434 if (-c == ESC_g)
6435 {
6436 const uschar *p;
6437 save_hwm = cd->hwm; /* Normally this is set when '(' is read */
6438 terminator = (*(++ptr) == CHAR_LESS_THAN_SIGN)?
6439 CHAR_GREATER_THAN_SIGN : CHAR_APOSTROPHE;
6440
6441 /* These two statements stop the compiler for warning about possibly
6442 unset variables caused by the jump to HANDLE_NUMERICAL_RECURSION. In
6443 fact, because we actually check for a number below, the paths that
6444 would actually be in error are never taken. */
6445
6446 skipbytes = 0;
6447 reset_bracount = FALSE;
6448
6449 /* Test for a name */
6450
6451 if (ptr[1] != CHAR_PLUS && ptr[1] != CHAR_MINUS)
6452 {
6453 BOOL isnumber = TRUE;
6454 for (p = ptr + 1; *p != 0 && *p != terminator; p++)
6455 {
6456 if ((cd->ctypes[*p] & ctype_digit) == 0) isnumber = FALSE;
6457 if ((cd->ctypes[*p] & ctype_word) == 0) break;
6458 }
6459 if (*p != terminator)
6460 {
6461 *errorcodeptr = ERR57;
6462 break;
6463 }
6464 if (isnumber)
6465 {
6466 ptr++;
6467 goto HANDLE_NUMERICAL_RECURSION;
6468 }
6469 is_recurse = TRUE;
6470 goto NAMED_REF_OR_RECURSE;
6471 }
6472
6473 /* Test a signed number in angle brackets or quotes. */
6474
6475 p = ptr + 2;
6476 while ((digitab[*p] & ctype_digit) != 0) p++;
6477 if (*p != terminator)
6478 {
6479 *errorcodeptr = ERR57;
6480 break;
6481 }
6482 ptr++;
6483 goto HANDLE_NUMERICAL_RECURSION;
6484 }
6485
6486 /* \k<name> or \k'name' is a back reference by name (Perl syntax).
6487 We also support \k{name} (.NET syntax). */
6488
6489 if (-c == ESC_k)
6490 {
6491 if ((ptr[1] != CHAR_LESS_THAN_SIGN &&
6492 ptr[1] != CHAR_APOSTROPHE && ptr[1] != CHAR_LEFT_CURLY_BRACKET))
6493 {
6494 *errorcodeptr = ERR69;
6495 break;
6496 }
6497 is_recurse = FALSE;
6498 terminator = (*(++ptr) == CHAR_LESS_THAN_SIGN)?
6499 CHAR_GREATER_THAN_SIGN : (*ptr == CHAR_APOSTROPHE)?
6500 CHAR_APOSTROPHE : CHAR_RIGHT_CURLY_BRACKET;
6501 goto NAMED_REF_OR_RECURSE;
6502 }
6503
6504 /* Back references are handled specially; must disable firstbyte if
6505 not set to cope with cases like (?=(\w+))\1: which would otherwise set
6506 ':' later. */
6507
6508 if (-c >= ESC_REF)
6509 {
6510 open_capitem *oc;
6511 recno = -c - ESC_REF;
6512
6513 HANDLE_REFERENCE: /* Come here from named backref handling */
6514 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
6515 previous = code;
6516 *code++ = ((options & PCRE_CASELESS) != 0)? OP_REFI : OP_REF;
6517 PUT2INC(code, 0, recno);
6518 cd->backref_map |= (recno < 32)? (1 << recno) : 1;
6519 if (recno > cd->top_backref) cd->top_backref = recno;
6520
6521 /* Check to see if this back reference is recursive, that it, it
6522 is inside the group that it references. A flag is set so that the
6523 group can be made atomic. */
6524
6525 for (oc = cd->open_caps; oc != NULL; oc = oc->next)
6526 {
6527 if (oc->number == recno)
6528 {
6529 oc->flag = TRUE;
6530 break;
6531 }
6532 }
6533 }
6534
6535 /* So are Unicode property matches, if supported. */
6536
6537 #ifdef SUPPORT_UCP
6538 else if (-c == ESC_P || -c == ESC_p)
6539 {
6540 BOOL negated;
6541 int pdata;
6542 int ptype = get_ucp(&ptr, &negated, &pdata, errorcodeptr);
6543 if (ptype < 0) goto FAILED;
6544 previous = code;
6545 *code++ = ((-c == ESC_p) != negated)? OP_PROP : OP_NOTPROP;
6546 *code++ = ptype;
6547 *code++ = pdata;
6548 }
6549 #else
6550
6551 /* If Unicode properties are not supported, \X, \P, and \p are not
6552 allowed. */
6553
6554 else if (-c == ESC_X || -c == ESC_P || -c == ESC_p)
6555 {
6556 *errorcodeptr = ERR45;
6557 goto FAILED;
6558 }
6559 #endif
6560
6561 /* For the rest (including \X when Unicode properties are supported), we
6562 can obtain the OP value by negating the escape value in the default
6563 situation when PCRE_UCP is not set. When it *is* set, we substitute
6564 Unicode property tests. */
6565
6566 else
6567 {
6568 #ifdef SUPPORT_UCP
6569 if (-c >= ESC_DU && -c <= ESC_wu)
6570 {
6571 nestptr = ptr + 1; /* Where to resume */
6572 ptr = substitutes[-c - ESC_DU] - 1; /* Just before substitute */
6573 }
6574 else
6575 #endif
6576 /* In non-UTF-8 mode, we turn \C into OP_ALLANY instead of OP_ANYBYTE
6577 so that it works in DFA mode and in lookbehinds. */
6578
6579 {
6580 previous = (-c > ESC_b && -c < ESC_Z)? code : NULL;
6581 *code++ = (!utf8 && c == -ESC_C)? OP_ALLANY : -c;
6582 }
6583 }
6584 continue;
6585 }
6586
6587 /* We have a data character whose value is in c. In UTF-8 mode it may have
6588 a value > 127. We set its representation in the length/buffer, and then
6589 handle it as a data character. */
6590
6591 #ifdef SUPPORT_UTF8
6592 if (utf8 && c > 127)
6593 mclength = _pcre_ord2utf8(c, mcbuffer);
6594 else
6595 #endif
6596
6597 {
6598 mcbuffer[0] = c;
6599 mclength = 1;
6600 }
6601 goto ONE_CHAR;
6602
6603
6604 /* ===================================================================*/
6605 /* Handle a literal character. It is guaranteed not to be whitespace or #
6606 when the extended flag is set. If we are in UTF-8 mode, it may be a
6607 multi-byte literal character. */
6608
6609 default:
6610 NORMAL_CHAR:
6611 mclength = 1;
6612 mcbuffer[0] = c;
6613
6614 #ifdef SUPPORT_UTF8
6615 if (utf8 && c >= 0xc0)
6616 {
6617 while ((ptr[1] & 0xc0) == 0x80)
6618 mcbuffer[mclength++] = *(++ptr);
6619 }
6620 #endif
6621
6622 /* At this point we have the character's bytes in mcbuffer, and the length
6623 in mclength. When not in UTF-8 mode, the length is always 1. */
6624
6625 ONE_CHAR:
6626 previous = code;
6627 *code++ = ((options & PCRE_CASELESS) != 0)? OP_CHARI : OP_CHAR;
6628 for (c = 0; c < mclength; c++) *code++ = mcbuffer[c];
6629
6630 /* Remember if \r or \n were seen */
6631
6632 if (mcbuffer[0] == CHAR_CR || mcbuffer[0] == CHAR_NL)
6633 cd->external_flags |= PCRE_HASCRORLF;
6634
6635 /* Set the first and required bytes appropriately. If no previous first
6636 byte, set it from this character, but revert to none on a zero repeat.
6637 Otherwise, leave the firstbyte value alone, and don't change it on a zero
6638 repeat. */
6639
6640 if (firstbyte == REQ_UNSET)
6641 {
6642 zerofirstbyte = REQ_NONE;
6643 zeroreqbyte = reqbyte;
6644
6645 /* If the character is more than one byte long, we can set firstbyte