/[pcre]/code/trunk/pcre_compile.c
ViewVC logotype

Contents of /code/trunk/pcre_compile.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 371 - (show annotations) (download)
Mon Aug 25 18:28:05 2008 UTC (5 years, 11 months ago) by ph10
File MIME type: text/plain
File size: 202889 byte(s)
Source tidies for 7.8-RC1 

1 /*************************************************
2 * Perl-Compatible Regular Expressions *
3 *************************************************/
4
5 /* PCRE is a library of functions to support regular expressions whose syntax
6 and semantics are as close as possible to those of the Perl 5 language.
7
8 Written by Philip Hazel
9 Copyright (c) 1997-2008 University of Cambridge
10
11 -----------------------------------------------------------------------------
12 Redistribution and use in source and binary forms, with or without
13 modification, are permitted provided that the following conditions are met:
14
15 * Redistributions of source code must retain the above copyright notice,
16 this list of conditions and the following disclaimer.
17
18 * Redistributions in binary form must reproduce the above copyright
19 notice, this list of conditions and the following disclaimer in the
20 documentation and/or other materials provided with the distribution.
21
22 * Neither the name of the University of Cambridge nor the names of its
23 contributors may be used to endorse or promote products derived from
24 this software without specific prior written permission.
25
26 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
27 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
30 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 POSSIBILITY OF SUCH DAMAGE.
37 -----------------------------------------------------------------------------
38 */
39
40
41 /* This module contains the external function pcre_compile(), along with
42 supporting internal functions that are not used by other modules. */
43
44
45 #ifdef HAVE_CONFIG_H
46 #include "config.h"
47 #endif
48
49 #define NLBLOCK cd /* Block containing newline information */
50 #define PSSTART start_pattern /* Field containing processed string start */
51 #define PSEND end_pattern /* Field containing processed string end */
52
53 #include "pcre_internal.h"
54
55
56 /* When DEBUG is defined, we need the pcre_printint() function, which is also
57 used by pcretest. DEBUG is not defined when building a production library. */
58
59 #ifdef DEBUG
60 #include "pcre_printint.src"
61 #endif
62
63
64 /* Macro for setting individual bits in class bitmaps. */
65
66 #define SETBIT(a,b) a[b/8] |= (1 << (b%8))
67
68 /* Maximum length value to check against when making sure that the integer that
69 holds the compiled pattern length does not overflow. We make it a bit less than
70 INT_MAX to allow for adding in group terminating bytes, so that we don't have
71 to check them every time. */
72
73 #define OFLOW_MAX (INT_MAX - 20)
74
75
76 /*************************************************
77 * Code parameters and static tables *
78 *************************************************/
79
80 /* This value specifies the size of stack workspace that is used during the
81 first pre-compile phase that determines how much memory is required. The regex
82 is partly compiled into this space, but the compiled parts are discarded as
83 soon as they can be, so that hopefully there will never be an overrun. The code
84 does, however, check for an overrun. The largest amount I've seen used is 218,
85 so this number is very generous.
86
87 The same workspace is used during the second, actual compile phase for
88 remembering forward references to groups so that they can be filled in at the
89 end. Each entry in this list occupies LINK_SIZE bytes, so even when LINK_SIZE
90 is 4 there is plenty of room. */
91
92 #define COMPILE_WORK_SIZE (4096)
93
94
95 /* Table for handling escaped characters in the range '0'-'z'. Positive returns
96 are simple data values; negative values are for special things like \d and so
97 on. Zero means further processing is needed (for things like \x), or the escape
98 is invalid. */
99
100 #ifndef EBCDIC /* This is the "normal" table for ASCII systems */
101 static const short int escapes[] = {
102 0, 0, 0, 0, 0, 0, 0, 0, /* 0 - 7 */
103 0, 0, ':', ';', '<', '=', '>', '?', /* 8 - ? */
104 '@', -ESC_A, -ESC_B, -ESC_C, -ESC_D, -ESC_E, 0, -ESC_G, /* @ - G */
105 -ESC_H, 0, 0, -ESC_K, 0, 0, 0, 0, /* H - O */
106 -ESC_P, -ESC_Q, -ESC_R, -ESC_S, 0, 0, -ESC_V, -ESC_W, /* P - W */
107 -ESC_X, 0, -ESC_Z, '[', '\\', ']', '^', '_', /* X - _ */
108 '`', 7, -ESC_b, 0, -ESC_d, ESC_e, ESC_f, 0, /* ` - g */
109 -ESC_h, 0, 0, -ESC_k, 0, 0, ESC_n, 0, /* h - o */
110 -ESC_p, 0, ESC_r, -ESC_s, ESC_tee, 0, -ESC_v, -ESC_w, /* p - w */
111 0, 0, -ESC_z /* x - z */
112 };
113
114 #else /* This is the "abnormal" table for EBCDIC systems */
115 static const short int escapes[] = {
116 /* 48 */ 0, 0, 0, '.', '<', '(', '+', '|',
117 /* 50 */ '&', 0, 0, 0, 0, 0, 0, 0,
118 /* 58 */ 0, 0, '!', '$', '*', ')', ';', '~',
119 /* 60 */ '-', '/', 0, 0, 0, 0, 0, 0,
120 /* 68 */ 0, 0, '|', ',', '%', '_', '>', '?',
121 /* 70 */ 0, 0, 0, 0, 0, 0, 0, 0,
122 /* 78 */ 0, '`', ':', '#', '@', '\'', '=', '"',
123 /* 80 */ 0, 7, -ESC_b, 0, -ESC_d, ESC_e, ESC_f, 0,
124 /* 88 */-ESC_h, 0, 0, '{', 0, 0, 0, 0,
125 /* 90 */ 0, 0, -ESC_k, 'l', 0, ESC_n, 0, -ESC_p,
126 /* 98 */ 0, ESC_r, 0, '}', 0, 0, 0, 0,
127 /* A0 */ 0, '~', -ESC_s, ESC_tee, 0,-ESC_v, -ESC_w, 0,
128 /* A8 */ 0,-ESC_z, 0, 0, 0, '[', 0, 0,
129 /* B0 */ 0, 0, 0, 0, 0, 0, 0, 0,
130 /* B8 */ 0, 0, 0, 0, 0, ']', '=', '-',
131 /* C0 */ '{',-ESC_A, -ESC_B, -ESC_C, -ESC_D,-ESC_E, 0, -ESC_G,
132 /* C8 */-ESC_H, 0, 0, 0, 0, 0, 0, 0,
133 /* D0 */ '}', 0, -ESC_K, 0, 0, 0, 0, -ESC_P,
134 /* D8 */-ESC_Q,-ESC_R, 0, 0, 0, 0, 0, 0,
135 /* E0 */ '\\', 0, -ESC_S, 0, 0,-ESC_V, -ESC_W, -ESC_X,
136 /* E8 */ 0,-ESC_Z, 0, 0, 0, 0, 0, 0,
137 /* F0 */ 0, 0, 0, 0, 0, 0, 0, 0,
138 /* F8 */ 0, 0, 0, 0, 0, 0, 0, 0
139 };
140 #endif
141
142
143 /* Table of special "verbs" like (*PRUNE). This is a short table, so it is
144 searched linearly. Put all the names into a single string, in order to reduce
145 the number of relocations when a shared library is dynamically linked. */
146
147 typedef struct verbitem {
148 int len;
149 int op;
150 } verbitem;
151
152 static const char verbnames[] =
153 "ACCEPT\0"
154 "COMMIT\0"
155 "F\0"
156 "FAIL\0"
157 "PRUNE\0"
158 "SKIP\0"
159 "THEN";
160
161 static const verbitem verbs[] = {
162 { 6, OP_ACCEPT },
163 { 6, OP_COMMIT },
164 { 1, OP_FAIL },
165 { 4, OP_FAIL },
166 { 5, OP_PRUNE },
167 { 4, OP_SKIP },
168 { 4, OP_THEN }
169 };
170
171 static const int verbcount = sizeof(verbs)/sizeof(verbitem);
172
173
174 /* Tables of names of POSIX character classes and their lengths. The names are
175 now all in a single string, to reduce the number of relocations when a shared
176 library is dynamically loaded. The list of lengths is terminated by a zero
177 length entry. The first three must be alpha, lower, upper, as this is assumed
178 for handling case independence. */
179
180 static const char posix_names[] =
181 "alpha\0" "lower\0" "upper\0" "alnum\0" "ascii\0" "blank\0"
182 "cntrl\0" "digit\0" "graph\0" "print\0" "punct\0" "space\0"
183 "word\0" "xdigit";
184
185 static const uschar posix_name_lengths[] = {
186 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 6, 0 };
187
188 /* Table of class bit maps for each POSIX class. Each class is formed from a
189 base map, with an optional addition or removal of another map. Then, for some
190 classes, there is some additional tweaking: for [:blank:] the vertical space
191 characters are removed, and for [:alpha:] and [:alnum:] the underscore
192 character is removed. The triples in the table consist of the base map offset,
193 second map offset or -1 if no second map, and a non-negative value for map
194 addition or a negative value for map subtraction (if there are two maps). The
195 absolute value of the third field has these meanings: 0 => no tweaking, 1 =>
196 remove vertical space characters, 2 => remove underscore. */
197
198 static const int posix_class_maps[] = {
199 cbit_word, cbit_digit, -2, /* alpha */
200 cbit_lower, -1, 0, /* lower */
201 cbit_upper, -1, 0, /* upper */
202 cbit_word, -1, 2, /* alnum - word without underscore */
203 cbit_print, cbit_cntrl, 0, /* ascii */
204 cbit_space, -1, 1, /* blank - a GNU extension */
205 cbit_cntrl, -1, 0, /* cntrl */
206 cbit_digit, -1, 0, /* digit */
207 cbit_graph, -1, 0, /* graph */
208 cbit_print, -1, 0, /* print */
209 cbit_punct, -1, 0, /* punct */
210 cbit_space, -1, 0, /* space */
211 cbit_word, -1, 0, /* word - a Perl extension */
212 cbit_xdigit,-1, 0 /* xdigit */
213 };
214
215
216 #define STRING(a) # a
217 #define XSTRING(s) STRING(s)
218
219 /* The texts of compile-time error messages. These are "char *" because they
220 are passed to the outside world. Do not ever re-use any error number, because
221 they are documented. Always add a new error instead. Messages marked DEAD below
222 are no longer used. This used to be a table of strings, but in order to reduce
223 the number of relocations needed when a shared library is loaded dynamically,
224 it is now one long string. We cannot use a table of offsets, because the
225 lengths of inserts such as XSTRING(MAX_NAME_SIZE) are not known. Instead, we
226 simply count through to the one we want - this isn't a performance issue
227 because these strings are used only when there is a compilation error. */
228
229 static const char error_texts[] =
230 "no error\0"
231 "\\ at end of pattern\0"
232 "\\c at end of pattern\0"
233 "unrecognized character follows \\\0"
234 "numbers out of order in {} quantifier\0"
235 /* 5 */
236 "number too big in {} quantifier\0"
237 "missing terminating ] for character class\0"
238 "invalid escape sequence in character class\0"
239 "range out of order in character class\0"
240 "nothing to repeat\0"
241 /* 10 */
242 "operand of unlimited repeat could match the empty string\0" /** DEAD **/
243 "internal error: unexpected repeat\0"
244 "unrecognized character after (? or (?-\0"
245 "POSIX named classes are supported only within a class\0"
246 "missing )\0"
247 /* 15 */
248 "reference to non-existent subpattern\0"
249 "erroffset passed as NULL\0"
250 "unknown option bit(s) set\0"
251 "missing ) after comment\0"
252 "parentheses nested too deeply\0" /** DEAD **/
253 /* 20 */
254 "regular expression is too large\0"
255 "failed to get memory\0"
256 "unmatched parentheses\0"
257 "internal error: code overflow\0"
258 "unrecognized character after (?<\0"
259 /* 25 */
260 "lookbehind assertion is not fixed length\0"
261 "malformed number or name after (?(\0"
262 "conditional group contains more than two branches\0"
263 "assertion expected after (?(\0"
264 "(?R or (?[+-]digits must be followed by )\0"
265 /* 30 */
266 "unknown POSIX class name\0"
267 "POSIX collating elements are not supported\0"
268 "this version of PCRE is not compiled with PCRE_UTF8 support\0"
269 "spare error\0" /** DEAD **/
270 "character value in \\x{...} sequence is too large\0"
271 /* 35 */
272 "invalid condition (?(0)\0"
273 "\\C not allowed in lookbehind assertion\0"
274 "PCRE does not support \\L, \\l, \\N, \\U, or \\u\0"
275 "number after (?C is > 255\0"
276 "closing ) for (?C expected\0"
277 /* 40 */
278 "recursive call could loop indefinitely\0"
279 "unrecognized character after (?P\0"
280 "syntax error in subpattern name (missing terminator)\0"
281 "two named subpatterns have the same name\0"
282 "invalid UTF-8 string\0"
283 /* 45 */
284 "support for \\P, \\p, and \\X has not been compiled\0"
285 "malformed \\P or \\p sequence\0"
286 "unknown property name after \\P or \\p\0"
287 "subpattern name is too long (maximum " XSTRING(MAX_NAME_SIZE) " characters)\0"
288 "too many named subpatterns (maximum " XSTRING(MAX_NAME_COUNT) ")\0"
289 /* 50 */
290 "repeated subpattern is too long\0" /** DEAD **/
291 "octal value is greater than \\377 (not in UTF-8 mode)\0"
292 "internal error: overran compiling workspace\0"
293 "internal error: previously-checked referenced subpattern not found\0"
294 "DEFINE group contains more than one branch\0"
295 /* 55 */
296 "repeating a DEFINE group is not allowed\0"
297 "inconsistent NEWLINE options\0"
298 "\\g is not followed by a braced, angle-bracketed, or quoted name/number or by a plain number\0"
299 "a numbered reference must not be zero\0"
300 "(*VERB) with an argument is not supported\0"
301 /* 60 */
302 "(*VERB) not recognized\0"
303 "number is too big\0"
304 "subpattern name expected\0"
305 "digit expected after (?+\0"
306 "] is an invalid data character in JavaScript compatibility mode";
307
308
309 /* Table to identify digits and hex digits. This is used when compiling
310 patterns. Note that the tables in chartables are dependent on the locale, and
311 may mark arbitrary characters as digits - but the PCRE compiling code expects
312 to handle only 0-9, a-z, and A-Z as digits when compiling. That is why we have
313 a private table here. It costs 256 bytes, but it is a lot faster than doing
314 character value tests (at least in some simple cases I timed), and in some
315 applications one wants PCRE to compile efficiently as well as match
316 efficiently.
317
318 For convenience, we use the same bit definitions as in chartables:
319
320 0x04 decimal digit
321 0x08 hexadecimal digit
322
323 Then we can use ctype_digit and ctype_xdigit in the code. */
324
325 #ifndef EBCDIC /* This is the "normal" case, for ASCII systems */
326 static const unsigned char digitab[] =
327 {
328 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 0- 7 */
329 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 8- 15 */
330 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 16- 23 */
331 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */
332 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - ' */
333 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ( - / */
334 0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c, /* 0 - 7 */
335 0x0c,0x0c,0x00,0x00,0x00,0x00,0x00,0x00, /* 8 - ? */
336 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* @ - G */
337 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* H - O */
338 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* P - W */
339 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* X - _ */
340 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* ` - g */
341 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* h - o */
342 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* p - w */
343 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* x -127 */
344 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 128-135 */
345 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 136-143 */
346 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 144-151 */
347 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 152-159 */
348 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 160-167 */
349 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 168-175 */
350 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 176-183 */
351 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 184-191 */
352 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 192-199 */
353 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 200-207 */
354 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 208-215 */
355 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 216-223 */
356 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 224-231 */
357 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 232-239 */
358 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 240-247 */
359 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};/* 248-255 */
360
361 #else /* This is the "abnormal" case, for EBCDIC systems */
362 static const unsigned char digitab[] =
363 {
364 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 0- 7 0 */
365 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 8- 15 */
366 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 16- 23 10 */
367 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */
368 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 32- 39 20 */
369 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 40- 47 */
370 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 48- 55 30 */
371 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 56- 63 */
372 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - 71 40 */
373 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 72- | */
374 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* & - 87 50 */
375 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 88- 95 */
376 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - -103 60 */
377 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 104- ? */
378 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 112-119 70 */
379 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 120- " */
380 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* 128- g 80 */
381 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* h -143 */
382 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 144- p 90 */
383 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* q -159 */
384 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 160- x A0 */
385 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* y -175 */
386 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ^ -183 B0 */
387 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 184-191 */
388 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* { - G C0 */
389 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* H -207 */
390 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* } - P D0 */
391 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* Q -223 */
392 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* \ - X E0 */
393 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* Y -239 */
394 0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c, /* 0 - 7 F0 */
395 0x0c,0x0c,0x00,0x00,0x00,0x00,0x00,0x00};/* 8 -255 */
396
397 static const unsigned char ebcdic_chartab[] = { /* chartable partial dup */
398 0x80,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 0- 7 */
399 0x00,0x00,0x00,0x00,0x01,0x01,0x00,0x00, /* 8- 15 */
400 0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 16- 23 */
401 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */
402 0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 32- 39 */
403 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 40- 47 */
404 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 48- 55 */
405 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 56- 63 */
406 0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - 71 */
407 0x00,0x00,0x00,0x80,0x00,0x80,0x80,0x80, /* 72- | */
408 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* & - 87 */
409 0x00,0x00,0x00,0x80,0x80,0x80,0x00,0x00, /* 88- 95 */
410 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - -103 */
411 0x00,0x00,0x00,0x00,0x00,0x10,0x00,0x80, /* 104- ? */
412 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 112-119 */
413 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 120- " */
414 0x00,0x1a,0x1a,0x1a,0x1a,0x1a,0x1a,0x12, /* 128- g */
415 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* h -143 */
416 0x00,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* 144- p */
417 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* q -159 */
418 0x00,0x00,0x12,0x12,0x12,0x12,0x12,0x12, /* 160- x */
419 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* y -175 */
420 0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ^ -183 */
421 0x00,0x00,0x80,0x00,0x00,0x00,0x00,0x00, /* 184-191 */
422 0x80,0x1a,0x1a,0x1a,0x1a,0x1a,0x1a,0x12, /* { - G */
423 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* H -207 */
424 0x00,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* } - P */
425 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* Q -223 */
426 0x00,0x00,0x12,0x12,0x12,0x12,0x12,0x12, /* \ - X */
427 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* Y -239 */
428 0x1c,0x1c,0x1c,0x1c,0x1c,0x1c,0x1c,0x1c, /* 0 - 7 */
429 0x1c,0x1c,0x00,0x00,0x00,0x00,0x00,0x00};/* 8 -255 */
430 #endif
431
432
433 /* Definition to allow mutual recursion */
434
435 static BOOL
436 compile_regex(int, int, uschar **, const uschar **, int *, BOOL, BOOL, int,
437 int *, int *, branch_chain *, compile_data *, int *);
438
439
440
441 /*************************************************
442 * Find an error text *
443 *************************************************/
444
445 /* The error texts are now all in one long string, to save on relocations. As
446 some of the text is of unknown length, we can't use a table of offsets.
447 Instead, just count through the strings. This is not a performance issue
448 because it happens only when there has been a compilation error.
449
450 Argument: the error number
451 Returns: pointer to the error string
452 */
453
454 static const char *
455 find_error_text(int n)
456 {
457 const char *s = error_texts;
458 for (; n > 0; n--) while (*s++ != 0) {};
459 return s;
460 }
461
462
463 /*************************************************
464 * Handle escapes *
465 *************************************************/
466
467 /* This function is called when a \ has been encountered. It either returns a
468 positive value for a simple escape such as \n, or a negative value which
469 encodes one of the more complicated things such as \d. A backreference to group
470 n is returned as -(ESC_REF + n); ESC_REF is the highest ESC_xxx macro. When
471 UTF-8 is enabled, a positive value greater than 255 may be returned. On entry,
472 ptr is pointing at the \. On exit, it is on the final character of the escape
473 sequence.
474
475 Arguments:
476 ptrptr points to the pattern position pointer
477 errorcodeptr points to the errorcode variable
478 bracount number of previous extracting brackets
479 options the options bits
480 isclass TRUE if inside a character class
481
482 Returns: zero or positive => a data character
483 negative => a special escape sequence
484 on error, errorcodeptr is set
485 */
486
487 static int
488 check_escape(const uschar **ptrptr, int *errorcodeptr, int bracount,
489 int options, BOOL isclass)
490 {
491 BOOL utf8 = (options & PCRE_UTF8) != 0;
492 const uschar *ptr = *ptrptr + 1;
493 int c, i;
494
495 GETCHARINCTEST(c, ptr); /* Get character value, increment pointer */
496 ptr--; /* Set pointer back to the last byte */
497
498 /* If backslash is at the end of the pattern, it's an error. */
499
500 if (c == 0) *errorcodeptr = ERR1;
501
502 /* Non-alphanumerics are literals. For digits or letters, do an initial lookup
503 in a table. A non-zero result is something that can be returned immediately.
504 Otherwise further processing may be required. */
505
506 #ifndef EBCDIC /* ASCII coding */
507 else if (c < '0' || c > 'z') {} /* Not alphanumeric */
508 else if ((i = escapes[c - '0']) != 0) c = i;
509
510 #else /* EBCDIC coding */
511 else if (c < 'a' || (ebcdic_chartab[c] & 0x0E) == 0) {} /* Not alphanumeric */
512 else if ((i = escapes[c - 0x48]) != 0) c = i;
513 #endif
514
515 /* Escapes that need further processing, or are illegal. */
516
517 else
518 {
519 const uschar *oldptr;
520 BOOL braced, negated;
521
522 switch (c)
523 {
524 /* A number of Perl escapes are not handled by PCRE. We give an explicit
525 error. */
526
527 case 'l':
528 case 'L':
529 case 'N':
530 case 'u':
531 case 'U':
532 *errorcodeptr = ERR37;
533 break;
534
535 /* \g must be followed by one of a number of specific things:
536
537 (1) A number, either plain or braced. If positive, it is an absolute
538 backreference. If negative, it is a relative backreference. This is a Perl
539 5.10 feature.
540
541 (2) Perl 5.10 also supports \g{name} as a reference to a named group. This
542 is part of Perl's movement towards a unified syntax for back references. As
543 this is synonymous with \k{name}, we fudge it up by pretending it really
544 was \k.
545
546 (3) For Oniguruma compatibility we also support \g followed by a name or a
547 number either in angle brackets or in single quotes. However, these are
548 (possibly recursive) subroutine calls, _not_ backreferences. Just return
549 the -ESC_g code (cf \k). */
550
551 case 'g':
552 if (ptr[1] == '<' || ptr[1] == '\'')
553 {
554 c = -ESC_g;
555 break;
556 }
557
558 /* Handle the Perl-compatible cases */
559
560 if (ptr[1] == '{')
561 {
562 const uschar *p;
563 for (p = ptr+2; *p != 0 && *p != '}'; p++)
564 if (*p != '-' && (digitab[*p] & ctype_digit) == 0) break;
565 if (*p != 0 && *p != '}')
566 {
567 c = -ESC_k;
568 break;
569 }
570 braced = TRUE;
571 ptr++;
572 }
573 else braced = FALSE;
574
575 if (ptr[1] == '-')
576 {
577 negated = TRUE;
578 ptr++;
579 }
580 else negated = FALSE;
581
582 c = 0;
583 while ((digitab[ptr[1]] & ctype_digit) != 0)
584 c = c * 10 + *(++ptr) - '0';
585
586 if (c < 0) /* Integer overflow */
587 {
588 *errorcodeptr = ERR61;
589 break;
590 }
591
592 if (braced && *(++ptr) != '}')
593 {
594 *errorcodeptr = ERR57;
595 break;
596 }
597
598 if (c == 0)
599 {
600 *errorcodeptr = ERR58;
601 break;
602 }
603
604 if (negated)
605 {
606 if (c > bracount)
607 {
608 *errorcodeptr = ERR15;
609 break;
610 }
611 c = bracount - (c - 1);
612 }
613
614 c = -(ESC_REF + c);
615 break;
616
617 /* The handling of escape sequences consisting of a string of digits
618 starting with one that is not zero is not straightforward. By experiment,
619 the way Perl works seems to be as follows:
620
621 Outside a character class, the digits are read as a decimal number. If the
622 number is less than 10, or if there are that many previous extracting
623 left brackets, then it is a back reference. Otherwise, up to three octal
624 digits are read to form an escaped byte. Thus \123 is likely to be octal
625 123 (cf \0123, which is octal 012 followed by the literal 3). If the octal
626 value is greater than 377, the least significant 8 bits are taken. Inside a
627 character class, \ followed by a digit is always an octal number. */
628
629 case '1': case '2': case '3': case '4': case '5':
630 case '6': case '7': case '8': case '9':
631
632 if (!isclass)
633 {
634 oldptr = ptr;
635 c -= '0';
636 while ((digitab[ptr[1]] & ctype_digit) != 0)
637 c = c * 10 + *(++ptr) - '0';
638 if (c < 0) /* Integer overflow */
639 {
640 *errorcodeptr = ERR61;
641 break;
642 }
643 if (c < 10 || c <= bracount)
644 {
645 c = -(ESC_REF + c);
646 break;
647 }
648 ptr = oldptr; /* Put the pointer back and fall through */
649 }
650
651 /* Handle an octal number following \. If the first digit is 8 or 9, Perl
652 generates a binary zero byte and treats the digit as a following literal.
653 Thus we have to pull back the pointer by one. */
654
655 if ((c = *ptr) >= '8')
656 {
657 ptr--;
658 c = 0;
659 break;
660 }
661
662 /* \0 always starts an octal number, but we may drop through to here with a
663 larger first octal digit. The original code used just to take the least
664 significant 8 bits of octal numbers (I think this is what early Perls used
665 to do). Nowadays we allow for larger numbers in UTF-8 mode, but no more
666 than 3 octal digits. */
667
668 case '0':
669 c -= '0';
670 while(i++ < 2 && ptr[1] >= '0' && ptr[1] <= '7')
671 c = c * 8 + *(++ptr) - '0';
672 if (!utf8 && c > 255) *errorcodeptr = ERR51;
673 break;
674
675 /* \x is complicated. \x{ddd} is a character number which can be greater
676 than 0xff in utf8 mode, but only if the ddd are hex digits. If not, { is
677 treated as a data character. */
678
679 case 'x':
680 if (ptr[1] == '{')
681 {
682 const uschar *pt = ptr + 2;
683 int count = 0;
684
685 c = 0;
686 while ((digitab[*pt] & ctype_xdigit) != 0)
687 {
688 register int cc = *pt++;
689 if (c == 0 && cc == '0') continue; /* Leading zeroes */
690 count++;
691
692 #ifndef EBCDIC /* ASCII coding */
693 if (cc >= 'a') cc -= 32; /* Convert to upper case */
694 c = (c << 4) + cc - ((cc < 'A')? '0' : ('A' - 10));
695 #else /* EBCDIC coding */
696 if (cc >= 'a' && cc <= 'z') cc += 64; /* Convert to upper case */
697 c = (c << 4) + cc - ((cc >= '0')? '0' : ('A' - 10));
698 #endif
699 }
700
701 if (*pt == '}')
702 {
703 if (c < 0 || count > (utf8? 8 : 2)) *errorcodeptr = ERR34;
704 ptr = pt;
705 break;
706 }
707
708 /* If the sequence of hex digits does not end with '}', then we don't
709 recognize this construct; fall through to the normal \x handling. */
710 }
711
712 /* Read just a single-byte hex-defined char */
713
714 c = 0;
715 while (i++ < 2 && (digitab[ptr[1]] & ctype_xdigit) != 0)
716 {
717 int cc; /* Some compilers don't like ++ */
718 cc = *(++ptr); /* in initializers */
719 #ifndef EBCDIC /* ASCII coding */
720 if (cc >= 'a') cc -= 32; /* Convert to upper case */
721 c = c * 16 + cc - ((cc < 'A')? '0' : ('A' - 10));
722 #else /* EBCDIC coding */
723 if (cc <= 'z') cc += 64; /* Convert to upper case */
724 c = c * 16 + cc - ((cc >= '0')? '0' : ('A' - 10));
725 #endif
726 }
727 break;
728
729 /* For \c, a following letter is upper-cased; then the 0x40 bit is flipped.
730 This coding is ASCII-specific, but then the whole concept of \cx is
731 ASCII-specific. (However, an EBCDIC equivalent has now been added.) */
732
733 case 'c':
734 c = *(++ptr);
735 if (c == 0)
736 {
737 *errorcodeptr = ERR2;
738 break;
739 }
740
741 #ifndef EBCDIC /* ASCII coding */
742 if (c >= 'a' && c <= 'z') c -= 32;
743 c ^= 0x40;
744 #else /* EBCDIC coding */
745 if (c >= 'a' && c <= 'z') c += 64;
746 c ^= 0xC0;
747 #endif
748 break;
749
750 /* PCRE_EXTRA enables extensions to Perl in the matter of escapes. Any
751 other alphanumeric following \ is an error if PCRE_EXTRA was set;
752 otherwise, for Perl compatibility, it is a literal. This code looks a bit
753 odd, but there used to be some cases other than the default, and there may
754 be again in future, so I haven't "optimized" it. */
755
756 default:
757 if ((options & PCRE_EXTRA) != 0) switch(c)
758 {
759 default:
760 *errorcodeptr = ERR3;
761 break;
762 }
763 break;
764 }
765 }
766
767 *ptrptr = ptr;
768 return c;
769 }
770
771
772
773 #ifdef SUPPORT_UCP
774 /*************************************************
775 * Handle \P and \p *
776 *************************************************/
777
778 /* This function is called after \P or \p has been encountered, provided that
779 PCRE is compiled with support for Unicode properties. On entry, ptrptr is
780 pointing at the P or p. On exit, it is pointing at the final character of the
781 escape sequence.
782
783 Argument:
784 ptrptr points to the pattern position pointer
785 negptr points to a boolean that is set TRUE for negation else FALSE
786 dptr points to an int that is set to the detailed property value
787 errorcodeptr points to the error code variable
788
789 Returns: type value from ucp_type_table, or -1 for an invalid type
790 */
791
792 static int
793 get_ucp(const uschar **ptrptr, BOOL *negptr, int *dptr, int *errorcodeptr)
794 {
795 int c, i, bot, top;
796 const uschar *ptr = *ptrptr;
797 char name[32];
798
799 c = *(++ptr);
800 if (c == 0) goto ERROR_RETURN;
801
802 *negptr = FALSE;
803
804 /* \P or \p can be followed by a name in {}, optionally preceded by ^ for
805 negation. */
806
807 if (c == '{')
808 {
809 if (ptr[1] == '^')
810 {
811 *negptr = TRUE;
812 ptr++;
813 }
814 for (i = 0; i < (int)sizeof(name) - 1; i++)
815 {
816 c = *(++ptr);
817 if (c == 0) goto ERROR_RETURN;
818 if (c == '}') break;
819 name[i] = c;
820 }
821 if (c !='}') goto ERROR_RETURN;
822 name[i] = 0;
823 }
824
825 /* Otherwise there is just one following character */
826
827 else
828 {
829 name[0] = c;
830 name[1] = 0;
831 }
832
833 *ptrptr = ptr;
834
835 /* Search for a recognized property name using binary chop */
836
837 bot = 0;
838 top = _pcre_utt_size;
839
840 while (bot < top)
841 {
842 i = (bot + top) >> 1;
843 c = strcmp(name, _pcre_utt_names + _pcre_utt[i].name_offset);
844 if (c == 0)
845 {
846 *dptr = _pcre_utt[i].value;
847 return _pcre_utt[i].type;
848 }
849 if (c > 0) bot = i + 1; else top = i;
850 }
851
852 *errorcodeptr = ERR47;
853 *ptrptr = ptr;
854 return -1;
855
856 ERROR_RETURN:
857 *errorcodeptr = ERR46;
858 *ptrptr = ptr;
859 return -1;
860 }
861 #endif
862
863
864
865
866 /*************************************************
867 * Check for counted repeat *
868 *************************************************/
869
870 /* This function is called when a '{' is encountered in a place where it might
871 start a quantifier. It looks ahead to see if it really is a quantifier or not.
872 It is only a quantifier if it is one of the forms {ddd} {ddd,} or {ddd,ddd}
873 where the ddds are digits.
874
875 Arguments:
876 p pointer to the first char after '{'
877
878 Returns: TRUE or FALSE
879 */
880
881 static BOOL
882 is_counted_repeat(const uschar *p)
883 {
884 if ((digitab[*p++] & ctype_digit) == 0) return FALSE;
885 while ((digitab[*p] & ctype_digit) != 0) p++;
886 if (*p == '}') return TRUE;
887
888 if (*p++ != ',') return FALSE;
889 if (*p == '}') return TRUE;
890
891 if ((digitab[*p++] & ctype_digit) == 0) return FALSE;
892 while ((digitab[*p] & ctype_digit) != 0) p++;
893
894 return (*p == '}');
895 }
896
897
898
899 /*************************************************
900 * Read repeat counts *
901 *************************************************/
902
903 /* Read an item of the form {n,m} and return the values. This is called only
904 after is_counted_repeat() has confirmed that a repeat-count quantifier exists,
905 so the syntax is guaranteed to be correct, but we need to check the values.
906
907 Arguments:
908 p pointer to first char after '{'
909 minp pointer to int for min
910 maxp pointer to int for max
911 returned as -1 if no max
912 errorcodeptr points to error code variable
913
914 Returns: pointer to '}' on success;
915 current ptr on error, with errorcodeptr set non-zero
916 */
917
918 static const uschar *
919 read_repeat_counts(const uschar *p, int *minp, int *maxp, int *errorcodeptr)
920 {
921 int min = 0;
922 int max = -1;
923
924 /* Read the minimum value and do a paranoid check: a negative value indicates
925 an integer overflow. */
926
927 while ((digitab[*p] & ctype_digit) != 0) min = min * 10 + *p++ - '0';
928 if (min < 0 || min > 65535)
929 {
930 *errorcodeptr = ERR5;
931 return p;
932 }
933
934 /* Read the maximum value if there is one, and again do a paranoid on its size.
935 Also, max must not be less than min. */
936
937 if (*p == '}') max = min; else
938 {
939 if (*(++p) != '}')
940 {
941 max = 0;
942 while((digitab[*p] & ctype_digit) != 0) max = max * 10 + *p++ - '0';
943 if (max < 0 || max > 65535)
944 {
945 *errorcodeptr = ERR5;
946 return p;
947 }
948 if (max < min)
949 {
950 *errorcodeptr = ERR4;
951 return p;
952 }
953 }
954 }
955
956 /* Fill in the required variables, and pass back the pointer to the terminating
957 '}'. */
958
959 *minp = min;
960 *maxp = max;
961 return p;
962 }
963
964
965
966 /*************************************************
967 * Find forward referenced subpattern *
968 *************************************************/
969
970 /* This function scans along a pattern's text looking for capturing
971 subpatterns, and counting them. If it finds a named pattern that matches the
972 name it is given, it returns its number. Alternatively, if the name is NULL, it
973 returns when it reaches a given numbered subpattern. This is used for forward
974 references to subpatterns. We know that if (?P< is encountered, the name will
975 be terminated by '>' because that is checked in the first pass.
976
977 Arguments:
978 ptr current position in the pattern
979 cd compile background data
980 name name to seek, or NULL if seeking a numbered subpattern
981 lorn name length, or subpattern number if name is NULL
982 xmode TRUE if we are in /x mode
983
984 Returns: the number of the named subpattern, or -1 if not found
985 */
986
987 static int
988 find_parens(const uschar *ptr, compile_data *cd, const uschar *name, int lorn,
989 BOOL xmode)
990 {
991 const uschar *thisname;
992 int count = cd->bracount;
993
994 for (; *ptr != 0; ptr++)
995 {
996 int term;
997
998 /* Skip over backslashed characters and also entire \Q...\E */
999
1000 if (*ptr == '\\')
1001 {
1002 if (*(++ptr) == 0) return -1;
1003 if (*ptr == 'Q') for (;;)
1004 {
1005 while (*(++ptr) != 0 && *ptr != '\\') {};
1006 if (*ptr == 0) return -1;
1007 if (*(++ptr) == 'E') break;
1008 }
1009 continue;
1010 }
1011
1012 /* Skip over character classes; this logic must be similar to the way they
1013 are handled for real. If the first character is '^', skip it. Also, if the
1014 first few characters (either before or after ^) are \Q\E or \E we skip them
1015 too. This makes for compatibility with Perl. */
1016
1017 if (*ptr == '[')
1018 {
1019 BOOL negate_class = FALSE;
1020 for (;;)
1021 {
1022 int c = *(++ptr);
1023 if (c == '\\')
1024 {
1025 if (ptr[1] == 'E') ptr++;
1026 else if (strncmp((const char *)ptr+1, "Q\\E", 3) == 0) ptr += 3;
1027 else break;
1028 }
1029 else if (!negate_class && c == '^')
1030 negate_class = TRUE;
1031 else break;
1032 }
1033
1034 /* If the next character is ']', it is a data character that must be
1035 skipped, except in JavaScript compatibility mode. */
1036
1037 if (ptr[1] == ']' && (cd->external_options & PCRE_JAVASCRIPT_COMPAT) == 0)
1038 ptr++;
1039
1040 while (*(++ptr) != ']')
1041 {
1042 if (*ptr == 0) return -1;
1043 if (*ptr == '\\')
1044 {
1045 if (*(++ptr) == 0) return -1;
1046 if (*ptr == 'Q') for (;;)
1047 {
1048 while (*(++ptr) != 0 && *ptr != '\\') {};
1049 if (*ptr == 0) return -1;
1050 if (*(++ptr) == 'E') break;
1051 }
1052 continue;
1053 }
1054 }
1055 continue;
1056 }
1057
1058 /* Skip comments in /x mode */
1059
1060 if (xmode && *ptr == '#')
1061 {
1062 while (*(++ptr) != 0 && *ptr != '\n') {};
1063 if (*ptr == 0) return -1;
1064 continue;
1065 }
1066
1067 /* An opening parens must now be a real metacharacter */
1068
1069 if (*ptr != '(') continue;
1070 if (ptr[1] != '?' && ptr[1] != '*')
1071 {
1072 count++;
1073 if (name == NULL && count == lorn) return count;
1074 continue;
1075 }
1076
1077 ptr += 2;
1078 if (*ptr == 'P') ptr++; /* Allow optional P */
1079
1080 /* We have to disambiguate (?<! and (?<= from (?<name> */
1081
1082 if ((*ptr != '<' || ptr[1] == '!' || ptr[1] == '=') &&
1083 *ptr != '\'')
1084 continue;
1085
1086 count++;
1087
1088 if (name == NULL && count == lorn) return count;
1089 term = *ptr++;
1090 if (term == '<') term = '>';
1091 thisname = ptr;
1092 while (*ptr != term) ptr++;
1093 if (name != NULL && lorn == ptr - thisname &&
1094 strncmp((const char *)name, (const char *)thisname, lorn) == 0)
1095 return count;
1096 }
1097
1098 return -1;
1099 }
1100
1101
1102
1103 /*************************************************
1104 * Find first significant op code *
1105 *************************************************/
1106
1107 /* This is called by several functions that scan a compiled expression looking
1108 for a fixed first character, or an anchoring op code etc. It skips over things
1109 that do not influence this. For some calls, a change of option is important.
1110 For some calls, it makes sense to skip negative forward and all backward
1111 assertions, and also the \b assertion; for others it does not.
1112
1113 Arguments:
1114 code pointer to the start of the group
1115 options pointer to external options
1116 optbit the option bit whose changing is significant, or
1117 zero if none are
1118 skipassert TRUE if certain assertions are to be skipped
1119
1120 Returns: pointer to the first significant opcode
1121 */
1122
1123 static const uschar*
1124 first_significant_code(const uschar *code, int *options, int optbit,
1125 BOOL skipassert)
1126 {
1127 for (;;)
1128 {
1129 switch ((int)*code)
1130 {
1131 case OP_OPT:
1132 if (optbit > 0 && ((int)code[1] & optbit) != (*options & optbit))
1133 *options = (int)code[1];
1134 code += 2;
1135 break;
1136
1137 case OP_ASSERT_NOT:
1138 case OP_ASSERTBACK:
1139 case OP_ASSERTBACK_NOT:
1140 if (!skipassert) return code;
1141 do code += GET(code, 1); while (*code == OP_ALT);
1142 code += _pcre_OP_lengths[*code];
1143 break;
1144
1145 case OP_WORD_BOUNDARY:
1146 case OP_NOT_WORD_BOUNDARY:
1147 if (!skipassert) return code;
1148 /* Fall through */
1149
1150 case OP_CALLOUT:
1151 case OP_CREF:
1152 case OP_RREF:
1153 case OP_DEF:
1154 code += _pcre_OP_lengths[*code];
1155 break;
1156
1157 default:
1158 return code;
1159 }
1160 }
1161 /* Control never reaches here */
1162 }
1163
1164
1165
1166
1167 /*************************************************
1168 * Find the fixed length of a pattern *
1169 *************************************************/
1170
1171 /* Scan a pattern and compute the fixed length of subject that will match it,
1172 if the length is fixed. This is needed for dealing with backward assertions.
1173 In UTF8 mode, the result is in characters rather than bytes.
1174
1175 Arguments:
1176 code points to the start of the pattern (the bracket)
1177 options the compiling options
1178
1179 Returns: the fixed length, or -1 if there is no fixed length,
1180 or -2 if \C was encountered
1181 */
1182
1183 static int
1184 find_fixedlength(uschar *code, int options)
1185 {
1186 int length = -1;
1187
1188 register int branchlength = 0;
1189 register uschar *cc = code + 1 + LINK_SIZE;
1190
1191 /* Scan along the opcodes for this branch. If we get to the end of the
1192 branch, check the length against that of the other branches. */
1193
1194 for (;;)
1195 {
1196 int d;
1197 register int op = *cc;
1198 switch (op)
1199 {
1200 case OP_CBRA:
1201 case OP_BRA:
1202 case OP_ONCE:
1203 case OP_COND:
1204 d = find_fixedlength(cc + ((op == OP_CBRA)? 2:0), options);
1205 if (d < 0) return d;
1206 branchlength += d;
1207 do cc += GET(cc, 1); while (*cc == OP_ALT);
1208 cc += 1 + LINK_SIZE;
1209 break;
1210
1211 /* Reached end of a branch; if it's a ket it is the end of a nested
1212 call. If it's ALT it is an alternation in a nested call. If it is
1213 END it's the end of the outer call. All can be handled by the same code. */
1214
1215 case OP_ALT:
1216 case OP_KET:
1217 case OP_KETRMAX:
1218 case OP_KETRMIN:
1219 case OP_END:
1220 if (length < 0) length = branchlength;
1221 else if (length != branchlength) return -1;
1222 if (*cc != OP_ALT) return length;
1223 cc += 1 + LINK_SIZE;
1224 branchlength = 0;
1225 break;
1226
1227 /* Skip over assertive subpatterns */
1228
1229 case OP_ASSERT:
1230 case OP_ASSERT_NOT:
1231 case OP_ASSERTBACK:
1232 case OP_ASSERTBACK_NOT:
1233 do cc += GET(cc, 1); while (*cc == OP_ALT);
1234 /* Fall through */
1235
1236 /* Skip over things that don't match chars */
1237
1238 case OP_REVERSE:
1239 case OP_CREF:
1240 case OP_RREF:
1241 case OP_DEF:
1242 case OP_OPT:
1243 case OP_CALLOUT:
1244 case OP_SOD:
1245 case OP_SOM:
1246 case OP_EOD:
1247 case OP_EODN:
1248 case OP_CIRC:
1249 case OP_DOLL:
1250 case OP_NOT_WORD_BOUNDARY:
1251 case OP_WORD_BOUNDARY:
1252 cc += _pcre_OP_lengths[*cc];
1253 break;
1254
1255 /* Handle literal characters */
1256
1257 case OP_CHAR:
1258 case OP_CHARNC:
1259 case OP_NOT:
1260 branchlength++;
1261 cc += 2;
1262 #ifdef SUPPORT_UTF8
1263 if ((options & PCRE_UTF8) != 0)
1264 {
1265 while ((*cc & 0xc0) == 0x80) cc++;
1266 }
1267 #endif
1268 break;
1269
1270 /* Handle exact repetitions. The count is already in characters, but we
1271 need to skip over a multibyte character in UTF8 mode. */
1272
1273 case OP_EXACT:
1274 branchlength += GET2(cc,1);
1275 cc += 4;
1276 #ifdef SUPPORT_UTF8
1277 if ((options & PCRE_UTF8) != 0)
1278 {
1279 while((*cc & 0x80) == 0x80) cc++;
1280 }
1281 #endif
1282 break;
1283
1284 case OP_TYPEEXACT:
1285 branchlength += GET2(cc,1);
1286 if (cc[3] == OP_PROP || cc[3] == OP_NOTPROP) cc += 2;
1287 cc += 4;
1288 break;
1289
1290 /* Handle single-char matchers */
1291
1292 case OP_PROP:
1293 case OP_NOTPROP:
1294 cc += 2;
1295 /* Fall through */
1296
1297 case OP_NOT_DIGIT:
1298 case OP_DIGIT:
1299 case OP_NOT_WHITESPACE:
1300 case OP_WHITESPACE:
1301 case OP_NOT_WORDCHAR:
1302 case OP_WORDCHAR:
1303 case OP_ANY:
1304 case OP_ALLANY:
1305 branchlength++;
1306 cc++;
1307 break;
1308
1309 /* The single-byte matcher isn't allowed */
1310
1311 case OP_ANYBYTE:
1312 return -2;
1313
1314 /* Check a class for variable quantification */
1315
1316 #ifdef SUPPORT_UTF8
1317 case OP_XCLASS:
1318 cc += GET(cc, 1) - 33;
1319 /* Fall through */
1320 #endif
1321
1322 case OP_CLASS:
1323 case OP_NCLASS:
1324 cc += 33;
1325
1326 switch (*cc)
1327 {
1328 case OP_CRSTAR:
1329 case OP_CRMINSTAR:
1330 case OP_CRQUERY:
1331 case OP_CRMINQUERY:
1332 return -1;
1333
1334 case OP_CRRANGE:
1335 case OP_CRMINRANGE:
1336 if (GET2(cc,1) != GET2(cc,3)) return -1;
1337 branchlength += GET2(cc,1);
1338 cc += 5;
1339 break;
1340
1341 default:
1342 branchlength++;
1343 }
1344 break;
1345
1346 /* Anything else is variable length */
1347
1348 default:
1349 return -1;
1350 }
1351 }
1352 /* Control never gets here */
1353 }
1354
1355
1356
1357
1358 /*************************************************
1359 * Scan compiled regex for numbered bracket *
1360 *************************************************/
1361
1362 /* This little function scans through a compiled pattern until it finds a
1363 capturing bracket with the given number.
1364
1365 Arguments:
1366 code points to start of expression
1367 utf8 TRUE in UTF-8 mode
1368 number the required bracket number
1369
1370 Returns: pointer to the opcode for the bracket, or NULL if not found
1371 */
1372
1373 static const uschar *
1374 find_bracket(const uschar *code, BOOL utf8, int number)
1375 {
1376 for (;;)
1377 {
1378 register int c = *code;
1379 if (c == OP_END) return NULL;
1380
1381 /* XCLASS is used for classes that cannot be represented just by a bit
1382 map. This includes negated single high-valued characters. The length in
1383 the table is zero; the actual length is stored in the compiled code. */
1384
1385 if (c == OP_XCLASS) code += GET(code, 1);
1386
1387 /* Handle capturing bracket */
1388
1389 else if (c == OP_CBRA)
1390 {
1391 int n = GET2(code, 1+LINK_SIZE);
1392 if (n == number) return (uschar *)code;
1393 code += _pcre_OP_lengths[c];
1394 }
1395
1396 /* Otherwise, we can get the item's length from the table, except that for
1397 repeated character types, we have to test for \p and \P, which have an extra
1398 two bytes of parameters. */
1399
1400 else
1401 {
1402 switch(c)
1403 {
1404 case OP_TYPESTAR:
1405 case OP_TYPEMINSTAR:
1406 case OP_TYPEPLUS:
1407 case OP_TYPEMINPLUS:
1408 case OP_TYPEQUERY:
1409 case OP_TYPEMINQUERY:
1410 case OP_TYPEPOSSTAR:
1411 case OP_TYPEPOSPLUS:
1412 case OP_TYPEPOSQUERY:
1413 if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2;
1414 break;
1415
1416 case OP_TYPEUPTO:
1417 case OP_TYPEMINUPTO:
1418 case OP_TYPEEXACT:
1419 case OP_TYPEPOSUPTO:
1420 if (code[3] == OP_PROP || code[3] == OP_NOTPROP) code += 2;
1421 break;
1422 }
1423
1424 /* Add in the fixed length from the table */
1425
1426 code += _pcre_OP_lengths[c];
1427
1428 /* In UTF-8 mode, opcodes that are followed by a character may be followed by
1429 a multi-byte character. The length in the table is a minimum, so we have to
1430 arrange to skip the extra bytes. */
1431
1432 #ifdef SUPPORT_UTF8
1433 if (utf8) switch(c)
1434 {
1435 case OP_CHAR:
1436 case OP_CHARNC:
1437 case OP_EXACT:
1438 case OP_UPTO:
1439 case OP_MINUPTO:
1440 case OP_POSUPTO:
1441 case OP_STAR:
1442 case OP_MINSTAR:
1443 case OP_POSSTAR:
1444 case OP_PLUS:
1445 case OP_MINPLUS:
1446 case OP_POSPLUS:
1447 case OP_QUERY:
1448 case OP_MINQUERY:
1449 case OP_POSQUERY:
1450 if (code[-1] >= 0xc0) code += _pcre_utf8_table4[code[-1] & 0x3f];
1451 break;
1452 }
1453 #else
1454 (void)(utf8); /* Keep compiler happy by referencing function argument */
1455 #endif
1456 }
1457 }
1458 }
1459
1460
1461
1462 /*************************************************
1463 * Scan compiled regex for recursion reference *
1464 *************************************************/
1465
1466 /* This little function scans through a compiled pattern until it finds an
1467 instance of OP_RECURSE.
1468
1469 Arguments:
1470 code points to start of expression
1471 utf8 TRUE in UTF-8 mode
1472
1473 Returns: pointer to the opcode for OP_RECURSE, or NULL if not found
1474 */
1475
1476 static const uschar *
1477 find_recurse(const uschar *code, BOOL utf8)
1478 {
1479 for (;;)
1480 {
1481 register int c = *code;
1482 if (c == OP_END) return NULL;
1483 if (c == OP_RECURSE) return code;
1484
1485 /* XCLASS is used for classes that cannot be represented just by a bit
1486 map. This includes negated single high-valued characters. The length in
1487 the table is zero; the actual length is stored in the compiled code. */
1488
1489 if (c == OP_XCLASS) code += GET(code, 1);
1490
1491 /* Otherwise, we can get the item's length from the table, except that for
1492 repeated character types, we have to test for \p and \P, which have an extra
1493 two bytes of parameters. */
1494
1495 else
1496 {
1497 switch(c)
1498 {
1499 case OP_TYPESTAR:
1500 case OP_TYPEMINSTAR:
1501 case OP_TYPEPLUS:
1502 case OP_TYPEMINPLUS:
1503 case OP_TYPEQUERY:
1504 case OP_TYPEMINQUERY:
1505 case OP_TYPEPOSSTAR:
1506 case OP_TYPEPOSPLUS:
1507 case OP_TYPEPOSQUERY:
1508 if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2;
1509 break;
1510
1511 case OP_TYPEPOSUPTO:
1512 case OP_TYPEUPTO:
1513 case OP_TYPEMINUPTO:
1514 case OP_TYPEEXACT:
1515 if (code[3] == OP_PROP || code[3] == OP_NOTPROP) code += 2;
1516 break;
1517 }
1518
1519 /* Add in the fixed length from the table */
1520
1521 code += _pcre_OP_lengths[c];
1522
1523 /* In UTF-8 mode, opcodes that are followed by a character may be followed
1524 by a multi-byte character. The length in the table is a minimum, so we have
1525 to arrange to skip the extra bytes. */
1526
1527 #ifdef SUPPORT_UTF8
1528 if (utf8) switch(c)
1529 {
1530 case OP_CHAR:
1531 case OP_CHARNC:
1532 case OP_EXACT:
1533 case OP_UPTO:
1534 case OP_MINUPTO:
1535 case OP_POSUPTO:
1536 case OP_STAR:
1537 case OP_MINSTAR:
1538 case OP_POSSTAR:
1539 case OP_PLUS:
1540 case OP_MINPLUS:
1541 case OP_POSPLUS:
1542 case OP_QUERY:
1543 case OP_MINQUERY:
1544 case OP_POSQUERY:
1545 if (code[-1] >= 0xc0) code += _pcre_utf8_table4[code[-1] & 0x3f];
1546 break;
1547 }
1548 #else
1549 (void)(utf8); /* Keep compiler happy by referencing function argument */
1550 #endif
1551 }
1552 }
1553 }
1554
1555
1556
1557 /*************************************************
1558 * Scan compiled branch for non-emptiness *
1559 *************************************************/
1560
1561 /* This function scans through a branch of a compiled pattern to see whether it
1562 can match the empty string or not. It is called from could_be_empty()
1563 below and from compile_branch() when checking for an unlimited repeat of a
1564 group that can match nothing. Note that first_significant_code() skips over
1565 backward and negative forward assertions when its final argument is TRUE. If we
1566 hit an unclosed bracket, we return "empty" - this means we've struck an inner
1567 bracket whose current branch will already have been scanned.
1568
1569 Arguments:
1570 code points to start of search
1571 endcode points to where to stop
1572 utf8 TRUE if in UTF8 mode
1573
1574 Returns: TRUE if what is matched could be empty
1575 */
1576
1577 static BOOL
1578 could_be_empty_branch(const uschar *code, const uschar *endcode, BOOL utf8)
1579 {
1580 register int c;
1581 for (code = first_significant_code(code + _pcre_OP_lengths[*code], NULL, 0, TRUE);
1582 code < endcode;
1583 code = first_significant_code(code + _pcre_OP_lengths[c], NULL, 0, TRUE))
1584 {
1585 const uschar *ccode;
1586
1587 c = *code;
1588
1589 /* Skip over forward assertions; the other assertions are skipped by
1590 first_significant_code() with a TRUE final argument. */
1591
1592 if (c == OP_ASSERT)
1593 {
1594 do code += GET(code, 1); while (*code == OP_ALT);
1595 c = *code;
1596 continue;
1597 }
1598
1599 /* Groups with zero repeats can of course be empty; skip them. */
1600
1601 if (c == OP_BRAZERO || c == OP_BRAMINZERO || c == OP_SKIPZERO)
1602 {
1603 code += _pcre_OP_lengths[c];
1604 do code += GET(code, 1); while (*code == OP_ALT);
1605 c = *code;
1606 continue;
1607 }
1608
1609 /* For other groups, scan the branches. */
1610
1611 if (c == OP_BRA || c == OP_CBRA || c == OP_ONCE || c == OP_COND)
1612 {
1613 BOOL empty_branch;
1614 if (GET(code, 1) == 0) return TRUE; /* Hit unclosed bracket */
1615
1616 /* Scan a closed bracket */
1617
1618 empty_branch = FALSE;
1619 do
1620 {
1621 if (!empty_branch && could_be_empty_branch(code, endcode, utf8))
1622 empty_branch = TRUE;
1623 code += GET(code, 1);
1624 }
1625 while (*code == OP_ALT);
1626 if (!empty_branch) return FALSE; /* All branches are non-empty */
1627 c = *code;
1628 continue;
1629 }
1630
1631 /* Handle the other opcodes */
1632
1633 switch (c)
1634 {
1635 /* Check for quantifiers after a class. XCLASS is used for classes that
1636 cannot be represented just by a bit map. This includes negated single
1637 high-valued characters. The length in _pcre_OP_lengths[] is zero; the
1638 actual length is stored in the compiled code, so we must update "code"
1639 here. */
1640
1641 #ifdef SUPPORT_UTF8
1642 case OP_XCLASS:
1643 ccode = code += GET(code, 1);
1644 goto CHECK_CLASS_REPEAT;
1645 #endif
1646
1647 case OP_CLASS:
1648 case OP_NCLASS:
1649 ccode = code + 33;
1650
1651 #ifdef SUPPORT_UTF8
1652 CHECK_CLASS_REPEAT:
1653 #endif
1654
1655 switch (*ccode)
1656 {
1657 case OP_CRSTAR: /* These could be empty; continue */
1658 case OP_CRMINSTAR:
1659 case OP_CRQUERY:
1660 case OP_CRMINQUERY:
1661 break;
1662
1663 default: /* Non-repeat => class must match */
1664 case OP_CRPLUS: /* These repeats aren't empty */
1665 case OP_CRMINPLUS:
1666 return FALSE;
1667
1668 case OP_CRRANGE:
1669 case OP_CRMINRANGE:
1670 if (GET2(ccode, 1) > 0) return FALSE; /* Minimum > 0 */
1671 break;
1672 }
1673 break;
1674
1675 /* Opcodes that must match a character */
1676
1677 case OP_PROP:
1678 case OP_NOTPROP:
1679 case OP_EXTUNI:
1680 case OP_NOT_DIGIT:
1681 case OP_DIGIT:
1682 case OP_NOT_WHITESPACE:
1683 case OP_WHITESPACE:
1684 case OP_NOT_WORDCHAR:
1685 case OP_WORDCHAR:
1686 case OP_ANY:
1687 case OP_ALLANY:
1688 case OP_ANYBYTE:
1689 case OP_CHAR:
1690 case OP_CHARNC:
1691 case OP_NOT:
1692 case OP_PLUS:
1693 case OP_MINPLUS:
1694 case OP_POSPLUS:
1695 case OP_EXACT:
1696 case OP_NOTPLUS:
1697 case OP_NOTMINPLUS:
1698 case OP_NOTPOSPLUS:
1699 case OP_NOTEXACT:
1700 case OP_TYPEPLUS:
1701 case OP_TYPEMINPLUS:
1702 case OP_TYPEPOSPLUS:
1703 case OP_TYPEEXACT:
1704 return FALSE;
1705
1706 /* These are going to continue, as they may be empty, but we have to
1707 fudge the length for the \p and \P cases. */
1708
1709 case OP_TYPESTAR:
1710 case OP_TYPEMINSTAR:
1711 case OP_TYPEPOSSTAR:
1712 case OP_TYPEQUERY:
1713 case OP_TYPEMINQUERY:
1714 case OP_TYPEPOSQUERY:
1715 if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2;
1716 break;
1717
1718 /* Same for these */
1719
1720 case OP_TYPEUPTO:
1721 case OP_TYPEMINUPTO:
1722 case OP_TYPEPOSUPTO:
1723 if (code[3] == OP_PROP || code[3] == OP_NOTPROP) code += 2;
1724 break;
1725
1726 /* End of branch */
1727
1728 case OP_KET:
1729 case OP_KETRMAX:
1730 case OP_KETRMIN:
1731 case OP_ALT:
1732 return TRUE;
1733
1734 /* In UTF-8 mode, STAR, MINSTAR, POSSTAR, QUERY, MINQUERY, POSQUERY, UPTO,
1735 MINUPTO, and POSUPTO may be followed by a multibyte character */
1736
1737 #ifdef SUPPORT_UTF8
1738 case OP_STAR:
1739 case OP_MINSTAR:
1740 case OP_POSSTAR:
1741 case OP_QUERY:
1742 case OP_MINQUERY:
1743 case OP_POSQUERY:
1744 case OP_UPTO:
1745 case OP_MINUPTO:
1746 case OP_POSUPTO:
1747 if (utf8) while ((code[2] & 0xc0) == 0x80) code++;
1748 break;
1749 #endif
1750 }
1751 }
1752
1753 return TRUE;
1754 }
1755
1756
1757
1758 /*************************************************
1759 * Scan compiled regex for non-emptiness *
1760 *************************************************/
1761
1762 /* This function is called to check for left recursive calls. We want to check
1763 the current branch of the current pattern to see if it could match the empty
1764 string. If it could, we must look outwards for branches at other levels,
1765 stopping when we pass beyond the bracket which is the subject of the recursion.
1766
1767 Arguments:
1768 code points to start of the recursion
1769 endcode points to where to stop (current RECURSE item)
1770 bcptr points to the chain of current (unclosed) branch starts
1771 utf8 TRUE if in UTF-8 mode
1772
1773 Returns: TRUE if what is matched could be empty
1774 */
1775
1776 static BOOL
1777 could_be_empty(const uschar *code, const uschar *endcode, branch_chain *bcptr,
1778 BOOL utf8)
1779 {
1780 while (bcptr != NULL && bcptr->current >= code)
1781 {
1782 if (!could_be_empty_branch(bcptr->current, endcode, utf8)) return FALSE;
1783 bcptr = bcptr->outer;
1784 }
1785 return TRUE;
1786 }
1787
1788
1789
1790 /*************************************************
1791 * Check for POSIX class syntax *
1792 *************************************************/
1793
1794 /* This function is called when the sequence "[:" or "[." or "[=" is
1795 encountered in a character class. It checks whether this is followed by a
1796 sequence of characters terminated by a matching ":]" or ".]" or "=]". If we
1797 reach an unescaped ']' without the special preceding character, return FALSE.
1798
1799 Originally, this function only recognized a sequence of letters between the
1800 terminators, but it seems that Perl recognizes any sequence of characters,
1801 though of course unknown POSIX names are subsequently rejected. Perl gives an
1802 "Unknown POSIX class" error for [:f\oo:] for example, where previously PCRE
1803 didn't consider this to be a POSIX class. Likewise for [:1234:].
1804
1805 The problem in trying to be exactly like Perl is in the handling of escapes. We
1806 have to be sure that [abc[:x\]pqr] is *not* treated as containing a POSIX
1807 class, but [abc[:x\]pqr:]] is (so that an error can be generated). The code
1808 below handles the special case of \], but does not try to do any other escape
1809 processing. This makes it different from Perl for cases such as [:l\ower:]
1810 where Perl recognizes it as the POSIX class "lower" but PCRE does not recognize
1811 "l\ower". This is a lesser evil that not diagnosing bad classes when Perl does,
1812 I think.
1813
1814 Arguments:
1815 ptr pointer to the initial [
1816 endptr where to return the end pointer
1817
1818 Returns: TRUE or FALSE
1819 */
1820
1821 static BOOL
1822 check_posix_syntax(const uschar *ptr, const uschar **endptr)
1823 {
1824 int terminator; /* Don't combine these lines; the Solaris cc */
1825 terminator = *(++ptr); /* compiler warns about "non-constant" initializer. */
1826 for (++ptr; *ptr != 0; ptr++)
1827 {
1828 if (*ptr == '\\' && ptr[1] == ']') ptr++; else
1829 {
1830 if (*ptr == ']') return FALSE;
1831 if (*ptr == terminator && ptr[1] == ']')
1832 {
1833 *endptr = ptr;
1834 return TRUE;
1835 }
1836 }
1837 }
1838 return FALSE;
1839 }
1840
1841
1842
1843
1844 /*************************************************
1845 * Check POSIX class name *
1846 *************************************************/
1847
1848 /* This function is called to check the name given in a POSIX-style class entry
1849 such as [:alnum:].
1850
1851 Arguments:
1852 ptr points to the first letter
1853 len the length of the name
1854
1855 Returns: a value representing the name, or -1 if unknown
1856 */
1857
1858 static int
1859 check_posix_name(const uschar *ptr, int len)
1860 {
1861 const char *pn = posix_names;
1862 register int yield = 0;
1863 while (posix_name_lengths[yield] != 0)
1864 {
1865 if (len == posix_name_lengths[yield] &&
1866 strncmp((const char *)ptr, pn, len) == 0) return yield;
1867 pn += posix_name_lengths[yield] + 1;
1868 yield++;
1869 }
1870 return -1;
1871 }
1872
1873
1874 /*************************************************
1875 * Adjust OP_RECURSE items in repeated group *
1876 *************************************************/
1877
1878 /* OP_RECURSE items contain an offset from the start of the regex to the group
1879 that is referenced. This means that groups can be replicated for fixed
1880 repetition simply by copying (because the recursion is allowed to refer to
1881 earlier groups that are outside the current group). However, when a group is
1882 optional (i.e. the minimum quantifier is zero), OP_BRAZERO or OP_SKIPZERO is
1883 inserted before it, after it has been compiled. This means that any OP_RECURSE
1884 items within it that refer to the group itself or any contained groups have to
1885 have their offsets adjusted. That one of the jobs of this function. Before it
1886 is called, the partially compiled regex must be temporarily terminated with
1887 OP_END.
1888
1889 This function has been extended with the possibility of forward references for
1890 recursions and subroutine calls. It must also check the list of such references
1891 for the group we are dealing with. If it finds that one of the recursions in
1892 the current group is on this list, it adjusts the offset in the list, not the
1893 value in the reference (which is a group number).
1894
1895 Arguments:
1896 group points to the start of the group
1897 adjust the amount by which the group is to be moved
1898 utf8 TRUE in UTF-8 mode
1899 cd contains pointers to tables etc.
1900 save_hwm the hwm forward reference pointer at the start of the group
1901
1902 Returns: nothing
1903 */
1904
1905 static void
1906 adjust_recurse(uschar *group, int adjust, BOOL utf8, compile_data *cd,
1907 uschar *save_hwm)
1908 {
1909 uschar *ptr = group;
1910
1911 while ((ptr = (uschar *)find_recurse(ptr, utf8)) != NULL)
1912 {
1913 int offset;
1914 uschar *hc;
1915
1916 /* See if this recursion is on the forward reference list. If so, adjust the
1917 reference. */
1918
1919 for (hc = save_hwm; hc < cd->hwm; hc += LINK_SIZE)
1920 {
1921 offset = GET(hc, 0);
1922 if (cd->start_code + offset == ptr + 1)
1923 {
1924 PUT(hc, 0, offset + adjust);
1925 break;
1926 }
1927 }
1928
1929 /* Otherwise, adjust the recursion offset if it's after the start of this
1930 group. */
1931
1932 if (hc >= cd->hwm)
1933 {
1934 offset = GET(ptr, 1);
1935 if (cd->start_code + offset >= group) PUT(ptr, 1, offset + adjust);
1936 }
1937
1938 ptr += 1 + LINK_SIZE;
1939 }
1940 }
1941
1942
1943
1944 /*************************************************
1945 * Insert an automatic callout point *
1946 *************************************************/
1947
1948 /* This function is called when the PCRE_AUTO_CALLOUT option is set, to insert
1949 callout points before each pattern item.
1950
1951 Arguments:
1952 code current code pointer
1953 ptr current pattern pointer
1954 cd pointers to tables etc
1955
1956 Returns: new code pointer
1957 */
1958
1959 static uschar *
1960 auto_callout(uschar *code, const uschar *ptr, compile_data *cd)
1961 {
1962 *code++ = OP_CALLOUT;
1963 *code++ = 255;
1964 PUT(code, 0, ptr - cd->start_pattern); /* Pattern offset */
1965 PUT(code, LINK_SIZE, 0); /* Default length */
1966 return code + 2*LINK_SIZE;
1967 }
1968
1969
1970
1971 /*************************************************
1972 * Complete a callout item *
1973 *************************************************/
1974
1975 /* A callout item contains the length of the next item in the pattern, which
1976 we can't fill in till after we have reached the relevant point. This is used
1977 for both automatic and manual callouts.
1978
1979 Arguments:
1980 previous_callout points to previous callout item
1981 ptr current pattern pointer
1982 cd pointers to tables etc
1983
1984 Returns: nothing
1985 */
1986
1987 static void
1988 complete_callout(uschar *previous_callout, const uschar *ptr, compile_data *cd)
1989 {
1990 int length = ptr - cd->start_pattern - GET(previous_callout, 2);
1991 PUT(previous_callout, 2 + LINK_SIZE, length);
1992 }
1993
1994
1995
1996 #ifdef SUPPORT_UCP
1997 /*************************************************
1998 * Get othercase range *
1999 *************************************************/
2000
2001 /* This function is passed the start and end of a class range, in UTF-8 mode
2002 with UCP support. It searches up the characters, looking for internal ranges of
2003 characters in the "other" case. Each call returns the next one, updating the
2004 start address.
2005
2006 Arguments:
2007 cptr points to starting character value; updated
2008 d end value
2009 ocptr where to put start of othercase range
2010 odptr where to put end of othercase range
2011
2012 Yield: TRUE when range returned; FALSE when no more
2013 */
2014
2015 static BOOL
2016 get_othercase_range(unsigned int *cptr, unsigned int d, unsigned int *ocptr,
2017 unsigned int *odptr)
2018 {
2019 unsigned int c, othercase, next;
2020
2021 for (c = *cptr; c <= d; c++)
2022 { if ((othercase = UCD_OTHERCASE(c)) != c) break; }
2023
2024 if (c > d) return FALSE;
2025
2026 *ocptr = othercase;
2027 next = othercase + 1;
2028
2029 for (++c; c <= d; c++)
2030 {
2031 if (UCD_OTHERCASE(c) != next) break;
2032 next++;
2033 }
2034
2035 *odptr = next - 1;
2036 *cptr = c;
2037
2038 return TRUE;
2039 }
2040 #endif /* SUPPORT_UCP */
2041
2042
2043
2044 /*************************************************
2045 * Check if auto-possessifying is possible *
2046 *************************************************/
2047
2048 /* This function is called for unlimited repeats of certain items, to see
2049 whether the next thing could possibly match the repeated item. If not, it makes
2050 sense to automatically possessify the repeated item.
2051
2052 Arguments:
2053 op_code the repeated op code
2054 this data for this item, depends on the opcode
2055 utf8 TRUE in UTF-8 mode
2056 utf8_char used for utf8 character bytes, NULL if not relevant
2057 ptr next character in pattern
2058 options options bits
2059 cd contains pointers to tables etc.
2060
2061 Returns: TRUE if possessifying is wanted
2062 */
2063
2064 static BOOL
2065 check_auto_possessive(int op_code, int item, BOOL utf8, uschar *utf8_char,
2066 const uschar *ptr, int options, compile_data *cd)
2067 {
2068 int next;
2069
2070 /* Skip whitespace and comments in extended mode */
2071
2072 if ((options & PCRE_EXTENDED) != 0)
2073 {
2074 for (;;)
2075 {
2076 while ((cd->ctypes[*ptr] & ctype_space) != 0) ptr++;
2077 if (*ptr == '#')
2078 {
2079 while (*(++ptr) != 0)
2080 if (IS_NEWLINE(ptr)) { ptr += cd->nllen; break; }
2081 }
2082 else break;
2083 }
2084 }
2085
2086 /* If the next item is one that we can handle, get its value. A non-negative
2087 value is a character, a negative value is an escape value. */
2088
2089 if (*ptr == '\\')
2090 {
2091 int temperrorcode = 0;
2092 next = check_escape(&ptr, &temperrorcode, cd->bracount, options, FALSE);
2093 if (temperrorcode != 0) return FALSE;
2094 ptr++; /* Point after the escape sequence */
2095 }
2096
2097 else if ((cd->ctypes[*ptr] & ctype_meta) == 0)
2098 {
2099 #ifdef SUPPORT_UTF8
2100 if (utf8) { GETCHARINC(next, ptr); } else
2101 #endif
2102 next = *ptr++;
2103 }
2104
2105 else return FALSE;
2106
2107 /* Skip whitespace and comments in extended mode */
2108
2109 if ((options & PCRE_EXTENDED) != 0)
2110 {
2111 for (;;)
2112 {
2113 while ((cd->ctypes[*ptr] & ctype_space) != 0) ptr++;
2114 if (*ptr == '#')
2115 {
2116 while (*(++ptr) != 0)
2117 if (IS_NEWLINE(ptr)) { ptr += cd->nllen; break; }
2118 }
2119 else break;
2120 }
2121 }
2122
2123 /* If the next thing is itself optional, we have to give up. */
2124
2125 if (*ptr == '*' || *ptr == '?' || strncmp((char *)ptr, "{0,", 3) == 0)
2126 return FALSE;
2127
2128 /* Now compare the next item with the previous opcode. If the previous is a
2129 positive single character match, "item" either contains the character or, if
2130 "item" is greater than 127 in utf8 mode, the character's bytes are in
2131 utf8_char. */
2132
2133
2134 /* Handle cases when the next item is a character. */
2135
2136 if (next >= 0) switch(op_code)
2137 {
2138 case OP_CHAR:
2139 #ifdef SUPPORT_UTF8
2140 if (utf8 && item > 127) { GETCHAR(item, utf8_char); }
2141 #else
2142 (void)(utf8_char); /* Keep compiler happy by referencing function argument */
2143 #endif
2144 return item != next;
2145
2146 /* For CHARNC (caseless character) we must check the other case. If we have
2147 Unicode property support, we can use it to test the other case of
2148 high-valued characters. */
2149
2150 case OP_CHARNC:
2151 #ifdef SUPPORT_UTF8
2152 if (utf8 && item > 127) { GETCHAR(item, utf8_char); }
2153 #endif
2154 if (item == next) return FALSE;
2155 #ifdef SUPPORT_UTF8
2156 if (utf8)
2157 {
2158 unsigned int othercase;
2159 if (next < 128) othercase = cd->fcc[next]; else
2160 #ifdef SUPPORT_UCP
2161 othercase = UCD_OTHERCASE((unsigned int)next);
2162 #else
2163 othercase = NOTACHAR;
2164 #endif
2165 return (unsigned int)item != othercase;
2166 }
2167 else
2168 #endif /* SUPPORT_UTF8 */
2169 return (item != cd->fcc[next]); /* Non-UTF-8 mode */
2170
2171 /* For OP_NOT, "item" must be a single-byte character. */
2172
2173 case OP_NOT:
2174 if (item == next) return TRUE;
2175 if ((options & PCRE_CASELESS) == 0) return FALSE;
2176 #ifdef SUPPORT_UTF8
2177 if (utf8)
2178 {
2179 unsigned int othercase;
2180 if (next < 128) othercase = cd->fcc[next]; else
2181 #ifdef SUPPORT_UCP
2182 othercase = UCD_OTHERCASE(next);
2183 #else
2184 othercase = NOTACHAR;
2185 #endif
2186 return (unsigned int)item == othercase;
2187 }
2188 else
2189 #endif /* SUPPORT_UTF8 */
2190 return (item == cd->fcc[next]); /* Non-UTF-8 mode */
2191
2192 case OP_DIGIT:
2193 return next > 127 || (cd->ctypes[next] & ctype_digit) == 0;
2194
2195 case OP_NOT_DIGIT:
2196 return next <= 127 && (cd->ctypes[next] & ctype_digit) != 0;
2197
2198 case OP_WHITESPACE:
2199 return next > 127 || (cd->ctypes[next] & ctype_space) == 0;
2200
2201 case OP_NOT_WHITESPACE:
2202 return next <= 127 && (cd->ctypes[next] & ctype_space) != 0;
2203
2204 case OP_WORDCHAR:
2205 return next > 127 || (cd->ctypes[next] & ctype_word) == 0;
2206
2207 case OP_NOT_WORDCHAR:
2208 return next <= 127 && (cd->ctypes[next] & ctype_word) != 0;
2209
2210 case OP_HSPACE:
2211 case OP_NOT_HSPACE:
2212 switch(next)
2213 {
2214 case 0x09:
2215 case 0x20:
2216 case 0xa0:
2217 case 0x1680:
2218 case 0x180e:
2219 case 0x2000:
2220 case 0x2001:
2221 case 0x2002:
2222 case 0x2003:
2223 case 0x2004:
2224 case 0x2005:
2225 case 0x2006:
2226 case 0x2007:
2227 case 0x2008:
2228 case 0x2009:
2229 case 0x200A:
2230 case 0x202f:
2231 case 0x205f:
2232 case 0x3000:
2233 return op_code != OP_HSPACE;
2234 default:
2235 return op_code == OP_HSPACE;
2236 }
2237
2238 case OP_VSPACE:
2239 case OP_NOT_VSPACE:
2240 switch(next)
2241 {
2242 case 0x0a:
2243 case 0x0b:
2244 case 0x0c:
2245 case 0x0d:
2246 case 0x85:
2247 case 0x2028:
2248 case 0x2029:
2249 return op_code != OP_VSPACE;
2250 default:
2251 return op_code == OP_VSPACE;
2252 }
2253
2254 default:
2255 return FALSE;
2256 }
2257
2258
2259 /* Handle the case when the next item is \d, \s, etc. */
2260
2261 switch(op_code)
2262 {
2263 case OP_CHAR:
2264 case OP_CHARNC:
2265 #ifdef SUPPORT_UTF8
2266 if (utf8 && item > 127) { GETCHAR(item, utf8_char); }
2267 #endif
2268 switch(-next)
2269 {
2270 case ESC_d:
2271 return item > 127 || (cd->ctypes[item] & ctype_digit) == 0;
2272
2273 case ESC_D:
2274 return item <= 127 && (cd->ctypes[item] & ctype_digit) != 0;
2275
2276 case ESC_s:
2277 return item > 127 || (cd->ctypes[item] & ctype_space) == 0;
2278
2279 case ESC_S:
2280 return item <= 127 && (cd->ctypes[item] & ctype_space) != 0;
2281
2282 case ESC_w:
2283 return item > 127 || (cd->ctypes[item] & ctype_word) == 0;
2284
2285 case ESC_W:
2286 return item <= 127 && (cd->ctypes[item] & ctype_word) != 0;
2287
2288 case ESC_h:
2289 case ESC_H:
2290 switch(item)
2291 {
2292 case 0x09:
2293 case 0x20:
2294 case 0xa0:
2295 case 0x1680:
2296 case 0x180e:
2297 case 0x2000:
2298 case 0x2001:
2299 case 0x2002:
2300 case 0x2003:
2301 case 0x2004:
2302 case 0x2005:
2303 case 0x2006:
2304 case 0x2007:
2305 case 0x2008:
2306 case 0x2009:
2307 case 0x200A:
2308 case 0x202f:
2309 case 0x205f:
2310 case 0x3000:
2311 return -next != ESC_h;
2312 default:
2313 return -next == ESC_h;
2314 }
2315
2316 case ESC_v:
2317 case ESC_V:
2318 switch(item)
2319 {
2320 case 0x0a:
2321 case 0x0b:
2322 case 0x0c:
2323 case 0x0d:
2324 case 0x85:
2325 case 0x2028:
2326 case 0x2029:
2327 return -next != ESC_v;
2328 default:
2329 return -next == ESC_v;
2330 }
2331
2332 default:
2333 return FALSE;
2334 }
2335
2336 case OP_DIGIT:
2337 return next == -ESC_D || next == -ESC_s || next == -ESC_W ||
2338 next == -ESC_h || next == -ESC_v;
2339
2340 case OP_NOT_DIGIT:
2341 return next == -ESC_d;
2342
2343 case OP_WHITESPACE:
2344 return next == -ESC_S || next == -ESC_d || next == -ESC_w;
2345
2346 case OP_NOT_WHITESPACE:
2347 return next == -ESC_s || next == -ESC_h || next == -ESC_v;
2348
2349 case OP_HSPACE:
2350 return next == -ESC_S || next == -ESC_H || next == -ESC_d || next == -ESC_w;
2351
2352 case OP_NOT_HSPACE:
2353 return next == -ESC_h;
2354
2355 /* Can't have \S in here because VT matches \S (Perl anomaly) */
2356 case OP_VSPACE:
2357 return next == -ESC_V || next == -ESC_d || next == -ESC_w;
2358
2359 case OP_NOT_VSPACE:
2360 return next == -ESC_v;
2361
2362 case OP_WORDCHAR:
2363 return next == -ESC_W || next == -ESC_s || next == -ESC_h || next == -ESC_v;
2364
2365 case OP_NOT_WORDCHAR:
2366 return next == -ESC_w || next == -ESC_d;
2367
2368 default:
2369 return FALSE;
2370 }
2371
2372 /* Control does not reach here */
2373 }
2374
2375
2376
2377 /*************************************************
2378 * Compile one branch *
2379 *************************************************/
2380
2381 /* Scan the pattern, compiling it into the a vector. If the options are
2382 changed during the branch, the pointer is used to change the external options
2383 bits. This function is used during the pre-compile phase when we are trying
2384 to find out the amount of memory needed, as well as during the real compile
2385 phase. The value of lengthptr distinguishes the two phases.
2386
2387 Arguments:
2388 optionsptr pointer to the option bits
2389 codeptr points to the pointer to the current code point
2390 ptrptr points to the current pattern pointer
2391 errorcodeptr points to error code variable
2392 firstbyteptr set to initial literal character, or < 0 (REQ_UNSET, REQ_NONE)
2393 reqbyteptr set to the last literal character required, else < 0
2394 bcptr points to current branch chain
2395 cd contains pointers to tables etc.
2396 lengthptr NULL during the real compile phase
2397 points to length accumulator during pre-compile phase
2398
2399 Returns: TRUE on success
2400 FALSE, with *errorcodeptr set non-zero on error
2401 */
2402
2403 static BOOL
2404 compile_branch(int *optionsptr, uschar **codeptr, const uschar **ptrptr,
2405 int *errorcodeptr, int *firstbyteptr, int *reqbyteptr, branch_chain *bcptr,
2406 compile_data *cd, int *lengthptr)
2407 {
2408 int repeat_type, op_type;
2409 int repeat_min = 0, repeat_max = 0; /* To please picky compilers */
2410 int bravalue = 0;
2411 int greedy_default, greedy_non_default;
2412 int firstbyte, reqbyte;
2413 int zeroreqbyte, zerofirstbyte;
2414 int req_caseopt, reqvary, tempreqvary;
2415 int options = *optionsptr;
2416 int after_manual_callout = 0;
2417 int length_prevgroup = 0;
2418 register int c;
2419 register uschar *code = *codeptr;
2420 uschar *last_code = code;
2421 uschar *orig_code = code;
2422 uschar *tempcode;
2423 BOOL inescq = FALSE;
2424 BOOL groupsetfirstbyte = FALSE;
2425 const uschar *ptr = *ptrptr;
2426 const uschar *tempptr;
2427 uschar *previous = NULL;
2428 uschar *previous_callout = NULL;
2429 uschar *save_hwm = NULL;
2430 uschar classbits[32];
2431
2432 #ifdef SUPPORT_UTF8
2433 BOOL class_utf8;
2434 BOOL utf8 = (options & PCRE_UTF8) != 0;
2435 uschar *class_utf8data;
2436 uschar *class_utf8data_base;
2437 uschar utf8_char[6];
2438 #else
2439 BOOL utf8 = FALSE;
2440 uschar *utf8_char = NULL;
2441 #endif
2442
2443 #ifdef DEBUG
2444 if (lengthptr != NULL) DPRINTF((">> start branch\n"));
2445 #endif
2446
2447 /* Set up the default and non-default settings for greediness */
2448
2449 greedy_default = ((options & PCRE_UNGREEDY) != 0);
2450 greedy_non_default = greedy_default ^ 1;
2451
2452 /* Initialize no first byte, no required byte. REQ_UNSET means "no char
2453 matching encountered yet". It gets changed to REQ_NONE if we hit something that
2454 matches a non-fixed char first char; reqbyte just remains unset if we never
2455 find one.
2456
2457 When we hit a repeat whose minimum is zero, we may have to adjust these values
2458 to take the zero repeat into account. This is implemented by setting them to
2459 zerofirstbyte and zeroreqbyte when such a repeat is encountered. The individual
2460 item types that can be repeated set these backoff variables appropriately. */
2461
2462 firstbyte = reqbyte = zerofirstbyte = zeroreqbyte = REQ_UNSET;
2463
2464 /* The variable req_caseopt contains either the REQ_CASELESS value or zero,
2465 according to the current setting of the caseless flag. REQ_CASELESS is a bit
2466 value > 255. It is added into the firstbyte or reqbyte variables to record the
2467 case status of the value. This is used only for ASCII characters. */
2468
2469 req_caseopt = ((options & PCRE_CASELESS) != 0)? REQ_CASELESS : 0;
2470
2471 /* Switch on next character until the end of the branch */
2472
2473 for (;; ptr++)
2474 {
2475 BOOL negate_class;
2476 BOOL should_flip_negation;
2477 BOOL possessive_quantifier;
2478 BOOL is_quantifier;
2479 BOOL is_recurse;
2480 BOOL reset_bracount;
2481 int class_charcount;
2482 int class_lastchar;
2483 int newoptions;
2484 int recno;
2485 int refsign;
2486 int skipbytes;
2487 int subreqbyte;
2488 int subfirstbyte;
2489 int terminator;
2490 int mclength;
2491 uschar mcbuffer[8];
2492
2493 /* Get next byte in the pattern */
2494
2495 c = *ptr;
2496
2497 /* If we are in the pre-compile phase, accumulate the length used for the
2498 previous cycle of this loop. */
2499
2500 if (lengthptr != NULL)
2501 {
2502 #ifdef DEBUG
2503 if (code > cd->hwm) cd->hwm = code; /* High water info */
2504 #endif
2505 if (code > cd->start_workspace + COMPILE_WORK_SIZE) /* Check for overrun */
2506 {
2507 *errorcodeptr = ERR52;
2508 goto FAILED;
2509 }
2510
2511 /* There is at least one situation where code goes backwards: this is the
2512 case of a zero quantifier after a class (e.g. [ab]{0}). At compile time,
2513 the class is simply eliminated. However, it is created first, so we have to
2514 allow memory for it. Therefore, don't ever reduce the length at this point.
2515 */
2516
2517 if (code < last_code) code = last_code;
2518
2519 /* Paranoid check for integer overflow */
2520
2521 if (OFLOW_MAX - *lengthptr < code - last_code)
2522 {
2523 *errorcodeptr = ERR20;
2524 goto FAILED;
2525 }
2526
2527 *lengthptr += code - last_code;
2528 DPRINTF(("length=%d added %d c=%c\n", *lengthptr, code - last_code, c));
2529
2530 /* If "previous" is set and it is not at the start of the work space, move
2531 it back to there, in order to avoid filling up the work space. Otherwise,
2532 if "previous" is NULL, reset the current code pointer to the start. */
2533
2534 if (previous != NULL)
2535 {
2536 if (previous > orig_code)
2537 {
2538 memmove(orig_code, previous, code - previous);
2539 code -= previous - orig_code;
2540 previous = orig_code;
2541 }
2542 }
2543 else code = orig_code;
2544
2545 /* Remember where this code item starts so we can pick up the length
2546 next time round. */
2547
2548 last_code = code;
2549 }
2550
2551 /* In the real compile phase, just check the workspace used by the forward
2552 reference list. */
2553
2554 else if (cd->hwm > cd->start_workspace + COMPILE_WORK_SIZE)
2555 {
2556 *errorcodeptr = ERR52;
2557 goto FAILED;
2558 }
2559
2560 /* If in \Q...\E, check for the end; if not, we have a literal */
2561
2562 if (inescq && c != 0)
2563 {
2564 if (c == '\\' && ptr[1] == 'E')
2565 {
2566 inescq = FALSE;
2567 ptr++;
2568 continue;
2569 }
2570 else
2571 {
2572 if (previous_callout != NULL)
2573 {
2574 if (lengthptr == NULL) /* Don't attempt in pre-compile phase */
2575 complete_callout(previous_callout, ptr, cd);
2576 previous_callout = NULL;
2577 }
2578 if ((options & PCRE_AUTO_CALLOUT) != 0)
2579 {
2580 previous_callout = code;
2581 code = auto_callout(code, ptr, cd);
2582 }
2583 goto NORMAL_CHAR;
2584 }
2585 }
2586
2587 /* Fill in length of a previous callout, except when the next thing is
2588 a quantifier. */
2589
2590 is_quantifier = c == '*' || c == '+' || c == '?' ||
2591 (c == '{' && is_counted_repeat(ptr+1));
2592
2593 if (!is_quantifier && previous_callout != NULL &&
2594 after_manual_callout-- <= 0)
2595 {
2596 if (lengthptr == NULL) /* Don't attempt in pre-compile phase */
2597 complete_callout(previous_callout, ptr, cd);
2598 previous_callout = NULL;
2599 }
2600
2601 /* In extended mode, skip white space and comments */
2602
2603 if ((options & PCRE_EXTENDED) != 0)
2604 {
2605 if ((cd->ctypes[c] & ctype_space) != 0) continue;
2606 if (c == '#')
2607 {
2608 while (*(++ptr) != 0)
2609 {
2610 if (IS_NEWLINE(ptr)) { ptr += cd->nllen - 1; break; }
2611 }
2612 if (*ptr != 0) continue;
2613
2614 /* Else fall through to handle end of string */
2615 c = 0;
2616 }
2617 }
2618
2619 /* No auto callout for quantifiers. */
2620
2621 if ((options & PCRE_AUTO_CALLOUT) != 0 && !is_quantifier)
2622 {
2623 previous_callout = code;
2624 code = auto_callout(code, ptr, cd);
2625 }
2626
2627 switch(c)
2628 {
2629 /* ===================================================================*/
2630 case 0: /* The branch terminates at string end */
2631 case '|': /* or | or ) */
2632 case ')':
2633 *firstbyteptr = firstbyte;
2634 *reqbyteptr = reqbyte;
2635 *codeptr = code;
2636 *ptrptr = ptr;
2637 if (lengthptr != NULL)
2638 {
2639 if (OFLOW_MAX - *lengthptr < code - last_code)
2640 {
2641 *errorcodeptr = ERR20;
2642 goto FAILED;
2643 }
2644 *lengthptr += code - last_code; /* To include callout length */
2645 DPRINTF((">> end branch\n"));
2646 }
2647 return TRUE;
2648
2649
2650 /* ===================================================================*/
2651 /* Handle single-character metacharacters. In multiline mode, ^ disables
2652 the setting of any following char as a first character. */
2653
2654 case '^':
2655 if ((options & PCRE_MULTILINE) != 0)
2656 {
2657 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
2658 }
2659 previous = NULL;
2660 *code++ = OP_CIRC;
2661 break;
2662
2663 case '$':
2664 previous = NULL;
2665 *code++ = OP_DOLL;
2666 break;
2667
2668 /* There can never be a first char if '.' is first, whatever happens about
2669 repeats. The value of reqbyte doesn't change either. */
2670
2671 case '.':
2672 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
2673 zerofirstbyte = firstbyte;
2674 zeroreqbyte = reqbyte;
2675 previous = code;
2676 *code++ = ((options & PCRE_DOTALL) != 0)? OP_ALLANY: OP_ANY;
2677 break;
2678
2679
2680 /* ===================================================================*/
2681 /* Character classes. If the included characters are all < 256, we build a
2682 32-byte bitmap of the permitted characters, except in the special case
2683 where there is only one such character. For negated classes, we build the
2684 map as usual, then invert it at the end. However, we use a different opcode
2685 so that data characters > 255 can be handled correctly.
2686
2687 If the class contains characters outside the 0-255 range, a different
2688 opcode is compiled. It may optionally have a bit map for characters < 256,
2689 but those above are are explicitly listed afterwards. A flag byte tells
2690 whether the bitmap is present, and whether this is a negated class or not.
2691
2692 In JavaScript compatibility mode, an isolated ']' causes an error. In
2693 default (Perl) mode, it is treated as a data character. */
2694
2695 case ']':
2696 if ((cd->external_options & PCRE_JAVASCRIPT_COMPAT) != 0)
2697 {
2698 *errorcodeptr = ERR64;
2699 goto FAILED;
2700 }
2701 goto NORMAL_CHAR;
2702
2703 case '[':
2704 previous = code;
2705
2706 /* PCRE supports POSIX class stuff inside a class. Perl gives an error if
2707 they are encountered at the top level, so we'll do that too. */
2708
2709 if ((ptr[1] == ':' || ptr[1] == '.' || ptr[1] == '=') &&
2710 check_posix_syntax(ptr, &tempptr))
2711 {
2712 *errorcodeptr = (ptr[1] == ':')? ERR13 : ERR31;
2713 goto FAILED;
2714 }
2715
2716 /* If the first character is '^', set the negation flag and skip it. Also,
2717 if the first few characters (either before or after ^) are \Q\E or \E we
2718 skip them too. This makes for compatibility with Perl. */
2719
2720 negate_class = FALSE;
2721 for (;;)
2722 {
2723 c = *(++ptr);
2724 if (c == '\\')
2725 {
2726 if (ptr[1] == 'E') ptr++;
2727 else if (strncmp((const char *)ptr+1, "Q\\E", 3) == 0) ptr += 3;
2728 else break;
2729 }
2730 else if (!negate_class && c == '^')
2731 negate_class = TRUE;
2732 else break;
2733 }
2734
2735 /* Empty classes are allowed in JavaScript compatibility mode. Otherwise,
2736 an initial ']' is taken as a data character -- the code below handles
2737 that. In JS mode, [] must always fail, so generate OP_FAIL, whereas
2738 [^] must match any character, so generate OP_ALLANY. */
2739
2740 if (c ==']' && (cd->external_options & PCRE_JAVASCRIPT_COMPAT) != 0)
2741 {
2742 *code++ = negate_class? OP_ALLANY : OP_FAIL;
2743 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
2744 zerofirstbyte = firstbyte;
2745 break;
2746 }
2747
2748 /* If a class contains a negative special such as \S, we need to flip the
2749 negation flag at the end, so that support for characters > 255 works
2750 correctly (they are all included in the class). */
2751
2752 should_flip_negation = FALSE;
2753
2754 /* Keep a count of chars with values < 256 so that we can optimize the case
2755 of just a single character (as long as it's < 256). However, For higher
2756 valued UTF-8 characters, we don't yet do any optimization. */
2757
2758 class_charcount = 0;
2759 class_lastchar = -1;
2760
2761 /* Initialize the 32-char bit map to all zeros. We build the map in a
2762 temporary bit of memory, in case the class contains only 1 character (less
2763 than 256), because in that case the compiled code doesn't use the bit map.
2764 */
2765
2766 memset(classbits, 0, 32 * sizeof(uschar));
2767
2768 #ifdef SUPPORT_UTF8
2769 class_utf8 = FALSE; /* No chars >= 256 */
2770 class_utf8data = code + LINK_SIZE + 2; /* For UTF-8 items */
2771 class_utf8data_base = class_utf8data; /* For resetting in pass 1 */
2772 #endif
2773
2774 /* Process characters until ] is reached. By writing this as a "do" it
2775 means that an initial ] is taken as a data character. At the start of the
2776 loop, c contains the first byte of the character. */
2777
2778 if (c != 0) do
2779 {
2780 const uschar *oldptr;
2781
2782 #ifdef SUPPORT_UTF8
2783 if (utf8 && c > 127)
2784 { /* Braces are required because the */
2785 GETCHARLEN(c, ptr, ptr); /* macro generates multiple statements */
2786 }
2787
2788 /* In the pre-compile phase, accumulate the length of any UTF-8 extra
2789 data and reset the pointer. This is so that very large classes that
2790 contain a zillion UTF-8 characters no longer overwrite the work space
2791 (which is on the stack). */
2792
2793 if (lengthptr != NULL)
2794 {
2795 *lengthptr += class_utf8data - class_utf8data_base;
2796 class_utf8data = class_utf8data_base;
2797 }
2798
2799 #endif
2800
2801 /* Inside \Q...\E everything is literal except \E */
2802
2803 if (inescq)
2804 {
2805 if (c == '\\' && ptr[1] == 'E') /* If we are at \E */
2806 {
2807 inescq = FALSE; /* Reset literal state */
2808 ptr++; /* Skip the 'E' */
2809 continue; /* Carry on with next */
2810 }
2811 goto CHECK_RANGE; /* Could be range if \E follows */
2812 }
2813
2814 /* Handle POSIX class names. Perl allows a negation extension of the
2815 form [:^name:]. A square bracket that doesn't match the syntax is
2816 treated as a literal. We also recognize the POSIX constructions
2817 [.ch.] and [=ch=] ("collating elements") and fault them, as Perl
2818 5.6 and 5.8 do. */
2819
2820 if (c == '[' &&
2821 (ptr[1] == ':' || ptr[1] == '.' || ptr[1] == '=') &&
2822 check_posix_syntax(ptr, &tempptr))
2823 {
2824 BOOL local_negate = FALSE;
2825 int posix_class, taboffset, tabopt;
2826 register const uschar *cbits = cd->cbits;
2827 uschar pbits[32];
2828
2829 if (ptr[1] != ':')
2830 {
2831 *errorcodeptr = ERR31;
2832 goto FAILED;
2833 }
2834
2835 ptr += 2;
2836 if (*ptr == '^')
2837 {
2838 local_negate = TRUE;
2839 should_flip_negation = TRUE; /* Note negative special */
2840 ptr++;
2841 }
2842
2843 posix_class = check_posix_name(ptr, tempptr - ptr);
2844 if (posix_class < 0)
2845 {
2846 *errorcodeptr = ERR30;
2847 goto FAILED;
2848 }
2849
2850 /* If matching is caseless, upper and lower are converted to
2851 alpha. This relies on the fact that the class table starts with
2852 alpha, lower, upper as the first 3 entries. */
2853
2854 if ((options & PCRE_CASELESS) != 0 && posix_class <= 2)
2855 posix_class = 0;
2856
2857 /* We build the bit map for the POSIX class in a chunk of local store
2858 because we may be adding and subtracting from it, and we don't want to
2859 subtract bits that may be in the main map already. At the end we or the
2860 result into the bit map that is being built. */
2861
2862 posix_class *= 3;
2863
2864 /* Copy in the first table (always present) */
2865
2866 memcpy(pbits, cbits + posix_class_maps[posix_class],
2867 32 * sizeof(uschar));
2868
2869 /* If there is a second table, add or remove it as required. */
2870
2871 taboffset = posix_class_maps[posix_class + 1];
2872 tabopt = posix_class_maps[posix_class + 2];
2873
2874 if (taboffset >= 0)
2875 {
2876 if (tabopt >= 0)
2877 for (c = 0; c < 32; c++) pbits[c] |= cbits[c + taboffset];
2878 else
2879 for (c = 0; c < 32; c++) pbits[c] &= ~cbits[c + taboffset];
2880 }
2881
2882 /* Not see if we need to remove any special characters. An option
2883 value of 1 removes vertical space and 2 removes underscore. */
2884
2885 if (tabopt < 0) tabopt = -tabopt;
2886 if (tabopt == 1) pbits[1] &= ~0x3c;
2887 else if (tabopt == 2) pbits[11] &= 0x7f;
2888
2889 /* Add the POSIX table or its complement into the main table that is
2890 being built and we are done. */
2891
2892 if (local_negate)
2893 for (c = 0; c < 32; c++) classbits[c] |= ~pbits[c];
2894 else
2895 for (c = 0; c < 32; c++) classbits[c] |= pbits[c];
2896
2897 ptr = tempptr + 1;
2898 class_charcount = 10; /* Set > 1; assumes more than 1 per class */
2899 continue; /* End of POSIX syntax handling */
2900 }
2901
2902 /* Backslash may introduce a single character, or it may introduce one
2903 of the specials, which just set a flag. The sequence \b is a special
2904 case. Inside a class (and only there) it is treated as backspace.
2905 Elsewhere it marks a word boundary. Other escapes have preset maps ready
2906 to 'or' into the one we are building. We assume they have more than one
2907 character in them, so set class_charcount bigger than one. */
2908
2909 if (c == '\\')
2910 {
2911 c = check_escape(&ptr, errorcodeptr, cd->bracount, options, TRUE);
2912 if (*errorcodeptr != 0) goto FAILED;
2913
2914 if (-c == ESC_b) c = '\b'; /* \b is backspace in a class */
2915 else if (-c == ESC_X) c = 'X'; /* \X is literal X in a class */
2916 else if (-c == ESC_R) c = 'R'; /* \R is literal R in a class */
2917 else if (-c == ESC_Q) /* Handle start of quoted string */
2918 {
2919 if (ptr[1] == '\\' && ptr[2] == 'E')
2920 {
2921 ptr += 2; /* avoid empty string */
2922 }
2923 else inescq = TRUE;
2924 continue;
2925 }
2926 else if (-c == ESC_E) continue; /* Ignore orphan \E */
2927
2928 if (c < 0)
2929 {
2930 register const uschar *cbits = cd->cbits;
2931 class_charcount += 2; /* Greater than 1 is what matters */
2932
2933 /* Save time by not doing this in the pre-compile phase. */
2934
2935 if (lengthptr == NULL) switch (-c)
2936 {
2937 case ESC_d:
2938 for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_digit];
2939 continue;
2940
2941 case ESC_D:
2942 should_flip_negation = TRUE;
2943 for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_digit];
2944 continue;
2945
2946 case ESC_w:
2947 for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_word];
2948 continue;
2949
2950 case ESC_W:
2951 should_flip_negation = TRUE;
2952 for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_word];
2953 continue;
2954
2955 case ESC_s:
2956 for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_space];
2957 classbits[1] &= ~0x08; /* Perl 5.004 onwards omits VT from \s */
2958 continue;
2959
2960 case ESC_S:
2961 should_flip_negation = TRUE;
2962 for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_space];
2963 classbits[1] |= 0x08; /* Perl 5.004 onwards omits VT from \s */
2964 continue;
2965
2966 default: /* Not recognized; fall through */
2967 break; /* Need "default" setting to stop compiler warning. */
2968 }
2969
2970 /* In the pre-compile phase, just do the recognition. */
2971
2972 else if (c == -ESC_d || c == -ESC_D || c == -ESC_w ||
2973 c == -ESC_W || c == -ESC_s || c == -ESC_S) continue;
2974
2975 /* We need to deal with \H, \h, \V, and \v in both phases because
2976 they use extra memory. */
2977
2978 if (-c == ESC_h)
2979 {
2980 SETBIT(classbits, 0x09); /* VT */
2981 SETBIT(classbits, 0x20); /* SPACE */
2982 SETBIT(classbits, 0xa0); /* NSBP */
2983 #ifdef SUPPORT_UTF8
2984 if (utf8)
2985 {
2986 class_utf8 = TRUE;
2987 *class_utf8data++ = XCL_SINGLE;
2988 class_utf8data += _pcre_ord2utf8(0x1680, class_utf8data);
2989 *class_utf8data++ = XCL_SINGLE;
2990 class_utf8data += _pcre_ord2utf8(0x180e, class_utf8data);
2991 *class_utf8data++ = XCL_RANGE;
2992 class_utf8data += _pcre_ord2utf8(0x2000, class_utf8data);
2993 class_utf8data += _pcre_ord2utf8(0x200A, class_utf8data);
2994 *class_utf8data++ = XCL_SINGLE;
2995 class_utf8data += _pcre_ord2utf8(0x202f, class_utf8data);
2996 *class_utf8data++ = XCL_SINGLE;
2997 class_utf8data += _pcre_ord2utf8(0x205f, class_utf8data);
2998 *class_utf8data++ = XCL_SINGLE;
2999 class_utf8data += _pcre_ord2utf8(0x3000, class_utf8data);
3000 }
3001 #endif
3002 continue;
3003 }
3004
3005 if (-c == ESC_H)
3006 {
3007 for (c = 0; c < 32; c++)
3008 {
3009 int x = 0xff;
3010 switch (c)
3011 {
3012 case 0x09/8: x ^= 1 << (0x09%8); break;
3013 case 0x20/8: x ^= 1 << (0x20%8); break;
3014 case 0xa0/8: x ^= 1 << (0xa0%8); break;
3015 default: break;
3016 }
3017 classbits[c] |= x;
3018 }
3019
3020 #ifdef SUPPORT_UTF8
3021 if (utf8)
3022 {
3023 class_utf8 = TRUE;
3024 *class_utf8data++ = XCL_RANGE;
3025 class_utf8data += _pcre_ord2utf8(0x0100, class_utf8data);
3026 class_utf8data += _pcre_ord2utf8(0x167f, class_utf8data);
3027 *class_utf8data++ = XCL_RANGE;
3028 class_utf8data += _pcre_ord2utf8(0x1681, class_utf8data);
3029 class_utf8data += _pcre_ord2utf8(0x180d, class_utf8data);
3030 *class_utf8data++ = XCL_RANGE;
3031 class_utf8data += _pcre_ord2utf8(0x180f, class_utf8data);
3032 class_utf8data += _pcre_ord2utf8(0x1fff, class_utf8data);
3033 *class_utf8data++ = XCL_RANGE;
3034 class_utf8data += _pcre_ord2utf8(0x200B, class_utf8data);
3035 class_utf8data += _pcre_ord2utf8(0x202e, class_utf8data);
3036 *class_utf8data++ = XCL_RANGE;
3037 class_utf8data += _pcre_ord2utf8(0x2030, class_utf8data);
3038 class_utf8data += _pcre_ord2utf8(0x205e, class_utf8data);
3039 *class_utf8data++ = XCL_RANGE;
3040 class_utf8data += _pcre_ord2utf8(0x2060, class_utf8data);
3041 class_utf8data += _pcre_ord2utf8(0x2fff, class_utf8data);
3042 *class_utf8data++ = XCL_RANGE;
3043 class_utf8data += _pcre_ord2utf8(0x3001, class_utf8data);
3044 class_utf8data += _pcre_ord2utf8(0x7fffffff, class_utf8data);
3045 }
3046 #endif
3047 continue;
3048 }
3049
3050 if (-c == ESC_v)
3051 {
3052 SETBIT(classbits, 0x0a); /* LF */
3053 SETBIT(classbits, 0x0b); /* VT */
3054 SETBIT(classbits, 0x0c); /* FF */
3055 SETBIT(classbits, 0x0d); /* CR */
3056 SETBIT(classbits, 0x85); /* NEL */
3057 #ifdef SUPPORT_UTF8
3058 if (utf8)
3059 {
3060 class_utf8 = TRUE;
3061 *class_utf8data++ = XCL_RANGE;
3062 class_utf8data += _pcre_ord2utf8(0x2028, class_utf8data);
3063 class_utf8data += _pcre_ord2utf8(0x2029, class_utf8data);
3064 }
3065 #endif
3066 continue;
3067 }
3068
3069 if (-c == ESC_V)
3070 {
3071 for (c = 0; c < 32; c++)
3072 {
3073 int x = 0xff;
3074 switch (c)
3075 {
3076 case 0x0a/8: x ^= 1 << (0x0a%8);
3077 x ^= 1 << (0x0b%8);
3078 x ^= 1 << (0x0c%8);
3079 x ^= 1 << (0x0d%8);
3080 break;
3081 case 0x85/8: x ^= 1 << (0x85%8); break;
3082 default: break;
3083 }
3084 classbits[c] |= x;
3085 }
3086
3087 #ifdef SUPPORT_UTF8
3088 if (utf8)
3089 {
3090 class_utf8 = TRUE;
3091 *class_utf8data++ = XCL_RANGE;
3092 class_utf8data += _pcre_ord2utf8(0x0100, class_utf8data);
3093 class_utf8data += _pcre_ord2utf8(0x2027, class_utf8data);
3094 *class_utf8data++ = XCL_RANGE;
3095 class_utf8data += _pcre_ord2utf8(0x2029, class_utf8data);
3096 class_utf8data += _pcre_ord2utf8(0x7fffffff, class_utf8data);
3097 }
3098 #endif
3099 continue;
3100 }
3101
3102 /* We need to deal with \P and \p in both phases. */
3103
3104 #ifdef SUPPORT_UCP
3105 if (-c == ESC_p || -c == ESC_P)
3106 {
3107 BOOL negated;
3108 int pdata;
3109 int ptype = get_ucp(&ptr, &negated, &pdata, errorcodeptr);
3110 if (ptype < 0) goto FAILED;
3111 class_utf8 = TRUE;
3112 *class_utf8data++ = ((-c == ESC_p) != negated)?
3113 XCL_PROP : XCL_NOTPROP;
3114 *class_utf8data++ = ptype;
3115 *class_utf8data++ = pdata;
3116 class_charcount -= 2; /* Not a < 256 character */
3117 continue;
3118 }
3119 #endif
3120 /* Unrecognized escapes are faulted if PCRE is running in its
3121 strict mode. By default, for compatibility with Perl, they are
3122 treated as literals. */
3123
3124 if ((options & PCRE_EXTRA) != 0)
3125 {
3126 *errorcodeptr = ERR7;
3127 goto FAILED;
3128 }
3129
3130 class_charcount -= 2; /* Undo the default count from above */
3131 c = *ptr; /* Get the final character and fall through */
3132 }
3133
3134 /* Fall through if we have a single character (c >= 0). This may be
3135 greater than 256 in UTF-8 mode. */
3136
3137 } /* End of backslash handling */
3138
3139 /* A single character may be followed by '-' to form a range. However,
3140 Perl does not permit ']' to be the end of the range. A '-' character
3141 at the end is treated as a literal. Perl ignores orphaned \E sequences
3142 entirely. The code for handling \Q and \E is messy. */
3143
3144 CHECK_RANGE:
3145 while (ptr[1] == '\\' && ptr[2] == 'E')
3146 {
3147 inescq = FALSE;
3148 ptr += 2;
3149 }
3150
3151 oldptr = ptr;
3152
3153 /* Remember \r or \n */
3154
3155 if (c == '\r' || c == '\n') cd->external_flags |= PCRE_HASCRORLF;
3156
3157 /* Check for range */
3158
3159 if (!inescq && ptr[1] == '-')
3160 {
3161 int d;
3162 ptr += 2;
3163 while (*ptr == '\\' && ptr[1] == 'E') ptr += 2;
3164
3165 /* If we hit \Q (not followed by \E) at this point, go into escaped
3166 mode. */
3167
3168 while (*ptr == '\\' && ptr[1] == 'Q')
3169 {
3170 ptr += 2;
3171 if (*ptr == '\\' && ptr[1] == 'E') { ptr += 2; continue; }
3172 inescq = TRUE;
3173 break;
3174 }
3175
3176 if (*ptr == 0 || (!inescq && *ptr == ']'))
3177 {
3178 ptr = oldptr;
3179 goto LONE_SINGLE_CHARACTER;
3180 }
3181
3182 #ifdef SUPPORT_UTF8
3183 if (utf8)
3184 { /* Braces are required because the */
3185 GETCHARLEN(d, ptr, ptr); /* macro generates multiple statements */
3186 }
3187 else
3188 #endif
3189 d = *ptr; /* Not UTF-8 mode */
3190
3191 /* The second part of a range can be a single-character escape, but
3192 not any of the other escapes. Perl 5.6 treats a hyphen as a literal
3193 in such circumstances. */
3194
3195 if (!inescq && d == '\\')
3196 {
3197 d = check_escape(&ptr, errorcodeptr, cd->bracount, options, TRUE);
3198 if (*errorcodeptr != 0) goto FAILED;
3199
3200 /* \b is backspace; \X is literal X; \R is literal R; any other
3201 special means the '-' was literal */
3202
3203 if (d < 0)
3204 {
3205 if (d == -ESC_b) d = '\b';
3206 else if (d == -ESC_X) d = 'X';
3207 else if (d == -ESC_R) d = 'R'; else
3208 {
3209 ptr = oldptr;
3210 goto LONE_SINGLE_CHARACTER; /* A few lines below */
3211 }
3212 }
3213 }
3214
3215 /* Check that the two values are in the correct order. Optimize
3216 one-character ranges */
3217
3218 if (d < c)
3219 {
3220 *errorcodeptr = ERR8;
3221 goto FAILED;
3222 }
3223
3224 if (d == c) goto LONE_SINGLE_CHARACTER; /* A few lines below */
3225
3226 /* Remember \r or \n */
3227
3228 if (d == '\r' || d == '\n') cd->external_flags |= PCRE_HASCRORLF;
3229
3230 /* In UTF-8 mode, if the upper limit is > 255, or > 127 for caseless
3231 matching, we have to use an XCLASS with extra data items. Caseless
3232 matching for characters > 127 is available only if UCP support is
3233 available. */
3234
3235 #ifdef SUPPORT_UTF8
3236 if (utf8 && (d > 255 || ((options & PCRE_CASELESS) != 0 && d > 127)))
3237 {
3238 class_utf8 = TRUE;
3239
3240 /* With UCP support, we can find the other case equivalents of
3241 the relevant characters. There may be several ranges. Optimize how
3242 they fit with the basic range. */
3243
3244 #ifdef SUPPORT_UCP
3245 if ((options & PCRE_CASELESS) != 0)
3246 {
3247 unsigned int occ, ocd;
3248 unsigned int cc = c;
3249 unsigned int origd = d;
3250 while (get_othercase_range(&cc, origd, &occ, &ocd))
3251 {
3252 if (occ >= (unsigned int)c &&
3253 ocd <= (unsigned int)d)
3254 continue; /* Skip embedded ranges */
3255
3256 if (occ < (unsigned int)c &&
3257 ocd >= (unsigned int)c - 1) /* Extend the basic range */
3258 { /* if there is overlap, */
3259 c = occ; /* noting that if occ < c */
3260 continue; /* we can't have ocd > d */
3261 } /* because a subrange is */
3262 if (ocd > (unsigned int)d &&
3263 occ <= (unsigned int)d + 1) /* always shorter than */
3264 { /* the basic range. */
3265 d = ocd;
3266 continue;
3267 }
3268
3269 if (occ == ocd)
3270 {
3271 *class_utf8data++ = XCL_SINGLE;
3272 }
3273 else
3274 {
3275 *class_utf8data++ = XCL_RANGE;
3276 class_utf8data += _pcre_ord2utf8(occ, class_utf8data);
3277 }
3278 class_utf8data += _pcre_ord2utf8(ocd, class_utf8data);
3279 }
3280 }
3281 #endif /* SUPPORT_UCP */
3282
3283 /* Now record the original range, possibly modified for UCP caseless
3284 overlapping ranges. */
3285
3286 *class_utf8data++ = XCL_RANGE;
3287 class_utf8data += _pcre_ord2utf8(c, class_utf8data);
3288 class_utf8data += _pcre_ord2utf8(d, class_utf8data);
3289
3290 /* With UCP support, we are done. Without UCP support, there is no
3291 caseless matching for UTF-8 characters > 127; we can use the bit map
3292 for the smaller ones. */
3293
3294 #ifdef SUPPORT_UCP
3295 continue; /* With next character in the class */
3296 #else
3297 if ((options & PCRE_CASELESS) == 0 || c > 127) continue;
3298
3299 /* Adjust upper limit and fall through to set up the map */
3300
3301 d = 127;
3302
3303 #endif /* SUPPORT_UCP */
3304 }
3305 #endif /* SUPPORT_UTF8 */
3306
3307 /* We use the bit map for all cases when not in UTF-8 mode; else
3308 ranges that lie entirely within 0-127 when there is UCP support; else
3309 for partial ranges without UCP support. */
3310
3311 class_charcount += d - c + 1;
3312 class_lastchar = d;
3313
3314 /* We can save a bit of time by skipping this in the pre-compile. */
3315
3316 if (lengthptr == NULL) for (; c <= d; c++)
3317 {
3318 classbits[c/8] |= (1 << (c&7));
3319 if ((options & PCRE_CASELESS) != 0)
3320 {
3321 int uc = cd->fcc[c]; /* flip case */
3322 classbits[uc/8] |= (1 << (uc&7));
3323 }
3324 }
3325
3326 continue; /* Go get the next char in the class */
3327 }
3328
3329 /* Handle a lone single character - we can get here for a normal
3330 non-escape char, or after \ that introduces a single character or for an
3331 apparent range that isn't. */
3332
3333 LONE_SINGLE_CHARACTER:
3334
3335 /* Handle a character that cannot go in the bit map */
3336
3337 #ifdef SUPPORT_UTF8
3338 if (utf8 && (c > 255 || ((options & PCRE_CASELESS) != 0 && c > 127)))
3339 {
3340 class_utf8 = TRUE;
3341 *class_utf8data++ = XCL_SINGLE;
3342 class_utf8data += _pcre_ord2utf8(c, class_utf8data);
3343
3344 #ifdef SUPPORT_UCP
3345 if ((options & PCRE_CASELESS) != 0)
3346 {
3347 unsigned int othercase;
3348 if ((othercase = UCD_OTHERCASE(c)) != c)
3349 {
3350 *class_utf8data++ = XCL_SINGLE;
3351 class_utf8data += _pcre_ord2utf8(othercase, class_utf8data);
3352 }
3353 }
3354 #endif /* SUPPORT_UCP */
3355
3356 }
3357 else
3358 #endif /* SUPPORT_UTF8 */
3359
3360 /* Handle a single-byte character */
3361 {
3362 classbits[c/8] |= (1 << (c&7));
3363 if ((options & PCRE_CASELESS) != 0)
3364 {
3365 c = cd->fcc[c]; /* flip case */
3366 classbits[c/8] |= (1 << (c&7));
3367 }
3368 class_charcount++;
3369 class_lastchar = c;
3370 }
3371 }
3372
3373 /* Loop until ']' reached. This "while" is the end of the "do" above. */
3374
3375 while ((c = *(++ptr)) != 0 && (c != ']' || inescq));
3376
3377 if (c == 0) /* Missing terminating ']' */
3378 {
3379 *errorcodeptr = ERR6;
3380 goto FAILED;
3381 }
3382
3383
3384 /* This code has been disabled because it would mean that \s counts as
3385 an explicit \r or \n reference, and that's not really what is wanted. Now
3386 we set the flag only if there is a literal "\r" or "\n" in the class. */
3387
3388 #if 0
3389 /* Remember whether \r or \n are in this class */
3390
3391 if (negate_class)
3392 {
3393 if ((classbits[1] & 0x24) != 0x24) cd->external_flags |= PCRE_HASCRORLF;
3394 }
3395 else
3396 {
3397 if ((classbits[1] & 0x24) != 0) cd->external_flags |= PCRE_HASCRORLF;
3398 }
3399 #endif
3400
3401
3402 /* If class_charcount is 1, we saw precisely one character whose value is
3403 less than 256. As long as there were no characters >= 128 and there was no
3404 use of \p or \P, in other words, no use of any XCLASS features, we can
3405 optimize.
3406
3407 In UTF-8 mode, we can optimize the negative case only if there were no
3408 characters >= 128 because OP_NOT and the related opcodes like OP_NOTSTAR
3409 operate on single-bytes only. This is an historical hangover. Maybe one day
3410 we can tidy these opcodes to handle multi-byte characters.
3411
3412 The optimization throws away the bit map. We turn the item into a
3413 1-character OP_CHAR[NC] if it's positive, or OP_NOT if it's negative. Note
3414 that OP_NOT does not support multibyte characters. In the positive case, it
3415 can cause firstbyte to be set. Otherwise, there can be no first char if
3416 this item is first, whatever repeat count may follow. In the case of
3417 reqbyte, save the previous value for reinstating. */
3418
3419 #ifdef SUPPORT_UTF8
3420 if (class_charcount == 1 && !class_utf8 &&
3421 (!utf8 || !negate_class || class_lastchar < 128))
3422 #else
3423 if (class_charcount == 1)
3424 #endif
3425 {
3426 zeroreqbyte = reqbyte;
3427
3428 /* The OP_NOT opcode works on one-byte characters only. */
3429
3430 if (negate_class)
3431 {
3432 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
3433 zerofirstbyte = firstbyte;
3434 *code++ = OP_NOT;
3435 *code++ = class_lastchar;
3436 break;
3437 }
3438
3439 /* For a single, positive character, get the value into mcbuffer, and
3440 then we can handle this with the normal one-character code. */
3441
3442 #ifdef SUPPORT_UTF8
3443 if (utf8 && class_lastchar > 127)
3444 mclength = _pcre_ord2utf8(class_lastchar, mcbuffer);
3445 else
3446 #endif
3447 {
3448 mcbuffer[0] = class_lastchar;
3449 mclength = 1;
3450 }
3451 goto ONE_CHAR;
3452 } /* End of 1-char optimization */
3453
3454 /* The general case - not the one-char optimization. If this is the first
3455 thing in the branch, there can be no first char setting, whatever the
3456 repeat count. Any reqbyte setting must remain unchanged after any kind of
3457 repeat. */
3458
3459 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
3460 zerofirstbyte = firstbyte;
3461 zeroreqbyte = reqbyte;
3462
3463 /* If there are characters with values > 255, we have to compile an
3464 extended class, with its own opcode, unless there was a negated special
3465 such as \S in the class, because in that case all characters > 255 are in
3466 the class, so any that were explicitly given as well can be ignored. If
3467 (when there are explicit characters > 255 that must be listed) there are no
3468 characters < 256, we can omit the bitmap in the actual compiled code. */
3469
3470 #ifdef SUPPORT_UTF8
3471 if (class_utf8 && !should_flip_negation)
3472 {
3473 *class_utf8data++ = XCL_END; /* Marks the end of extra data */
3474 *code++ = OP_XCLASS;
3475 code += LINK_SIZE;
3476 *code = negate_class? XCL_NOT : 0;
3477
3478 /* If the map is required, move up the extra data to make room for it;
3479 otherwise just move the code pointer to the end of the extra data. */
3480
3481 if (class_charcount > 0)
3482 {
3483 *code++ |= XCL_MAP;
3484 memmove(code + 32, code, class_utf8data - code);
3485 memcpy(code, classbits, 32);
3486 code = class_utf8data + 32;
3487 }
3488 else code = class_utf8data;
3489
3490 /* Now fill in the complete length of the item */
3491
3492 PUT(previous, 1, code - previous);
3493 break; /* End of class handling */
3494 }
3495 #endif
3496
3497 /* If there are no characters > 255, set the opcode to OP_CLASS or
3498 OP_NCLASS, depending on whether the whole class was negated and whether
3499 there were negative specials such as \S in the class. Then copy the 32-byte
3500 map into the code vector, negating it if necessary. */
3501
3502 *code++ = (negate_class == should_flip_negation) ? OP_CLASS : OP_NCLASS;
3503 if (negate_class)
3504 {
3505 if (lengthptr == NULL) /* Save time in the pre-compile phase */
3506 for (c = 0; c < 32; c++) code[c] = ~classbits[c];
3507 }
3508 else
3509 {
3510 memcpy(code, classbits, 32);
3511 }
3512 code += 32;
3513 break;
3514
3515
3516 /* ===================================================================*/
3517 /* Various kinds of repeat; '{' is not necessarily a quantifier, but this
3518 has been tested above. */
3519
3520 case '{':
3521 if (!is_quantifier) goto NORMAL_CHAR;
3522 ptr = read_repeat_counts(ptr+1, &repeat_min, &repeat_max, errorcodeptr);
3523 if (*errorcodeptr != 0) goto FAILED;
3524 goto REPEAT;
3525
3526 case '*':
3527 repeat_min = 0;
3528 repeat_max = -1;
3529 goto REPEAT;
3530
3531 case '+':
3532 repeat_min = 1;
3533 repeat_max = -1;
3534 goto REPEAT;
3535
3536 case '?':
3537 repeat_min = 0;
3538 repeat_max = 1;
3539
3540 REPEAT:
3541 if (previous == NULL)
3542 {
3543 *errorcodeptr = ERR9;
3544 goto FAILED;
3545 }
3546
3547 if (repeat_min == 0)
3548 {
3549 firstbyte = zerofirstbyte; /* Adjust for zero repeat */
3550 reqbyte = zeroreqbyte; /* Ditto */
3551 }
3552
3553 /* Remember whether this is a variable length repeat */
3554
3555 reqvary = (repeat_min == repeat_max)? 0 : REQ_VARY;
3556
3557 op_type = 0; /* Default single-char op codes */
3558 possessive_quantifier = FALSE; /* Default not possessive quantifier */
3559
3560 /* Save start of previous item, in case we have to move it up to make space
3561 for an inserted OP_ONCE for the additional '+' extension. */
3562
3563 tempcode = previous;
3564
3565 /* If the next character is '+', we have a possessive quantifier. This
3566 implies greediness, whatever the setting of the PCRE_UNGREEDY option.
3567 If the next character is '?' this is a minimizing repeat, by default,
3568 but if PCRE_UNGREEDY is set, it works the other way round. We change the
3569 repeat type to the non-default. */
3570
3571 if (ptr[1] == '+')
3572 {
3573 repeat_type = 0; /* Force greedy */
3574 possessive_quantifier = TRUE;
3575 ptr++;
3576 }
3577 else if (ptr[1] == '?')
3578 {
3579 repeat_type = greedy_non_default;
3580 ptr++;
3581 }
3582 else repeat_type = greedy_default;
3583
3584 /* If previous was a character match, abolish the item and generate a
3585 repeat item instead. If a char item has a minumum of more than one, ensure
3586 that it is set in reqbyte - it might not be if a sequence such as x{3} is
3587 the first thing in a branch because the x will have gone into firstbyte
3588 instead. */
3589
3590 if (*previous == OP_CHAR || *previous == OP_CHARNC)
3591 {
3592 /* Deal with UTF-8 characters that take up more than one byte. It's
3593 easier to write this out separately than try to macrify it. Use c to
3594 hold the length of the character in bytes, plus 0x80 to flag that it's a
3595 length rather than a small character. */
3596
3597 #ifdef SUPPORT_UTF8
3598 if (utf8 && (code[-1] & 0x80) != 0)
3599 {
3600 uschar *lastchar = code - 1;
3601 while((*lastchar & 0xc0) == 0x80) lastchar--;
3602 c = code - lastchar; /* Length of UTF-8 character */
3603 memcpy(utf8_char, lastchar, c); /* Save the char */
3604 c |= 0x80; /* Flag c as a length */
3605 }
3606 else
3607 #endif
3608
3609 /* Handle the case of a single byte - either with no UTF8 support, or
3610 with UTF-8 disabled, or for a UTF-8 character < 128. */
3611
3612 {
3613 c = code[-1];
3614 if (repeat_min > 1) reqbyte = c | req_caseopt | cd->req_varyopt;
3615 }
3616
3617 /* If the repetition is unlimited, it pays to see if the next thing on
3618 the line is something that cannot possibly match this character. If so,
3619 automatically possessifying this item gains some performance in the case
3620 where the match fails. */
3621
3622 if (!possessive_quantifier &&
3623 repeat_max < 0 &&
3624 check_auto_possessive(*previous, c, utf8, utf8_char, ptr + 1,
3625 options, cd))
3626 {
3627 repeat_type = 0; /* Force greedy */
3628 possessive_quantifier = TRUE;
3629 }
3630
3631 goto OUTPUT_SINGLE_REPEAT; /* Code shared with single character types */
3632 }
3633
3634 /* If previous was a single negated character ([^a] or similar), we use
3635 one of the special opcodes, replacing it. The code is shared with single-
3636 character repeats by setting opt_type to add a suitable offset into
3637 repeat_type. We can also test for auto-possessification. OP_NOT is
3638 currently used only for single-byte chars. */
3639
3640 else if (*previous == OP_NOT)
3641 {
3642 op_type = OP_NOTSTAR - OP_STAR; /* Use "not" opcodes */
3643 c = previous[1];
3644 if (!possessive_quantifier &&
3645 repeat_max < 0 &&
3646 check_auto_possessive(OP_NOT, c, utf8, NULL, ptr + 1, options, cd))
3647 {
3648 repeat_type = 0; /* Force greedy */
3649 possessive_quantifier = TRUE;
3650 }
3651 goto OUTPUT_SINGLE_REPEAT;
3652 }
3653
3654 /* If previous was a character type match (\d or similar), abolish it and
3655 create a suitable repeat item. The code is shared with single-character
3656 repeats by setting op_type to add a suitable offset into repeat_type. Note
3657 the the Unicode property types will be present only when SUPPORT_UCP is
3658 defined, but we don't wrap the little bits of code here because it just
3659 makes it horribly messy. */
3660
3661 else if (*previous < OP_EODN)
3662 {
3663 uschar *oldcode;
3664 int prop_type, prop_value;
3665 op_type = OP_TYPESTAR - OP_STAR; /* Use type opcodes */
3666 c = *previous;
3667
3668 if (!possessive_quantifier &&
3669 repeat_max < 0 &&
3670 check_auto_possessive(c, 0, utf8, NULL, ptr + 1, options, cd))
3671 {
3672 repeat_type = 0; /* Force greedy */
3673 possessive_quantifier = TRUE;
3674 }
3675
3676 OUTPUT_SINGLE_REPEAT:
3677 if (*previous == OP_PROP || *previous == OP_NOTPROP)
3678 {
3679 prop_type = previous[1];
3680 prop_value = previous[2];
3681 }
3682 else prop_type = prop_value = -1;
3683
3684 oldcode = code;
3685 code = previous; /* Usually overwrite previous item */
3686
3687 /* If the maximum is zero then the minimum must also be zero; Perl allows
3688 this case, so we do too - by simply omitting the item altogether. */
3689
3690 if (repeat_max == 0) goto END_REPEAT;
3691
3692 /* All real repeats make it impossible to handle partial matching (maybe
3693 one day we will be able to remove this restriction). */
3694
3695 if (repeat_max != 1) cd->external_flags |= PCRE_NOPARTIAL;
3696
3697 /* Combine the op_type with the repeat_type */
3698
3699 repeat_type += op_type;
3700
3701 /* A minimum of zero is handled either as the special case * or ?, or as
3702 an UPTO, with the maximum given. */
3703
3704 if (repeat_min == 0)
3705 {
3706 if (repeat_max == -1) *code++ = OP_STAR + repeat_type;
3707 else if (repeat_max == 1) *code++ = OP_QUERY + repeat_type;
3708 else
3709 {
3710 *code++ = OP_UPTO + repeat_type;
3711 PUT2INC(code, 0, repeat_max);
3712 }
3713 }
3714
3715 /* A repeat minimum of 1 is optimized into some special cases. If the
3716 maximum is unlimited, we use OP_PLUS. Otherwise, the original item is
3717 left in place and, if the maximum is greater than 1, we use OP_UPTO with
3718 one less than the maximum. */
3719
3720 else if (repeat_min == 1)
3721 {
3722 if (repeat_max == -1)
3723 *code++ = OP_PLUS + repeat_type;
3724 else
3725 {
3726 code = oldcode; /* leave previous item in place */
3727 if (repeat_max == 1) goto END_REPEAT;
3728 *code++ = OP_UPTO + repeat_type;
3729 PUT2INC(code, 0, repeat_max - 1);
3730 }
3731 }
3732
3733 /* The case {n,n} is just an EXACT, while the general case {n,m} is
3734 handled as an EXACT followed by an UPTO. */
3735
3736 else
3737 {
3738 *code++ = OP_EXACT + op_type; /* NB EXACT doesn't have repeat_type */
3739 PUT2INC(code, 0, repeat_min);
3740
3741 /* If the maximum is unlimited, insert an OP_STAR. Before doing so,
3742 we have to insert the character for the previous code. For a repeated
3743 Unicode property match, there are two extra bytes that define the
3744 required property. In UTF-8 mode, long characters have their length in
3745 c, with the 0x80 bit as a flag. */
3746
3747 if (repeat_max < 0)
3748 {
3749 #ifdef SUPPORT_UTF8
3750 if (utf8 && c >= 128)
3751 {
3752 memcpy(code, utf8_char, c & 7);
3753 code += c & 7;
3754 }
3755 else
3756 #endif
3757 {
3758 *code++ = c;
3759 if (prop_type >= 0)
3760 {
3761 *code++ = prop_type;
3762 *code++ = prop_value;
3763 }
3764 }
3765 *code++ = OP_STAR + repeat_type;
3766 }
3767
3768 /* Else insert an UPTO if the max is greater than the min, again
3769 preceded by the character, for the previously inserted code. If the
3770 UPTO is just for 1 instance, we can use QUERY instead. */
3771
3772 else if (repeat_max != repeat_min)
3773 {
3774 #ifdef SUPPORT_UTF8
3775 if (utf8 && c >= 128)
3776 {
3777 memcpy(code, utf8_char, c & 7);
3778 code += c & 7;
3779 }
3780 else
3781 #endif
3782 *code++ = c;
3783 if (prop_type >= 0)
3784 {
3785 *code++ = prop_type;
3786 *code++ = prop_value;
3787 }
3788 repeat_max -= repeat_min;
3789
3790 if (repeat_max == 1)
3791 {
3792 *code++ = OP_QUERY + repeat_type;
3793 }
3794 else
3795 {
3796 *code++ = OP_UPTO + repeat_type;
3797 PUT2INC(code, 0, repeat_max);
3798 }
3799 }
3800 }
3801
3802 /* The character or character type itself comes last in all cases. */
3803
3804 #ifdef SUPPORT_UTF8
3805 if (utf8 && c >= 128)
3806 {
3807 memcpy(code, utf8_char, c & 7);
3808 code += c & 7;
3809 }
3810 else
3811 #endif
3812 *code++ = c;
3813
3814 /* For a repeated Unicode property match, there are two extra bytes that
3815 define the required property. */
3816
3817 #ifdef SUPPORT_UCP
3818 if (prop_type >= 0)
3819 {
3820 *code++ = prop_type;
3821 *code++ = prop_value;
3822 }
3823 #endif
3824 }
3825
3826 /* If previous was a character class or a back reference, we put the repeat
3827 stuff after it, but just skip the item if the repeat was {0,0}. */
3828
3829 else if (*previous == OP_CLASS ||
3830 *previous == OP_NCLASS ||
3831 #ifdef SUPPORT_UTF8
3832 *previous == OP_XCLASS ||
3833 #endif
3834 *previous == OP_REF)
3835 {
3836 if (repeat_max == 0)
3837 {
3838 code = previous;
3839 goto END_REPEAT;
3840 }
3841
3842 /* All real repeats make it impossible to handle partial matching (maybe
3843 one day we will be able to remove this restriction). */
3844
3845 if (repeat_max != 1) cd->external_flags |= PCRE_NOPARTIAL;
3846
3847 if (repeat_min == 0 && repeat_max == -1)
3848 *code++ = OP_CRSTAR + repeat_type;
3849 else if (repeat_min == 1 && repeat_max == -1)
3850 *code++ = OP_CRPLUS + repeat_type;
3851 else if (repeat_min == 0 && repeat_max == 1)
3852 *code++ = OP_CRQUERY + repeat_type;
3853 else
3854 {
3855 *code++ = OP_CRRANGE + repeat_type;
3856 PUT2INC(code, 0, repeat_min);
3857 if (repeat_max == -1) repeat_max = 0; /* 2-byte encoding for max */
3858 PUT2INC(code, 0, repeat_max);
3859 }
3860 }
3861
3862 /* If previous was a bracket group, we may have to replicate it in certain
3863 cases. */
3864
3865 else if (*previous == OP_BRA || *previous == OP_CBRA ||
3866 *previous == OP_ONCE || *previous == OP_COND)
3867 {
3868 register int i;
3869 int ketoffset = 0;
3870 int len = code - previous;
3871 uschar *bralink = NULL;
3872
3873 /* Repeating a DEFINE group is pointless */
3874
3875 if (*previous == OP_COND && previous[LINK_SIZE+1] == OP_DEF)
3876 {
3877 *errorcodeptr = ERR55;
3878 goto FAILED;
3879 }
3880
3881 /* If the maximum repeat count is unlimited, find the end of the bracket
3882 by scanning through from the start, and compute the offset back to it
3883 from the current code pointer. There may be an OP_OPT setting following
3884 the final KET, so we can't find the end just by going back from the code
3885 pointer. */
3886
3887 if (repeat_max == -1)
3888 {
3889 register uschar *ket = previous;
3890 do ket += GET(ket, 1); while (*ket != OP_KET);
3891 ketoffset = code - ket;
3892 }
3893
3894 /* The case of a zero minimum is special because of the need to stick
3895 OP_BRAZERO in front of it, and because the group appears once in the
3896 data, whereas in other cases it appears the minimum number of times. For
3897 this reason, it is simplest to treat this case separately, as otherwise
3898 the code gets far too messy. There are several special subcases when the
3899 minimum is zero. */
3900
3901 if (repeat_min == 0)
3902 {
3903 /* If the maximum is also zero, we used to just omit the group from the
3904 output altogether, like this:
3905
3906 ** if (repeat_max == 0)
3907 ** {
3908 ** code = previous;
3909 ** goto END_REPEAT;
3910 ** }
3911
3912 However, that fails when a group is referenced as a subroutine from
3913 elsewhere in the pattern, so now we stick in OP_SKIPZERO in front of it
3914 so that it is skipped on execution. As we don't have a list of which
3915 groups are referenced, we cannot do this selectively.
3916
3917 If the maximum is 1 or unlimited, we just have to stick in the BRAZERO
3918 and do no more at this point. However, we do need to adjust any
3919 OP_RECURSE calls inside the group that refer to the group itself or any
3920 internal or forward referenced group, because the offset is from the
3921 start of the whole regex. Temporarily terminate the pattern while doing
3922 this. */
3923
3924 if (repeat_max <= 1) /* Covers 0, 1, and unlimited */
3925 {
3926 *code = OP_END;
3927 adjust_recurse(previous, 1, utf8, cd, save_hwm);
3928 memmove(previous+1, previous, len);
3929 code++;
3930 if (repeat_max == 0)
3931 {
3932 *previous++ = OP_SKIPZERO;
3933 goto END_REPEAT;
3934 }
3935 *previous++ = OP_BRAZERO + repeat_type;
3936 }
3937
3938 /* If the maximum is greater than 1 and limited, we have to replicate
3939 in a nested fashion, sticking OP_BRAZERO before each set of brackets.
3940 The first one has to be handled carefully because it's the original
3941 copy, which has to be moved up. The remainder can be handled by code
3942 that is common with the non-zero minimum case below. We have to
3943 adjust the value or repeat_max, since one less copy is required. Once
3944 again, we may have to adjust any OP_RECURSE calls inside the group. */
3945
3946 else
3947 {
3948 int offset;
3949 *code = OP_END;
3950 adjust_recurse(previous, 2 + LINK_SIZE, utf8, cd, save_hwm);
3951 memmove(previous + 2 + LINK_SIZE, previous, len);
3952 code += 2 + LINK_SIZE;
3953 *previous++ = OP_BRAZERO + repeat_type;
3954 *previous++ = OP_BRA;
3955
3956 /* We chain together the bracket offset fields that have to be
3957 filled in later when the ends of the brackets are reached. */
3958
3959 offset = (bralink == NULL)? 0 : previous - bralink;
3960 bralink = previous;
3961 PUTINC(previous, 0, offset);
3962 }
3963
3964 repeat_max--;
3965 }
3966
3967 /* If the minimum is greater than zero, replicate the group as many
3968 times as necessary, and adjust the maximum to the number of subsequent
3969 copies that we need. If we set a first char from the group, and didn't
3970 set a required char, copy the latter from the former. If there are any
3971 forward reference subroutine calls in the group, there will be entries on
3972 the workspace list; replicate these with an appropriate increment. */
3973
3974 else
3975 {
3976 if (repeat_min > 1)
3977 {
3978 /* In the pre-compile phase, we don't actually do the replication. We
3979 just adjust the length as if we had. Do some paranoid checks for
3980 potential integer overflow. */
3981
3982 if (lengthptr != NULL)
3983 {
3984 int delta = (repeat_min - 1)*length_prevgroup;
3985 if ((double)(repeat_min - 1)*(double)length_prevgroup >
3986 (double)INT_MAX ||
3987 OFLOW_MAX - *lengthptr < delta)
3988 {
3989 *errorcodeptr = ERR20;
3990 goto FAILED;
3991 }
3992 *lengthptr += delta;
3993 }
3994
3995 /* This is compiling for real */
3996
3997 else
3998 {
3999 if (groupsetfirstbyte && reqbyte < 0) reqbyte = firstbyte;
4000 for (i = 1; i < repeat_min; i++)
4001 {
4002 uschar *hc;
4003 uschar *this_hwm = cd->hwm;
4004 memcpy(code, previous, len);
4005 for (hc = save_hwm; hc < this_hwm; hc += LINK_SIZE)
4006 {
4007 PUT(cd->hwm, 0, GET(hc, 0) + len);
4008 cd->hwm += LINK_SIZE;
4009 }
4010 save_hwm = this_hwm;
4011 code += len;
4012 }
4013 }
4014 }
4015
4016 if (repeat_max > 0) repeat_max -= repeat_min;
4017 }
4018
4019 /* This code is common to both the zero and non-zero minimum cases. If
4020 the maximum is limited, it replicates the group in a nested fashion,
4021 remembering the bracket starts on a stack. In the case of a zero minimum,
4022 the first one was set up above. In all cases the repeat_max now specifies
4023 the number of additional copies needed. Again, we must remember to
4024 replicate entries on the forward reference list. */
4025
4026 if (repeat_max >= 0)
4027 {
4028 /* In the pre-compile phase, we don't actually do the replication. We
4029 just adjust the length as if we had. For each repetition we must add 1
4030 to the length for BRAZERO and for all but the last repetition we must
4031 add 2 + 2*LINKSIZE to allow for the nesting that occurs. Do some
4032 paranoid checks to avoid integer overflow. */
4033
4034 if (lengthptr != NULL && repeat_max > 0)
4035 {
4036 int delta = repeat_max * (length_prevgroup + 1 + 2 + 2*LINK_SIZE) -
4037 2 - 2*LINK_SIZE; /* Last one doesn't nest */
4038 if ((double)repeat_max *
4039 (double)(length_prevgroup + 1 + 2 + 2*LINK_SIZE)
4040 > (double)INT_MAX ||
4041 OFLOW_MAX - *lengthptr < delta)
4042 {
4043 *errorcodeptr = ERR20;
4044 goto FAILED;
4045 }
4046 *lengthptr += delta;
4047 }
4048
4049 /* This is compiling for real */
4050
4051 else for (i = repeat_max - 1; i >= 0; i--)
4052 {
4053 uschar *hc;
4054 uschar *this_hwm = cd->hwm;
4055
4056 *code++ = OP_BRAZERO + repeat_type;
4057
4058 /* All but the final copy start a new nesting, maintaining the
4059 chain of brackets outstanding. */
4060
4061 if (i != 0)
4062 {
4063 int offset;
4064 *code++ = OP_BRA;
4065 offset = (bralink == NULL)? 0 : code - bralink;
4066 bralink = code;
4067 PUTINC(code, 0, offset);
4068 }
4069
4070 memcpy(code, previous, len);
4071 for (hc = save_hwm; hc < this_hwm; hc += LINK_SIZE)
4072 {
4073 PUT(cd->hwm, 0, GET(hc, 0) + len + ((i != 0)? 2+LINK_SIZE : 1));
4074 cd->hwm += LINK_SIZE;
4075 }
4076 save_hwm = this_hwm;
4077 code += len;
4078 }
4079
4080 /* Now chain through the pending brackets, and fill in their length
4081 fields (which are holding the chain links pro tem). */
4082
4083 while (bralink != NULL)
4084 {
4085 int oldlinkoffset;
4086 int offset = code - bralink + 1;
4087 uschar *bra = code - offset;
4088 oldlinkoffset = GET(bra, 1);
4089 bralink = (oldlinkoffset == 0)? NULL : bralink - oldlinkoffset;
4090 *code++ = OP_KET;
4091 PUTINC(code, 0, offset);
4092 PUT(bra, 1, offset);
4093 }
4094 }
4095
4096 /* If the maximum is unlimited, set a repeater in the final copy. We
4097 can't just offset backwards from the current code point, because we
4098 don't know if there's been an options resetting after the ket. The
4099 correct offset was computed above.
4100
4101 Then, when we are doing the actual compile phase, check to see whether
4102 this group is a non-atomic one that could match an empty string. If so,
4103 convert the initial operator to the S form (e.g. OP_BRA -> OP_SBRA) so
4104 that runtime checking can be done. [This check is also applied to
4105 atomic groups at runtime, but in a different way.] */
4106
4107 else
4108 {
4109 uschar *ketcode = code - ketoffset;
4110 uschar *bracode = ketcode - GET(ketcode, 1);
4111 *ketcode = OP_KETRMAX + repeat_type;
4112 if (lengthptr == NULL && *bracode != OP_ONCE)
4113 {
4114 uschar *scode = bracode;
4115 do
4116 {
4117 if (could_be_empty_branch(scode, ketcode, utf8))
4118 {
4119 *bracode += OP_SBRA - OP_BRA;
4120 break;
4121 }
4122 scode += GET(scode, 1);
4123 }
4124 while (*scode == OP_ALT);
4125 }
4126 }
4127 }
4128
4129 /* If previous is OP_FAIL, it was generated by an empty class [] in
4130 JavaScript mode. The other ways in which OP_FAIL can be generated, that is
4131 by (*FAIL) or (?!) set previous to NULL, which gives a "nothing to repeat"
4132 error above. We can just ignore the repeat in JS case. */
4133
4134 else if (*previous == OP_FAIL) goto END_REPEAT;
4135
4136 /* Else there's some kind of shambles */
4137
4138 else
4139 {
4140 *errorcodeptr = ERR11;
4141 goto FAILED;
4142 }
4143
4144 /* If the character following a repeat is '+', or if certain optimization
4145 tests above succeeded, possessive_quantifier is TRUE. For some of the
4146 simpler opcodes, there is an special alternative opcode for this. For
4147 anything else, we wrap the entire repeated item inside OP_ONCE brackets.
4148 The '+' notation is just syntactic sugar, taken from Sun's Java package,
4149 but the special opcodes can optimize it a bit. The repeated item starts at
4150 tempcode, not at previous, which might be the first part of a string whose
4151 (former) last char we repeated.
4152
4153 Possessifying an 'exact' quantifier has no effect, so we can ignore it. But
4154 an 'upto' may follow. We skip over an 'exact' item, and then test the
4155 length of what remains before proceeding. */
4156
4157 if (possessive_quantifier)
4158 {
4159 int len;
4160 if (*tempcode == OP_EXACT || *tempcode == OP_TYPEEXACT ||
4161 *tempcode == OP_NOTEXACT)
4162 tempcode += _pcre_OP_lengths[*tempcode] +
4163 ((*tempcode == OP_TYPEEXACT &&
4164 (tempcode[3] == OP_PROP || tempcode[3] == OP_NOTPROP))? 2:0);
4165 len = code - tempcode;
4166 if (len > 0) switch (*tempcode)
4167 {
4168 case OP_STAR: *tempcode = OP_POSSTAR; break;
4169 case OP_PLUS: *tempcode = OP_POSPLUS; break;
4170 case OP_QUERY: *tempcode = OP_POSQUERY; break;
4171 case OP_UPTO: *tempcode = OP_POSUPTO; break;
4172
4173 case OP_TYPESTAR: *tempcode = OP_TYPEPOSSTAR; break;
4174 case OP_TYPEPLUS: *tempcode = OP_TYPEPOSPLUS; break;
4175 case OP_TYPEQUERY: *tempcode = OP_TYPEPOSQUERY; break;
4176 case OP_TYPEUPTO: *tempcode = OP_TYPEPOSUPTO; break;
4177
4178 case OP_NOTSTAR: *tempcode = OP_NOTPOSSTAR; break;
4179 case OP_NOTPLUS: *tempcode = OP_NOTPOSPLUS; break;
4180 case OP_NOTQUERY: *tempcode = OP_NOTPOSQUERY; break;
4181 case OP_NOTUPTO: *tempcode = OP_NOTPOSUPTO; break;
4182
4183 default:
4184 memmove(tempcode + 1+LINK_SIZE, tempcode, len);
4185 code += 1 + LINK_SIZE;
4186 len += 1 + LINK_SIZE;
4187 tempcode[0] = OP_ONCE;
4188 *code++ = OP_KET;
4189 PUTINC(code, 0, len);
4190 PUT(tempcode, 1, len);
4191 break;
4192 }
4193 }
4194
4195 /* In all case we no longer have a previous item. We also set the
4196 "follows varying string" flag for subsequently encountered reqbytes if
4197 it isn't already set and we have just passed a varying length item. */
4198
4199 END_REPEAT:
4200 previous = NULL;
4201 cd->req_varyopt |= reqvary;
4202 break;
4203
4204
4205 /* ===================================================================*/
4206 /* Start of nested parenthesized sub-expression, or comment or lookahead or
4207 lookbehind or option setting or condition or all the other extended
4208 parenthesis forms. */
4209
4210 case '(':
4211 newoptions = options;
4212 skipbytes = 0;
4213 bravalue = OP_CBRA;
4214 save_hwm = cd->hwm;
4215 reset_bracount = FALSE;
4216
4217 /* First deal with various "verbs" that can be introduced by '*'. */
4218
4219 if (*(++ptr) == '*' && (cd->ctypes[ptr[1]] & ctype_letter) != 0)
4220 {
4221 int i, namelen;
4222 const char *vn = verbnames;
4223 const uschar *name = ++ptr;
4224 previous = NULL;
4225 while ((cd->ctypes[*++ptr] & ctype_letter) != 0) {};
4226 if (*ptr == ':')
4227 {
4228 *errorcodeptr = ERR59; /* Not supported */
4229 goto FAILED;
4230 }
4231 if (*ptr != ')')
4232 {
4233 *errorcodeptr = ERR60;
4234 goto FAILED;
4235 }
4236 namelen = ptr - name;
4237 for (i = 0; i < verbcount; i++)
4238 {
4239 if (namelen == verbs[i].len &&
4240 strncmp((char *)name, vn, namelen) == 0)
4241 {
4242 *code = verbs[i].op;
4243 if (*code++ == OP_ACCEPT) cd->had_accept = TRUE;
4244 break;
4245 }
4246 vn += verbs[i].len + 1;
4247 }
4248 if (i < verbcount) continue;
4249 *errorcodeptr = ERR60;
4250 goto FAILED;
4251 }
4252
4253 /* Deal with the extended parentheses; all are introduced by '?', and the
4254 appearance of any of them means that this is not a capturing group. */
4255
4256 else if (*ptr == '?')
4257 {
4258 int i, set, unset, namelen;
4259 int *optset;
4260 const uschar *name;
4261 uschar *slot;
4262
4263 switch (*(++ptr))
4264 {
4265 case '#': /* Comment; skip to ket */
4266 ptr++;
4267 while (*ptr != 0 && *ptr != ')') ptr++;
4268 if (*ptr == 0)
4269 {
4270 *errorcodeptr = ERR18;
4271 goto FAILED;
4272 }
4273 continue;
4274
4275
4276 /* ------------------------------------------------------------ */
4277 case '|': /* Reset capture count for each branch */
4278 reset_bracount = TRUE;
4279 /* Fall through */
4280
4281 /* ------------------------------------------------------------ */
4282 case ':': /* Non-capturing bracket */
4283 bravalue = OP_BRA;
4284 ptr++;
4285 break;
4286
4287
4288 /* ------------------------------------------------------------ */
4289 case '(':
4290 bravalue = OP_COND; /* Conditional group */
4291
4292 /* A condition can be an assertion, a number (referring to a numbered
4293 group), a name (referring to a named group), or 'R', referring to
4294 recursion. R<digits> and R&name are also permitted for recursion tests.
4295
4296 There are several syntaxes for testing a named group: (?(name)) is used
4297 by Python; Perl 5.10 onwards uses (?(<name>) or (?('name')).
4298
4299 There are two unfortunate ambiguities, caused by history. (a) 'R' can
4300 be the recursive thing or the name 'R' (and similarly for 'R' followed
4301 by digits), and (b) a number could be a name that consists of digits.
4302 In both cases, we look for a name first; if not found, we try the other
4303 cases. */
4304
4305 /* For conditions that are assertions, check the syntax, and then exit
4306 the switch. This will take control down to where bracketed groups,
4307 including assertions, are processed. */
4308
4309 if (ptr[1] == '?' && (ptr[2] == '=' || ptr[2] == '!' || ptr[2] == '<'))
4310 break;
4311
4312 /* Most other conditions use OP_CREF (a couple change to OP_RREF
4313 below), and all need to skip 3 bytes at the start of the group. */
4314
4315 code[1+LINK_SIZE] = OP_CREF;
4316 skipbytes = 3;
4317 refsign = -1;
4318
4319 /* Check for a test for recursion in a named group. */
4320
4321 if (ptr[1] == 'R' && ptr[2] == '&')
4322 {
4323 terminator = -1;
4324 ptr += 2;
4325 code[1+LINK_SIZE] = OP_RREF; /* Change the type of test */
4326 }
4327
4328 /* Check for a test for a named group's having been set, using the Perl
4329 syntax (?(<name>) or (?('name') */
4330
4331 else if (ptr[1] == '<')
4332 {
4333 terminator = '>';
4334 ptr++;
4335 }
4336 else if (ptr[1] == '\'')
4337 {
4338 terminator = '\'';
4339 ptr++;
4340 }
4341 else
4342 {
4343 terminator = 0;
4344 if (ptr[1] == '-' || ptr[1] == '+') refsign = *(++ptr);
4345 }
4346
4347 /* We now expect to read a name; any thing else is an error */
4348
4349 if ((cd->ctypes[ptr[1]] & ctype_word) == 0)
4350 {
4351 ptr += 1; /* To get the right offset */
4352 *errorcodeptr = ERR28;
4353 goto FAILED;
4354 }
4355
4356 /* Read the name, but also get it as a number if it's all digits */
4357
4358 recno = 0;
4359 name = ++ptr;
4360 while ((cd->ctypes[*ptr] & ctype_word) != 0)
4361 {
4362 if (recno >= 0)
4363 recno = ((digitab[*ptr] & ctype_digit) != 0)?
4364 recno * 10 + *ptr - '0' : -1;
4365 ptr++;
4366 }
4367 namelen = ptr - name;
4368
4369 if ((terminator > 0 && *ptr++ != terminator) || *ptr++ != ')')
4370 {
4371 ptr--; /* Error offset */
4372 *errorcodeptr = ERR26;
4373 goto FAILED;
4374 }
4375
4376 /* Do no further checking in the pre-compile phase. */
4377
4378 if (lengthptr != NULL) break;
4379
4380 /* In the real compile we do the work of looking for the actual
4381 reference. If the string started with "+" or "-" we require the rest to
4382 be digits, in which case recno will be set. */
4383
4384 if (refsign > 0)
4385 {
4386 if (recno <= 0)
4387 {
4388 *errorcodeptr = ERR58;
4389 goto FAILED;
4390 }
4391 recno = (refsign == '-')?
4392 cd->bracount - recno + 1 : recno +cd->bracount;
4393 if (recno <= 0 || recno > cd->final_bracount)
4394 {
4395 *errorcodeptr = ERR15;
4396 goto FAILED;
4397 }
4398 PUT2(code, 2+LINK_SIZE, recno);
4399 break;
4400 }
4401
4402 /* Otherwise (did not start with "+" or "-"), start by looking for the
4403 name. */
4404
4405 slot = cd->name_table;
4406 for (i = 0; i < cd->names_found; i++)
4407 {
4408 if (strncmp((char *)name, (char *)slot+2, namelen) == 0) break;
4409 slot += cd->name_entry_size;
4410 }
4411
4412 /* Found a previous named subpattern */
4413
4414 if (i < cd->names_found)
4415 {
4416 recno = GET2(slot, 0);
4417 PUT2(code, 2+LINK_SIZE, recno);
4418 }
4419
4420 /* Search the pattern for a forward reference */
4421
4422 else if ((i = find_parens(ptr, cd, name, namelen,
4423 (options & PCRE_EXTENDED) != 0)) > 0)
4424 {
4425 PUT2(code, 2+LINK_SIZE, i);
4426 }
4427
4428 /* If terminator == 0 it means that the name followed directly after
4429 the opening parenthesis [e.g. (?(abc)...] and in this case there are
4430 some further alternatives to try. For the cases where terminator != 0
4431 [things like (?(<name>... or (?('name')... or (?(R&name)... ] we have
4432 now checked all the possibilities, so give an error. */
4433
4434 else if (terminator != 0)
4435 {
4436 *errorcodeptr = ERR15;
4437 goto FAILED;
4438 }
4439
4440 /* Check for (?(R) for recursion. Allow digits after R to specify a
4441 specific group number. */
4442
4443 else if (*name == 'R')
4444 {
4445 recno = 0;
4446 for (i = 1; i < namelen; i++)
4447 {
4448 if ((digitab[name[i]] & ctype_digit) == 0)
4449 {
4450 *errorcodeptr = ERR15;
4451 goto FAILED;
4452 }
4453 recno = recno * 10 + name[i] - '0';
4454 }
4455 if (recno == 0) recno = RREF_ANY;
4456 code[1+LINK_SIZE] = OP_RREF; /* Change test type */
4457 PUT2(code, 2+LINK_SIZE, recno);
4458 }
4459
4460 /* Similarly, check for the (?(DEFINE) "condition", which is always
4461 false. */
4462
4463 else if (namelen == 6 && strncmp((char *)name, "DEFINE", 6) == 0)
4464 {
4465 code[1+LINK_SIZE] = OP_DEF;
4466 skipbytes = 1;
4467 }
4468
4469 /* Check for the "name" actually being a subpattern number. We are
4470 in the second pass here, so final_bracount is set. */
4471
4472 else if (recno > 0 && recno <= cd->final_bracount)
4473 {
4474 PUT2(code, 2+LINK_SIZE, recno);
4475 }
4476
4477 /* Either an unidentified subpattern, or a reference to (?(0) */
4478
4479 else
4480 {
4481 *errorcodeptr = (recno == 0)? ERR35: ERR15;
4482 goto FAILED;
4483 }
4484 break;
4485
4486
4487 /* ------------------------------------------------------------ */
4488 case '=': /* Positive lookahead */
4489 bravalue = OP_ASSERT;
4490 ptr++;
4491 break;
4492
4493
4494 /* ------------------------------------------------------------ */
4495 case '!': /* Negative lookahead */
4496 ptr++;
4497 if (*ptr == ')') /* Optimize (?!) */
4498 {
4499 *code++ = OP_FAIL;
4500 previous = NULL;
4501 continue;
4502 }
4503 bravalue = OP_ASSERT_NOT;
4504 break;
4505
4506
4507 /* ------------------------------------------------------------ */
4508 case '<': /* Lookbehind or named define */
4509 switch (ptr[1])
4510 {
4511 case '=': /* Positive lookbehind */
4512 bravalue = OP_ASSERTBACK;
4513 ptr += 2;
4514 break;
4515
4516 case '!': /* Negative lookbehind */
4517 bravalue = OP_ASSERTBACK_NOT;
4518 ptr += 2;
4519 break;
4520
4521 default: /* Could be name define, else bad */
4522 if ((cd->ctypes[ptr[1]] & ctype_word) != 0) goto DEFINE_NAME;
4523 ptr++; /* Correct offset for error */
4524 *errorcodeptr = ERR24;
4525 goto FAILED;
4526 }
4527 break;
4528
4529
4530 /* ------------------------------------------------------------ */
4531 case '>': /* One-time brackets */
4532 bravalue = OP_ONCE;
4533 ptr++;
4534 break;
4535
4536
4537 /* ------------------------------------------------------------ */
4538 case 'C': /* Callout - may be followed by digits; */
4539 previous_callout = code; /* Save for later completion */
4540 after_manual_callout = 1; /* Skip one item before completing */
4541 *code++ = OP_CALLOUT;
4542 {
4543 int n = 0;
4544 while ((digitab[*(++ptr)] & ctype_digit) != 0)
4545 n = n * 10 + *ptr - '0';
4546 if (*ptr != ')')
4547 {
4548 *errorcodeptr = ERR39;
4549 goto FAILED;
4550 }
4551 if (n > 255)
4552 {
4553 *errorcodeptr = ERR38;
4554 goto FAILED;
4555 }
4556 *code++ = n;
4557 PUT(code, 0, ptr - cd->start_pattern + 1); /* Pattern offset */
4558 PUT(code, LINK_SIZE, 0); /* Default length */
4559 code += 2 * LINK_SIZE;
4560 }
4561 previous = NULL;
4562 continue;
4563
4564
4565 /* ------------------------------------------------------------ */
4566 case 'P': /* Python-style named subpattern handling */
4567 if (*(++ptr) == '=' || *ptr == '>') /* Reference or recursion */
4568 {
4569 is_recurse = *ptr == '>';
4570 terminator = ')';
4571 goto NAMED_REF_OR_RECURSE;
4572 }
4573 else if (*ptr != '<') /* Test for Python-style definition */
4574 {
4575 *errorcodeptr = ERR41;
4576 goto FAILED;
4577 }
4578 /* Fall through to handle (?P< as (?< is handled */
4579
4580
4581 /* ------------------------------------------------------------ */
4582 DEFINE_NAME: /* Come here from (?< handling */
4583 case '\'':
4584 {
4585 terminator = (*ptr == '<')? '>' : '\'';
4586 name = ++ptr;
4587
4588 while ((cd->ctypes[*ptr] & ctype_word) != 0) ptr++;
4589 namelen = ptr - name;
4590
4591 /* In the pre-compile phase, just do a syntax check. */
4592
4593 if (lengthptr != NULL)
4594 {
4595 if (*ptr != terminator)
4596 {
4597 *errorcodeptr = ERR42;
4598 goto FAILED;
4599 }
4600 if (cd->names_found >= MAX_NAME_COUNT)
4601 {
4602 *errorcodeptr = ERR49;
4603 goto FAILED;
4604 }
4605 if (namelen + 3 > cd->name_entry_size)
4606 {
4607 cd->name_entry_size = namelen + 3;
4608 if (namelen > MAX_NAME_SIZE)
4609 {
4610 *errorcodeptr = ERR48;
4611 goto FAILED;
4612 }
4613 }
4614 }
4615
4616 /* In the real compile, create the entry in the table */
4617
4618 else
4619 {
4620 slot = cd->name_table;
4621 for (i = 0; i < cd->names_found; i++)
4622 {
4623 int crc = memcmp(name, slot+2, namelen);
4624 if (crc == 0)
4625 {
4626 if (slot[2+namelen] == 0)
4627 {
4628 if ((options & PCRE_DUPNAMES) == 0)
4629 {
4630 *errorcodeptr = ERR43;
4631 goto FAILED;
4632 }
4633 }
4634 else crc = -1; /* Current name is substring */
4635 }
4636 if (crc < 0)
4637 {
4638 memmove(slot + cd->name_entry_size, slot,
4639 (cd->names_found - i) * cd->name_entry_size);
4640 break;
4641 }
4642 slot += cd->name_entry_size;
4643 }
4644
4645 PUT2(slot, 0, cd->bracount + 1);
4646 memcpy(slot + 2, name, namelen);
4647 slot[2+namelen] = 0;
4648 }
4649 }
4650
4651 /* In both cases, count the number of names we've encountered. */
4652
4653 ptr++; /* Move past > or ' */
4654 cd->names_found++;
4655 goto NUMBERED_GROUP;
4656
4657
4658 /* ------------------------------------------------------------ */
4659 case '&': /* Perl recursion/subroutine syntax */
4660 terminator = ')';
4661 is_recurse = TRUE;
4662 /* Fall through */
4663
4664 /* We come here from the Python syntax above that handles both
4665 references (?P=name) and recursion (?P>name), as well as falling
4666 through from the Perl recursion syntax (?&name). We also come here from
4667 the Perl \k<name> or \k'name' back reference syntax and the \k{name}
4668 .NET syntax, and the Oniguruma \g<...> and \g'...' subroutine syntax. */
4669
4670 NAMED_REF_OR_RECURSE:
4671 name = ++ptr;
4672 while ((cd->ctypes[*ptr] & ctype_word) != 0) ptr++;
4673 namelen = ptr - name;
4674
4675 /* In the pre-compile phase, do a syntax check and set a dummy
4676 reference number. */
4677
4678 if (lengthptr != NULL)
4679 {
4680 if (namelen == 0)
4681 {
4682 *errorcodeptr = ERR62;
4683 goto FAILED;
4684 }
4685 if (*ptr != terminator)
4686 {
4687 *errorcodeptr = ERR42;
4688 goto FAILED;
4689 }
4690 if (namelen > MAX_NAME_SIZE)
4691 {
4692 *errorcodeptr = ERR48;
4693 goto FAILED;
4694 }
4695 recno = 0;
4696 }
4697
4698 /* In the real compile, seek the name in the table. We check the name
4699 first, and then check that we have reached the end of the name in the
4700 table. That way, if the name that is longer than any in the table,
4701 the comparison will fail without reading beyond the table entry. */
4702
4703 else
4704 {
4705 slot = cd->name_table;
4706 for (i = 0; i < cd->names_found; i++)
4707 {
4708 if (strncmp((char *)name, (char *)slot+2, namelen) == 0 &&
4709 slot[2+namelen] == 0)
4710 break;
4711 slot += cd->name_entry_size;
4712 }
4713
4714 if (i < cd->names_found) /* Back reference */
4715 {
4716 recno = GET2(slot, 0);
4717 }
4718 else if ((recno = /* Forward back reference */
4719 find_parens(ptr, cd, name, namelen,
4720 (options & PCRE_EXTENDED) != 0)) <= 0)
4721 {
4722 *errorcodeptr = ERR15;
4723 goto FAILED;
4724 }
4725 }
4726
4727 /* In both phases, we can now go to the code than handles numerical
4728 recursion or backreferences. */
4729
4730 if (is_recurse) goto HANDLE_RECURSION;
4731 else goto HANDLE_REFERENCE;
4732
4733
4734 /* ------------------------------------------------------------ */
4735 case 'R': /* Recursion */
4736 ptr++; /* Same as (?0) */
4737 /* Fall through */
4738
4739
4740 /* ------------------------------------------------------------ */
4741 case '-': case '+':
4742 case '0': case '1': case '2': case '3': case '4': /* Recursion or */
4743 case '5': case '6': case '7': case '8': case '9': /* subroutine */
4744 {
4745 const uschar *called;
4746 terminator = ')';
4747
4748 /* Come here from the \g<...> and \g'...' code (Oniguruma
4749 compatibility). However, the syntax has been checked to ensure that
4750 the ... are a (signed) number, so that neither ERR63 nor ERR29 will
4751 be called on this path, nor with the jump to OTHER_CHAR_AFTER_QUERY
4752 ever be taken. */
4753
4754 HANDLE_NUMERICAL_RECURSION:
4755
4756 if ((refsign = *ptr) == '+')
4757 {
4758 ptr++;
4759 if ((digitab[*ptr] & ctype_digit) == 0)
4760 {
4761 *errorcodeptr = ERR63;
4762 goto FAILED;
4763 }
4764 }
4765 else if (refsign == '-')
4766 {
4767 if ((digitab[ptr[1]] & ctype_digit) == 0)
4768 goto OTHER_CHAR_AFTER_QUERY;
4769 ptr++;
4770 }
4771
4772 recno = 0;
4773 while((digitab[*ptr] & ctype_digit) != 0)
4774 recno = recno * 10 + *ptr++ - '0';
4775
4776 if (*ptr != terminator)
4777 {
4778 *errorcodeptr = ERR29;
4779 goto FAILED;
4780 }
4781
4782 if (refsign == '-')
4783 {
4784 if (recno == 0)
4785 {
4786 *errorcodeptr = ERR58;
4787 goto FAILED;
4788 }
4789 recno = cd->bracount - recno + 1;
4790 if (recno <= 0)
4791 {
4792 *errorcodeptr = ERR15;
4793 goto FAILED;
4794 }
4795 }
4796 else if (refsign == '+')
4797 {
4798 if (recno == 0)
4799 {
4800 *errorcodeptr = ERR58;
4801 goto FAILED;
4802 }
4803 recno += cd->bracount;
4804 }
4805
4806 /* Come here from code above that handles a named recursion */
4807
4808 HANDLE_RECURSION:
4809
4810 previous = code;
4811 called = cd->start_code;
4812
4813 /* When we are actually compiling, find the bracket that is being
4814 referenced. Temporarily end the regex in case it doesn't exist before
4815 this point. If we end up with a forward reference, first check that
4816 the bracket does occur later so we can give the error (and position)
4817 now. Then remember this forward reference in the workspace so it can
4818 be filled in at the end. */
4819
4820 if (lengthptr == NULL)
4821 {
4822 *code = OP_END;
4823 if (recno != 0) called = find_bracket(cd->start_code, utf8, recno);
4824
4825 /* Forward reference */
4826
4827 if (called == NULL)
4828 {
4829 if (find_parens(ptr, cd, NULL, recno,
4830 (options & PCRE_EXTENDED) != 0) < 0)
4831 {
4832 *errorcodeptr = ERR15;
4833 goto FAILED;
4834 }
4835 called = cd->start_code + recno;
4836 PUTINC(cd->hwm, 0, code + 2 + LINK_SIZE - cd->start_code);
4837 }
4838
4839 /* If not a forward reference, and the subpattern is still open,
4840 this is a recursive call. We check to see if this is a left
4841 recursion that could loop for ever, and diagnose that case. */
4842
4843 else if (GET(called, 1) == 0 &&
4844 could_be_empty(called, code, bcptr, utf8))
4845 {
4846 *errorcodeptr = ERR40;
4847 goto FAILED;
4848 }
4849 }
4850
4851 /* Insert the recursion/subroutine item, automatically wrapped inside
4852 "once" brackets. Set up a "previous group" length so that a
4853 subsequent quantifier will work. */
4854
4855 *code = OP_ONCE;
4856 PUT(code, 1, 2 + 2*LINK_SIZE);
4857 code += 1 + LINK_SIZE;
4858
4859 *code = OP_RECURSE;
4860 PUT(code, 1, called - cd->start_code);
4861 code += 1 + LINK_SIZE;
4862
4863 *code = OP_KET;
4864 PUT(code, 1, 2 + 2*LINK_SIZE);
4865 code += 1 + LINK_SIZE;
4866
4867 length_prevgroup = 3 + 3*LINK_SIZE;
4868 }
4869
4870 /* Can't determine a first byte now */
4871
4872 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
4873 continue;
4874
4875
4876 /* ------------------------------------------------------------ */
4877 default: /* Other characters: check option setting */
4878 OTHER_CHAR_AFTER_QUERY:
4879 set = unset = 0;
4880 optset = &set;
4881
4882 while (*ptr != ')' && *ptr != ':')
4883 {
4884 switch (*ptr++)
4885 {
4886 case '-': optset = &unset; break;
4887
4888 case 'J': /* Record that it changed in the external options */
4889 *optset |= PCRE_DUPNAMES;
4890 cd->external_flags |= PCRE_JCHANGED;
4891 break;
4892
4893 case 'i': *optset |= PCRE_CASELESS; break;
4894 case 'm': *optset |= PCRE_MULTILINE; break;
4895 case 's': *optset |= PCRE_DOTALL; break;
4896 case 'x': *optset |= PCRE_EXTENDED; break;
4897 case 'U': *optset |= PCRE_UNGREEDY; break;
4898 case 'X': *optset |= PCRE_EXTRA; break;
4899
4900 default: *errorcodeptr = ERR12;
4901 ptr--; /* Correct the offset */
4902 goto FAILED;
4903 }
4904 }
4905
4906 /* Set up the changed option bits, but don't change anything yet. */
4907
4908 newoptions = (options | set) & (~unset);
4909
4910 /* If the options ended with ')' this is not the start of a nested
4911 group with option changes, so the options change at this level. If this
4912 item is right at the start of the pattern, the options can be
4913 abstracted and made external in the pre-compile phase, and ignored in
4914 the compile phase. This can be helpful when matching -- for instance in
4915 caseless checking of required bytes.
4916
4917 If the code pointer is not (cd->start_code + 1 + LINK_SIZE), we are
4918 definitely *not* at the start of the pattern because something has been
4919 compiled. In the pre-compile phase, however, the code pointer can have
4920 that value after the start, because it gets reset as code is discarded
4921 during the pre-compile. However, this can happen only at top level - if
4922 we are within parentheses, the starting BRA will still be present. At
4923 any parenthesis level, the length value can be used to test if anything
4924 has been compiled at that level. Thus, a test for both these conditions
4925 is necessary to ensure we correctly detect the start of the pattern in
4926 both phases.
4927
4928 If we are not at the pattern start, compile code to change the ims
4929 options if this setting actually changes any of them, and reset the
4930 greedy defaults and the case value for firstbyte and reqbyte. */
4931
4932 if (*ptr == ')')
4933 {
4934 if (code == cd->start_code + 1 + LINK_SIZE &&
4935 (lengthptr == NULL || *lengthptr == 2 + 2*LINK_SIZE))
4936 {
4937 cd->external_options = newoptions;
4938 }
4939 else
4940 {
4941 if ((options & PCRE_IMS) != (newoptions & PCRE_IMS))
4942 {
4943 *code++ = OP_OPT;
4944 *code++ = newoptions & PCRE_IMS;
4945 }
4946 greedy_default = ((newoptions & PCRE_UNGREEDY) != 0);
4947 greedy_non_default = greedy_default ^ 1;
4948 req_caseopt = ((newoptions & PCRE_CASELESS) != 0)? REQ_CASELESS : 0;
4949 }
4950
4951 /* Change options at this level, and pass them back for use
4952 in subsequent branches. When not at the start of the pattern, this
4953 information is also necessary so that a resetting item can be
4954 compiled at the end of a group (if we are in a group). */
4955
4956 *optionsptr = options = newoptions;
4957 previous = NULL; /* This item can't be repeated */
4958 continue; /* It is complete */
4959 }
4960
4961 /* If the options ended with ':' we are heading into a nested group
4962 with possible change of options. Such groups are non-capturing and are
4963 not assertions of any kind. All we need to do is skip over the ':';
4964 the newoptions value is handled below. */
4965
4966 bravalue = OP_BRA;
4967 ptr++;
4968 } /* End of switch for character following (? */
4969 } /* End of (? handling */
4970
4971 /* Opening parenthesis not followed by '?'. If PCRE_NO_AUTO_CAPTURE is set,
4972 all unadorned brackets become non-capturing and behave like (?:...)
4973 brackets. */
4974
4975 else if ((options & PCRE_NO_AUTO_CAPTURE) != 0)
4976 {
4977 bravalue = OP_BRA;
4978 }
4979
4980 /* Else we have a capturing group. */
4981
4982 else
4983 {
4984 NUMBERED_GROUP:
4985 cd->bracount += 1;
4986 PUT2(code, 1+LINK_SIZE, cd->bracount);
4987 skipbytes = 2;
4988 }
4989
4990 /* Process nested bracketed regex. Assertions may not be repeated, but
4991 other kinds can be. All their opcodes are >= OP_ONCE. We copy code into a
4992 non-register variable in order to be able to pass its address because some
4993 compilers complain otherwise. Pass in a new setting for the ims options if
4994 they have changed. */
4995
4996 previous = (bravalue >= OP_ONCE)? code : NULL;
4997 *code = bravalue;
4998 tempcode = code;
4999 tempreqvary = cd->req_varyopt; /* Save value before bracket */
5000 length_prevgroup = 0; /* Initialize for pre-compile phase */
5001
5002 if (!compile_regex(
5003 newoptions, /* The complete new option state */
5004 options & PCRE_IMS, /* The previous ims option state */
5005 &tempcode, /* Where to put code (updated) */
5006 &ptr, /* Input pointer (updated) */
5007 errorcodeptr, /* Where to put an error message */
5008 (bravalue == OP_ASSERTBACK ||
5009 bravalue == OP_ASSERTBACK_NOT), /* TRUE if back assert */
5010 reset_bracount, /* True if (?| group */
5011 skipbytes, /* Skip over bracket number */
5012 &subfirstbyte, /* For possible first char */
5013 &subreqbyte, /* For possible last char */
5014 bcptr, /* Current branch chain */
5015 cd, /* Tables block */
5016 (lengthptr == NULL)? NULL : /* Actual compile phase */
5017 &length_prevgroup /* Pre-compile phase */
5018 ))
5019 goto FAILED;
5020
5021 /* At the end of compiling, code is still pointing to the start of the
5022 group, while tempcode has been updated to point past the end of the group
5023 and any option resetting that may follow it. The pattern pointer (ptr)
5024 is on the bracket. */
5025
5026 /* If this is a conditional bracket, check that there are no more than
5027 two branches in the group, or just one if it's a DEFINE group. We do this
5028 in the real compile phase, not in the pre-pass, where the whole group may
5029 not be available. */
5030
5031 if (bravalue == OP_COND && lengthptr == NULL)
5032 {
5033 uschar *tc = code;
5034 int condcount = 0;
5035
5036 do {
5037 condcount++;
5038 tc += GET(tc,1);
5039 }
5040 while (*tc != OP_KET);
5041
5042 /* A DEFINE group is never obeyed inline (the "condition" is always
5043 false). It must have only one branch. */
5044
5045 if (code[LINK_SIZE+1] == OP_DEF)
5046 {
5047 if (condcount > 1)
5048 {
5049 *errorcodeptr = ERR54;
5050 goto FAILED;
5051 }
5052 bravalue = OP_DEF; /* Just a flag to suppress char handling below */
5053 }
5054
5055 /* A "normal" conditional group. If there is just one branch, we must not
5056 make use of its firstbyte or reqbyte, because this is equivalent to an
5057 empty second branch. */
5058
5059 else
5060 {
5061 if (condcount > 2)
5062 {
5063 *errorcodeptr = ERR27;
5064 goto FAILED;
5065 }
5066 if (condcount == 1) subfirstbyte = subreqbyte = REQ_NONE;
5067 }
5068 }
5069
5070 /* Error if hit end of pattern */
5071
5072 if (*ptr != ')')
5073 {
5074 *errorcodeptr = ERR14;
5075 goto FAILED;
5076 }
5077
5078 /* In the pre-compile phase, update the length by the length of the group,
5079 less the brackets at either end. Then reduce the compiled code to just a
5080 set of non-capturing brackets so that it doesn't use much memory if it is
5081 duplicated by a quantifier.*/
5082
5083 if (lengthptr != NULL)
5084 {
5085 if (OFLOW_MAX - *lengthptr < length_prevgroup - 2 - 2*LINK_SIZE)
5086 {
5087 *errorcodeptr = ERR20;
5088 goto FAILED;
5089 }
5090 *lengthptr += length_prevgroup - 2 - 2*LINK_SIZE;
5091 *code++ = OP_BRA;
5092 PUTINC(code, 0, 1 + LINK_SIZE);
5093 *code++ = OP_KET;
5094 PUTINC(code, 0, 1 + LINK_SIZE);
5095 break; /* No need to waste time with special character handling */
5096 }
5097
5098 /* Otherwise update the main code pointer to the end of the group. */
5099
5100 code = tempcode;
5101
5102 /* For a DEFINE group, required and first character settings are not
5103 relevant. */
5104
5105 if (bravalue == OP_DEF) break;
5106
5107 /* Handle updating of the required and first characters for other types of
5108 group. Update for normal brackets of all kinds, and conditions with two
5109 branches (see code above). If the bracket is followed by a quantifier with
5110 zero repeat, we have to back off. Hence the definition of zeroreqbyte and
5111 zerofirstbyte outside the main loop so that they can be accessed for the
5112 back off. */
5113
5114 zeroreqbyte = reqbyte;
5115 zerofirstbyte = firstbyte;
5116 groupsetfirstbyte = FALSE;
5117
5118 if (bravalue >= OP_ONCE)
5119 {
5120 /* If we have not yet set a firstbyte in this branch, take it from the
5121 subpattern, remembering that it was set here so that a repeat of more
5122 than one can replicate it as reqbyte if necessary. If the subpattern has
5123 no firstbyte, set "none" for the whole branch. In both cases, a zero
5124 repeat forces firstbyte to "none". */
5125
5126 if (firstbyte == REQ_UNSET)
5127 {
5128 if (subfirstbyte >= 0)
5129 {
5130 firstbyte = subfirstbyte;
5131 groupsetfirstbyte = TRUE;
5132 }
5133 else firstbyte = REQ_NONE;
5134 zerofirstbyte = REQ_NONE;
5135 }
5136
5137 /* If firstbyte was previously set, convert the subpattern's firstbyte
5138 into reqbyte if there wasn't one, using the vary flag that was in
5139 existence beforehand. */
5140
5141 else if (subfirstbyte >= 0 && subreqbyte < 0)
5142 subreqbyte = subfirstbyte | tempreqvary;
5143
5144 /* If the subpattern set a required byte (or set a first byte that isn't
5145 really the first byte - see above), set it. */
5146
5147 if (subreqbyte >= 0) reqbyte = subreqbyte;
5148 }
5149
5150 /* For a forward assertion, we take the reqbyte, if set. This can be
5151 helpful if the pattern that follows the assertion doesn't set a different
5152 char. For example, it's useful for /(?=abcde).+/. We can't set firstbyte
5153 for an assertion, however because it leads to incorrect effect for patterns
5154 such as /(?=a)a.+/ when the "real" "a" would then become a reqbyte instead
5155 of a firstbyte. This is overcome by a scan at the end if there's no
5156 firstbyte, looking for an asserted first char. */
5157
5158 else if (bravalue == OP_ASSERT && subreqbyte >= 0) reqbyte = subreqbyte;
5159 break; /* End of processing '(' */
5160
5161
5162 /* ===================================================================*/
5163 /* Handle metasequences introduced by \. For ones like \d, the ESC_ values
5164 are arranged to be the negation of the corresponding OP_values. For the
5165 back references, the values are ESC_REF plus the reference number. Only
5166 back references and those types that consume a character may be repeated.
5167 We can test for values between ESC_b and ESC_Z for the latter; this may
5168 have to change if any new ones are ever created. */
5169
5170 case '\\':
5171 tempptr = ptr;
5172 c = check_escape(&ptr, errorcodeptr, cd->bracount, options, FALSE);
5173 if (*errorcodeptr != 0) goto FAILED;
5174
5175 if (c < 0)
5176 {
5177 if (-c == ESC_Q) /* Handle start of quoted string */
5178 {
5179 if (ptr[1] == '\\' && ptr[2] == 'E') ptr += 2; /* avoid empty string */
5180 else inescq = TRUE;
5181 continue;
5182 }
5183
5184 if (-c == ESC_E) continue; /* Perl ignores an orphan \E */
5185
5186 /* For metasequences that actually match a character, we disable the
5187 setting of a first character if it hasn't already been set. */
5188
5189 if (firstbyte == REQ_UNSET && -c > ESC_b && -c < ESC_Z)
5190 firstbyte = REQ_NONE;
5191
5192 /* Set values to reset to if this is followed by a zero repeat. */
5193
5194 zerofirstbyte = firstbyte;
5195 zeroreqbyte = reqbyte;
5196
5197 /* \g<name> or \g'name' is a subroutine call by name and \g<n> or \g'n'
5198 is a subroutine call by number (Oniguruma syntax). In fact, the value
5199 -ESC_g is returned only for these cases. So we don't need to check for <
5200 or ' if the value is -ESC_g. For the Perl syntax \g{n} the value is
5201 -ESC_REF+n, and for the Perl syntax \g{name} the result is -ESC_k (as
5202 that is a synonym for a named back reference). */
5203
5204 if (-c == ESC_g)
5205 {
5206 const uschar *p;
5207 save_hwm = cd->hwm; /* Normally this is set when '(' is read */
5208 terminator = (*(++ptr) == '<')? '>' : '\'';
5209
5210 /* These two statements stop the compiler for warning about possibly
5211 unset variables caused by the jump to HANDLE_NUMERICAL_RECURSION. In
5212 fact, because we actually check for a number below, the paths that
5213 would actually be in error are never taken. */
5214
5215 skipbytes = 0;
5216 reset_bracount = FALSE;
5217
5218 /* Test for a name */
5219
5220 if (ptr[1] != '+' && ptr[1] != '-')
5221 {
5222 BOOL isnumber = TRUE;
5223 for (p = ptr + 1; *p != 0 && *p != terminator; p++)
5224 {
5225 if ((cd->ctypes[*p] & ctype_digit) == 0) isnumber = FALSE;
5226 if ((cd->ctypes[*p] & ctype_word) == 0) break;
5227 }
5228 if (*p != terminator)
5229 {
5230 *errorcodeptr = ERR57;
5231 break;
5232 }
5233 if (isnumber)
5234 {
5235 ptr++;
5236 goto HANDLE_NUMERICAL_RECURSION;
5237 }
5238 is_recurse = TRUE;
5239 goto NAMED_REF_OR_RECURSE;
5240 }
5241
5242 /* Test a signed number in angle brackets or quotes. */
5243
5244 p = ptr + 2;
5245 while ((digitab[*p] & ctype_digit) != 0) p++;
5246 if (*p != terminator)
5247 {
5248 *errorcodeptr = ERR57;
5249 break;
5250 }
5251 ptr++;
5252 goto HANDLE_NUMERICAL_RECURSION;
5253 }
5254
5255 /* \k<name> or \k'name' is a back reference by name (Perl syntax).
5256 We also support \k{name} (.NET syntax) */
5257
5258 if (-c == ESC_k && (ptr[1] == '<' || ptr[1] == '\'' || ptr[1] == '{'))
5259 {
5260 is_recurse = FALSE;
5261 terminator = (*(++ptr) == '<')? '>' : (*ptr == '\'')? '\'' : '}';
5262 goto NAMED_REF_OR_RECURSE;
5263 }
5264
5265 /* Back references are handled specially; must disable firstbyte if
5266 not set to cope with cases like (?=(\w+))\1: which would otherwise set
5267 ':' later. */
5268
5269 if (-c >= ESC_REF)
5270 {
5271 recno = -c - ESC_REF;
5272
5273 HANDLE_REFERENCE: /* Come here from named backref handling */
5274 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
5275 previous = code;
5276 *code++ = OP_REF;
5277 PUT2INC(code, 0, recno);
5278 cd->backref_map |= (recno < 32)? (1 << recno) : 1;
5279 if (recno > cd->top_backref) cd->top_backref = recno;
5280 }
5281
5282 /* So are Unicode property matches, if supported. */
5283
5284 #ifdef SUPPORT_UCP
5285 else if (-c == ESC_P || -c == ESC_p)
5286 {
5287 BOOL negated;
5288 int pdata;
5289 int ptype = get_ucp(&ptr, &negated, &pdata, errorcodeptr);
5290 if (ptype < 0) goto FAILED;
5291 previous = code;
5292 *code++ = ((-c == ESC_p) != negated)? OP_PROP : OP_NOTPROP;
5293 *code++ = ptype;
5294 *code++ = pdata;
5295 }
5296 #else
5297
5298 /* If Unicode properties are not supported, \X, \P, and \p are not
5299 allowed. */
5300
5301 else if (-c == ESC_X || -c == ESC_P || -c == ESC_p)
5302 {
5303 *errorcodeptr = ERR45;
5304 goto FAILED;
5305 }
5306 #endif
5307
5308 /* For the rest (including \X when Unicode properties are supported), we
5309 can obtain the OP value by negating the escape value. */
5310
5311 else
5312 {
5313 previous = (-c > ESC_b && -c < ESC_Z)? code : NULL;
5314 *code++ = -c;
5315 }
5316 continue;
5317 }
5318
5319 /* We have a data character whose value is in c. In UTF-8 mode it may have
5320 a value > 127. We set its representation in the length/buffer, and then
5321 handle it as a data character. */
5322
5323 #ifdef SUPPORT_UTF8
5324 if (utf8 && c > 127)
5325 mclength = _pcre_ord2utf8(c, mcbuffer);
5326 else
5327 #endif
5328
5329 {
5330 mcbuffer[0] = c;
5331 mclength = 1;
5332 }
5333 goto ONE_CHAR;
5334
5335
5336 /* ===================================================================*/
5337 /* Handle a literal character. It is guaranteed not to be whitespace or #
5338 when the extended flag is set. If we are in UTF-8 mode, it may be a
5339 multi-byte literal character. */
5340
5341 default:
5342 NORMAL_CHAR:
5343 mclength = 1;
5344 mcbuffer[0] = c;
5345
5346 #ifdef SUPPORT_UTF8
5347 if (utf8 && c >= 0xc0)
5348 {
5349 while ((ptr[1] & 0xc0) == 0x80)
5350 mcbuffer[mclength++] = *(++ptr);
5351 }
5352 #endif
5353
5354 /* At this point we have the character's bytes in mcbuffer, and the length
5355 in mclength. When not in UTF-8 mode, the length is always 1. */
5356
5357 ONE_CHAR:
5358 previous = code;
5359 *code++ = ((options & PCRE_CASELESS) != 0)? OP_CHARNC : OP_CHAR;
5360 for (c = 0; c < mclength; c++) *code++ = mcbuffer[c];
5361
5362 /* Remember if \r or \n were seen */
5363
5364 if (mcbuffer[0] == '\r' || mcbuffer[0] == '\n')
5365 cd->external_flags |= PCRE_HASCRORLF;
5366
5367 /* Set the first and required bytes appropriately. If no previous first
5368 byte, set it from this character, but revert to none on a zero repeat.
5369 Otherwise, leave the firstbyte value alone, and don't change it on a zero
5370 repeat. */
5371
5372 if (firstbyte == REQ_UNSET)
5373 {
5374 zerofirstbyte = REQ_NONE;
5375 zeroreqbyte = reqbyte;
5376
5377 /* If the character is more than one byte long, we can set firstbyte
5378 only if it is not to be matched caselessly. */
5379
5380 if (mclength == 1 || req_caseopt == 0)
5381 {
5382 firstbyte = mcbuffer[0] | req_caseopt;
5383 if (mclength != 1) reqbyte = code[-1] | cd->req_varyopt;
5384 }
5385 else firstbyte = reqbyte = REQ_NONE;
5386 }
5387
5388 /* firstbyte was previously set; we can set reqbyte only the length is
5389 1 or the matching is caseful. */
5390
5391 else
5392 {
5393 zerofirstbyte = firstbyte;
5394 zeroreqbyte = reqbyte;
5395 if (mclength == 1 || req_caseopt == 0)
5396 reqbyte = code[-1] | req_caseopt | cd->req_varyopt;
5397 }
5398
5399 break; /* End of literal character handling */
5400 }
5401 } /* end of big loop */
5402
5403
5404 /* Control never reaches here by falling through, only by a goto for all the
5405 error states. Pass back the position in the pattern so that it can be displayed
5406 to the user for diagnosing the error. */
5407
5408 FAILED:
5409 *ptrptr = ptr;
5410 return FALSE;
5411 }
5412
5413
5414
5415
5416 /*************************************************
5417 * Compile sequence of alternatives *
5418 *************************************************/
5419
5420 /* On entry, ptr is pointing past the bracket character, but on return it
5421 points to the closing bracket, or vertical bar, or end of string. The code
5422 variable is pointing at the byte into which the BRA operator has been stored.
5423 If the ims options are changed at the start (for a (?ims: group) or during any
5424 branch, we need to insert an OP_OPT item at the start of every following branch
5425 to ensure they get set correctly at run time, and also pass the new options
5426 into every subsequent branch compile.
5427
5428 This function is used during the pre-compile phase when we are trying to find
5429 out the amount of memory needed, as well as during the real compile phase. The
5430 value of lengthptr distinguishes the two phases.
5431
5432 Arguments:
5433 options option bits, including any changes for this subpattern
5434 oldims previous settings of ims option bits
5435 codeptr -> the address of the current code pointer
5436 ptrptr -> the address of the current pattern pointer
5437 errorcodeptr -> pointer to error code variable
5438 lookbehind TRUE if this is a lookbehind assertion
5439 reset_bracount TRUE to reset the count for each branch
5440 skipbytes skip this many bytes at start (for brackets and OP_COND)
5441 firstbyteptr place to put the first required character, or a negative number
5442 reqbyteptr place to put the last required character, or a negative number
5443 bcptr pointer to the chain of currently open branches
5444 cd points to the data block with tables pointers etc.
5445 lengthptr NULL during the real compile phase
5446 points to length accumulator during pre-compile phase
5447
5448 Returns: TRUE on success
5449 */
5450
5451 static BOOL
5452 compile_regex(int options, int oldims, uschar **codeptr, const uschar **ptrptr,
5453 int *errorcodeptr, BOOL lookbehind, BOOL reset_bracount, int skipbytes,
5454 int *firstbyteptr, int *reqbyteptr, branch_chain *bcptr, compile_data *cd,
5455 int *lengthptr)
5456 {
5457 const uschar *ptr = *ptrptr;
5458 uschar *code = *codeptr;
5459 uschar *last_branch = code;
5460 uschar *start_bracket = code;
5461 uschar *reverse_count = NULL;
5462 int firstbyte, reqbyte;
5463 int branchfirstbyte, branchreqbyte;
5464 int length;
5465 int orig_bracount;
5466 int max_bracount;
5467 branch_chain bc;
5468
5469 bc.outer = bcptr;
5470 bc.current = code;
5471
5472 firstbyte = reqbyte = REQ_UNSET;
5473
5474 /* Accumulate the length for use in the pre-compile phase. Start with the
5475 length of the BRA and KET and any extra bytes that are required at the
5476 beginning. We accumulate in a local variable to save frequent testing of
5477 lenthptr for NULL. We cannot do this by looking at the value of code at the
5478 start and end of each alternative, because compiled items are discarded during
5479 the pre-compile phase so that the work space is not exceeded. */
5480
5481 length = 2 + 2*LINK_SIZE + skipbytes;
5482
5483 /* WARNING: If the above line is changed for any reason, you must also change
5484 the code that abstracts option settings at the start of the pattern and makes
5485 them global. It tests the value of length for (2 + 2*LINK_SIZE) in the
5486 pre-compile phase to find out whether anything has yet been compiled or not. */
5487
5488 /* Offset is set zero to mark that this bracket is still open */
5489
5490 PUT(code, 1, 0);
5491 code += 1 + LINK_SIZE + skipbytes;
5492
5493 /* Loop for each alternative branch */
5494
5495 orig_bracount = max_bracount = cd->bracount;
5496 for (;;)
5497 {
5498 /* For a (?| group, reset the capturing bracket count so that each branch
5499 uses the same numbers. */
5500
5501 if (reset_bracount) cd->bracount = orig_bracount;
5502
5503 /* Handle a change of ims options at the start of the branch */
5504
5505 if ((options & PCRE_IMS) != oldims)
5506 {
5507 *code++ = OP_OPT;
5508 *code++ = options & PCRE_IMS;
5509 length += 2;
5510 }
5511
5512 /* Set up dummy OP_REVERSE if lookbehind assertion */
5513
5514 if (lookbehind)
5515 {
5516 *code++ = OP_REVERSE;
5517 reverse_count = code;
5518 PUTINC(code, 0, 0);
5519 length += 1 + LINK_SIZE;
5520 }
5521
5522 /* Now compile the branch; in the pre-compile phase its length gets added
5523 into the length. */
5524
5525 if (!compile_branch(&options, &code, &ptr, errorcodeptr, &branchfirstbyte,
5526 &branchreqbyte, &bc, cd, (lengthptr == NULL)? NULL : &length))
5527 {
5528 *ptrptr = ptr;
5529 return FALSE;
5530 }
5531
5532 /* Keep the highest bracket count in case (?| was used and some branch
5533 has fewer than the rest. */
5534
5535 if (cd->bracount > max_bracount) max_bracount = cd->bracount;
5536
5537 /* In the real compile phase, there is some post-processing to be done. */
5538
5539 if (lengthptr == NULL)
5540 {
5541 /* If this is the first branch, the firstbyte and reqbyte values for the
5542 branch become the values for the regex. */
5543
5544 if (*last_branch != OP_ALT)
5545 {
5546 firstbyte = branchfirstbyte;
5547 reqbyte = branchreqbyte;
5548 }
5549
5550 /* If this is not the first branch, the first char and reqbyte have to
5551 match the values from all the previous branches, except that if the
5552 previous value for reqbyte didn't have REQ_VARY set, it can still match,
5553 and we set REQ_VARY for the regex. */
5554
5555 else
5556 {
5557 /* If we previously had a firstbyte, but it doesn't match the new branch,
5558 we have to abandon the firstbyte for the regex, but if there was
5559 previously no reqbyte, it takes on the value of the old firstbyte. */
5560
5561 if (firstbyte >= 0 && firstbyte != branchfirstbyte)
5562 {
5563 if (reqbyte < 0) reqbyte = firstbyte;
5564 firstbyte = REQ_NONE;
5565 }
5566
5567 /* If we (now or from before) have no firstbyte, a firstbyte from the
5568 branch becomes a reqbyte if there isn't a branch reqbyte. */
5569
5570 if (firstbyte < 0 && branchfirstbyte >= 0 && branchreqbyte < 0)
5571 branchreqbyte = branchfirstbyte;
5572
5573 /* Now ensure that the reqbytes match */
5574
5575 if ((reqbyte & ~REQ_VARY) != (branchreqbyte & ~REQ_VARY))
5576 reqbyte = REQ_NONE;
5577 else reqbyte |= branchreqbyte; /* To "or" REQ_VARY */
5578 }
5579
5580 /* If lookbehind, check that this branch matches a fixed-length string, and
5581 put the length into the OP_REVERSE item. Temporarily mark the end of the
5582 branch with OP_END. */
5583
5584 if (lookbehind)
5585 {
5586 int fixed_length;
5587 *code = OP_END;
5588 fixed_length = find_fixedlength(last_branch, options);
5589 DPRINTF(("fixed length = %d\n", fixed_length));
5590 if (fixed_length < 0)
5591 {
5592 *errorcodeptr = (fixed_length == -2)? ERR36 : ERR25;
5593 *ptrptr = ptr;
5594 return FALSE;
5595 }
5596 PUT(reverse_count, 0, fixed_length);
5597 }
5598 }
5599
5600 /* Reached end of expression, either ')' or end of pattern. In the real
5601 compile phase, go back through the alternative branches and reverse the chain
5602 of offsets, with the field in the BRA item now becoming an offset to the
5603 first alternative. If there are no alternatives, it points to the end of the
5604 group. The length in the terminating ket is always the length of the whole
5605 bracketed item. If any of the ims options were changed inside the group,
5606 compile a resetting op-code following, except at the very end of the pattern.
5607 Return leaving the pointer at the terminating char. */
5608
5609 if (*ptr != '|')
5610 {
5611 if (lengthptr == NULL)
5612 {
5613 int branch_length = code - last_branch;
5614 do
5615 {
5616 int prev_length = GET(last_branch, 1);
5617 PUT(last_branch, 1, branch_length);
5618 branch_length = prev_length;
5619 last_branch -= branch_length;
5620 }
5621 while (branch_length > 0);
5622 }
5623
5624 /* Fill in the ket */
5625
5626 *code = OP_KET;
5627 PUT(code, 1, code - start_bracket);
5628 code += 1 + LINK_SIZE;
5629
5630 /* Resetting option if needed */
5631
5632 if ((options & PCRE_IMS) != oldims && *ptr == ')')
5633 {
5634 *code++ = OP_OPT;
5635 *code++ = oldims;
5636 length += 2;
5637 }
5638
5639 /* Retain the highest bracket number, in case resetting was used. */
5640
5641 cd->bracount = max_bracount;
5642
5643 /* Set values to pass back */
5644
5645 *codeptr = code;
5646 *ptrptr = ptr;
5647 *firstbyteptr = firstbyte;
5648 *reqbyteptr = reqbyte;
5649 if (lengthptr != NULL)
5650 {
5651 if (OFLOW_MAX - *lengthptr < length)
5652 {
5653 *errorcodeptr = ERR20;
5654 return FALSE;
5655 }
5656 *lengthptr += length;
5657 }
5658 return TRUE;
5659 }
5660
5661 /* Another branch follows. In the pre-compile phase, we can move the code
5662 pointer back to where it was for the start of the first branch. (That is,
5663 pretend that each branch is the only one.)
5664
5665 In the real compile phase, insert an ALT node. Its length field points back
5666 to the previous branch while the bracket remains open. At the end the chain
5667 is reversed. It's done like this so that the start of the bracket has a
5668 zero offset until it is closed, making it possible to detect recursion. */
5669
5670 if (lengthptr != NULL)
5671 {
5672 code = *codeptr + 1 + LINK_SIZE + skipbytes;
5673 length += 1 + LINK_SIZE;
5674 }
5675 else
5676 {
5677 *code = OP_ALT;
5678 PUT(code, 1, code - last_branch);
5679 bc.current = last_branch = code;
5680 code += 1 + LINK_SIZE;
5681 }
5682
5683 ptr++;
5684 }
5685 /* Control never reaches here */
5686 }
5687
5688
5689
5690
5691 /*************************************************
5692 * Check for anchored expression *
5693 *************************************************/
5694
5695 /* Try to find out if this is an anchored regular expression. Consider each
5696 alternative branch. If they all start with OP_SOD or OP_CIRC, or with a bracket
5697 all of whose alternatives start with OP_SOD or OP_CIRC (recurse ad lib), then
5698 it's anchored. However, if this is a multiline pattern, then only OP_SOD
5699 counts, since OP_CIRC can match in the middle.
5700
5701 We can also consider a regex to be anchored if OP_SOM starts all its branches.
5702 This is the code for \G, which means "match at start of match position, taking
5703 into account the match offset".
5704
5705 A branch is also implicitly anchored if it starts with .* and DOTALL is set,
5706 because that will try the rest of the pattern at all possible matching points,
5707 so there is no point trying again.... er ....
5708
5709 .... except when the .* appears inside capturing parentheses, and there is a
5710 subsequent back reference to those parentheses. We haven't enough information
5711 to catch that case precisely.
5712
5713 At first, the best we could do was to detect when .* was in capturing brackets
5714 and the highest back reference was greater than or equal to that level.
5715 However, by keeping a bitmap of the first 31 back references, we can catch some
5716 of the more common cases more precisely.
5717
5718 Arguments:
5719 code points to start of expression (the bracket)
5720 options points to the options setting
5721 bracket_map a bitmap of which brackets we are inside while testing; this
5722 handles up to substring 31; after that we just have to take
5723 the less precise approach
5724 backref_map the back reference bitmap
5725
5726 Returns: TRUE or FALSE
5727 */
5728
5729 static BOOL
5730 is_anchored(register const uschar *code, int *options, unsigned int bracket_map,
5731 unsigned int backref_map)
5732 {
5733 do {
5734 const uschar *scode = first_significant_code(code + _pcre_OP_lengths[*code],
5735 options, PCRE_MULTILINE, FALSE);
5736 register int op = *scode;
5737
5738 /* Non-capturing brackets */
5739
5740 if (op == OP_BRA)
5741 {
5742 if (!is_anchored(scode, options, bracket_map, backref_map)) return FALSE;
5743 }
5744
5745 /* Capturing brackets */
5746
5747 else if (op == OP_CBRA)
5748 {
5749 int n = GET2(scode, 1+LINK_SIZE);
5750 int new_map = bracket_map | ((n < 32)? (1 << n) : 1);
5751 if (!is_anchored(scode, options, new_map, backref_map)) return FALSE;
5752 }
5753
5754 /* Other brackets */
5755
5756 else if (op == OP_ASSERT || op == OP_ONCE || op == OP_COND)
5757 {
5758 if (!is_anchored(scode, options, bracket_map, backref_map)) return FALSE;
5759 }
5760
5761 /* .* is not anchored unless DOTALL is set (which generates OP_ALLANY) and
5762 it isn't in brackets that are or may be referenced. */
5763
5764 else if ((op == OP_TYPESTAR || op == OP_TYPEMINSTAR ||
5765 op == OP_TYPEPOSSTAR))
5766 {
5767 if (scode[1] != OP_ALLANY || (bracket_map & backref_map) != 0)
5768 return FALSE;
5769 }
5770
5771 /* Check for explicit anchoring */
5772
5773 else if (op != OP_SOD && op != OP_SOM &&
5774 ((*options & PCRE_MULTILINE) != 0 || op != OP_CIRC))
5775 return FALSE;
5776 code += GET(code, 1);
5777 }
5778 while (*code == OP_ALT); /* Loop for each alternative */
5779 return TRUE;
5780 }
5781
5782
5783
5784 /*************************************************
5785 * Check for starting with ^ or .* *
5786 *************************************************/
5787
5788 /* This is called to find out if every branch starts with ^ or .* so that
5789 "first char" processing can be done to speed things up in multiline
5790 matching and for non-DOTALL patterns that start with .* (which must start at
5791 the beginning or after \n). As in the case of is_anchored() (see above), we
5792 have to take account of back references to capturing brackets that contain .*
5793 because in that case we can't make the assumption.
5794
5795 Arguments:
5796 code points to start of expression (the bracket)
5797 bracket_map a bitmap of which brackets we are inside while testing; this
5798 handles up to substring 31; after that we just have to take
5799 the less precise approach
5800 backref_map the back reference bitmap
5801
5802 Returns: TRUE or FALSE
5803 */
5804
5805 static BOOL
5806 is_startline(const uschar *code, unsigned int bracket_map,
5807 unsigned int backref_map)
5808 {
5809 do {
5810 const uschar *scode = first_significant_code(code + _pcre_OP_lengths[*code],
5811 NULL, 0, FALSE);
5812 register int op = *scode;
5813
5814 /* Non-capturing brackets */
5815
5816 if (op == OP_BRA)
5817 {
5818 if (!is_startline(scode, bracket_map, backref_map)) return FALSE;
5819 }
5820
5821 /* Capturing brackets */
5822
5823 else if (op == OP_CBRA)
5824 {
5825 int n = GET2(scode, 1+LINK_SIZE);
5826 int new_map = bracket_map | ((n < 32)? (1 << n) : 1);
5827 if (!is_startline(scode, new_map, backref_map)) return FALSE;
5828 }
5829
5830 /* Other brackets */
5831
5832 else if (op == OP_ASSERT || op == OP_ONCE || op == OP_COND)
5833 { if (!is_startline(scode, bracket_map, backref_map)) return FALSE; }
5834
5835 /* .* means "start at start or after \n" if it isn't in brackets that
5836 may be referenced. */
5837
5838 else if (op == OP_TYPESTAR || op == OP_TYPEMINSTAR || op == OP_TYPEPOSSTAR)
5839 {
5840 if (scode[1] != OP_ANY || (bracket_map & backref_map) != 0) return FALSE;
5841 }
5842
5843 /* Check for explicit circumflex */
5844
5845 else if (op != OP_CIRC) return FALSE;
5846
5847 /* Move on to the next alternative */
5848
5849 code += GET(code, 1);
5850 }
5851 while (*code == OP_ALT); /* Loop for each alternative */
5852 return TRUE;
5853 }
5854
5855
5856
5857 /*************************************************
5858 * Check for asserted fixed first char *
5859 *************************************************/
5860
5861 /* During compilation, the "first char" settings from forward assertions are
5862 discarded, because they can cause conflicts with actual literals that follow.
5863 However, if we end up without a first char setting for an unanchored pattern,
5864 it is worth scanning the regex to see if there is an initial asserted first
5865 char. If all branches start with the same asserted char, or with a bracket all
5866 of whose alternatives start with the same asserted char (recurse ad lib), then
5867 we return that char, otherwise -1.
5868
5869 Arguments:
5870 code points to start of expression (the bracket)
5871 options pointer to the options (used to check casing changes)
5872 inassert TRUE if in an assertion
5873
5874 Returns: -1 or the fixed first char
5875 */
5876
5877 static int
5878 find_firstassertedchar(const uschar *code, int *options, BOOL inassert)
5879 {
5880 register int c = -1;
5881 do {
5882 int d;
5883 const uschar *scode =
5884 first_significant_code(code + 1+LINK_SIZE, options, PCRE_CASELESS, TRUE);
5885 register int op = *scode;
5886
5887 switch(op)
5888 {
5889 default:
5890 return -1;
5891
5892 case OP_BRA:
5893 case OP_CBRA:
5894 case OP_ASSERT:
5895 case OP_ONCE:
5896 case OP_COND:
5897 if ((d = find_firstassertedchar(scode, options, op == OP_ASSERT)) < 0)
5898 return -1;
5899 if (c < 0) c = d; else if (c != d) return -1;
5900 break;
5901
5902 case OP_EXACT: /* Fall through */
5903 scode += 2;
5904
5905 case OP_CHAR:
5906 case OP_CHARNC:
5907 case OP_PLUS:
5908 case OP_MINPLUS:
5909 case OP_POSPLUS:
5910 if (!inassert) return -1;
5911 if (c < 0)
5912 {
5913 c = scode[1];
5914 if ((*options & PCRE_CASELESS) != 0) c |= REQ_CASELESS;
5915 }
5916 else if (c != scode[1]) return -1;
5917 break;
5918 }
5919
5920 code += GET(code, 1);
5921 }
5922 while (*code == OP_ALT);
5923 return c;
5924 }
5925
5926
5927
5928 /*************************************************
5929 * Compile a Regular Expression *
5930 *************************************************/
5931
5932 /* This function takes a string and returns a pointer to a block of store
5933 holding a compiled version of the expression. The original API for this
5934 function had no error code return variable; it is retained for backwards
5935 compatibility. The new function is given a new name.
5936
5937 Arguments:
5938 pattern the regular expression
5939 options various option bits
5940 errorcodeptr pointer to error code variable (pcre_compile2() only)
5941 can be NULL if you don't want a code value
5942 errorptr pointer to pointer to error text
5943 erroroffset ptr offset in pattern where error was detected
5944 tables pointer to character tables or NULL
5945
5946 Returns: pointer to compiled data block, or NULL on error,
5947 with errorptr and erroroffset set
5948 */
5949
5950 PCRE_EXP_DEFN pcre * PCRE_CALL_CONVENTION
5951 pcre_compile(const char *pattern, int options, const char **errorptr,
5952 int *erroroffset, const unsigned char *tables)
5953 {
5954 return pcre_compile2(pattern, options, NULL, errorptr, erroroffset, tables);
5955 }
5956
5957
5958 PCRE_EXP_DEFN pcre * PCRE_CALL_CONVENTION
5959 pcre_compile2(const char *pattern, int options, int *errorcodeptr,
5960 const char **errorptr, int *erroroffset, const unsigned char *tables)
5961 {
5962 real_pcre *re;
5963 int length = 1; /* For final END opcode */
5964 int firstbyte, reqbyte, newline;
5965 int errorcode = 0;
5966 int skipatstart = 0;
5967 #ifdef SUPPORT_UTF8
5968 BOOL utf8;
5969 #endif
5970 size_t size;
5971 uschar *code;
5972 const uschar *codestart;
5973 const uschar *ptr;
5974 compile_data compile_block;
5975 compile_data *cd = &compile_block;
5976
5977 /* This space is used for "compiling" into during the first phase, when we are
5978 computing the amount of memory that is needed. Compiled items are thrown away
5979 as soon as possible, so that a fairly large buffer should be sufficient for
5980 this purpose. The same space is used in the second phase for remembering where
5981 to fill in forward references to subpatterns. */
5982
5983 uschar cworkspace[COMPILE_WORK_SIZE];
5984
5985 /* Set this early so that early errors get offset 0. */
5986
5987 ptr = (const uschar *)pattern;
5988
5989 /* We can't pass back an error message if errorptr is NULL; I guess the best we
5990 can do is just return NULL, but we can set a code value if there is a code
5991 pointer. */
5992
5993 if (errorptr == NULL)
5994 {
5995 if (errorcodeptr != NULL) *errorcodeptr = 99;
5996 return NULL;
5997 }
5998
5999 *errorptr = NULL;
6000 if (errorcodeptr != NULL) *errorcodeptr = ERR0;
6001
6002 /* However, we can give a message for this error */
6003
6004 if (erroroffset == NULL)
6005 {
6006 errorcode = ERR16;
6007 goto PCRE_EARLY_ERROR_RETURN2;
6008 }
6009
6010 *erroroffset = 0;
6011
6012 /* Can't support UTF8 unless PCRE has been compiled to include the code. */
6013
6014 #ifdef SUPPORT_UTF8
6015 utf8 = (options & PCRE_UTF8) != 0;
6016 if (utf8 && (options & PCRE_NO_UTF8_CHECK) == 0 &&
6017 (*erroroffset = _pcre_valid_utf8((uschar *)pattern, -1)) >= 0)
6018 {
6019 errorcode = ERR44;
6020 goto PCRE_EARLY_ERROR_RETURN2;
6021 }
6022 #else
6023 if ((options & PCRE_UTF8) != 0)
6024 {
6025 errorcode = ERR32;
6026 goto PCRE_EARLY_ERROR_RETURN;
6027 }
6028 #endif
6029
6030 if ((options & ~PUBLIC_OPTIONS) != 0)
6031 {
6032 errorcode = ERR17;
6033 goto PCRE_EARLY_ERROR_RETURN;
6034 }
6035
6036 /* Set up pointers to the individual character tables */
6037
6038 if (tables == NULL) tables = _pcre_default_tables;
6039 cd->lcc = tables + lcc_offset;
6040 cd->fcc = tables + fcc_offset;
6041 cd->cbits = tables + cbits_offset;
6042 cd->ctypes = tables + ctypes_offset;
6043
6044 /* Check for global one-time settings at the start of the pattern, and remember
6045 the offset for later. */
6046
6047 while (ptr[skipatstart] == '(' && ptr[skipatstart+1] == '*')
6048 {
6049 int newnl = 0;
6050 int newbsr = 0;
6051
6052 if (strncmp((char *)(ptr+skipatstart+2), "CR)", 3) == 0)
6053 { skipatstart += 5; newnl = PCRE_NEWLINE_CR; }
6054 else if (strncmp((char *)(ptr+skipatstart+2), "LF)", 3) == 0)
6055 { skipatstart += 5; newnl = PCRE_NEWLINE_LF; }
6056 else if (strncmp((char *)(ptr+skipatstart+2), "CRLF)", 5) == 0)
6057 { skipatstart += 7; newnl = PCRE_NEWLINE_CR + PCRE_NEWLINE_LF; }
6058 else if (strncmp((char *)(ptr+skipatstart+2), "ANY)", 4) == 0)
6059 { skipatstart += 6; newnl = PCRE_NEWLINE_ANY; }
6060 else if (strncmp((char *)(ptr+skipatstart+2), "ANYCRLF)", 8) == 0)
6061 { skipatstart += 10; newnl = PCRE_NEWLINE_ANYCRLF; }
6062
6063 else if (strncmp((char *)(ptr+skipatstart+2), "BSR_ANYCRLF)", 12) == 0)
6064 { skipatstart += 14; newbsr = PCRE_BSR_ANYCRLF; }
6065 else if (strncmp((char *)(ptr+skipatstart+2), "BSR_UNICODE)", 12) == 0)
6066 { skipatstart += 14; newbsr = PCRE_BSR_UNICODE; }
6067
6068 if (newnl != 0)
6069 options = (options & ~PCRE_NEWLINE_BITS) | newnl;
6070 else if (newbsr != 0)
6071 options = (options & ~(PCRE_BSR_ANYCRLF|PCRE_BSR_UNICODE)) | newbsr;
6072 else break;
6073 }
6074
6075 /* Check validity of \R options. */
6076
6077 switch (options & (PCRE_BSR_ANYCRLF|PCRE_BSR_UNICODE))
6078 {
6079 case 0:
6080 case PCRE_BSR_ANYCRLF:
6081 case PCRE_BSR_UNICODE:
6082 break;
6083 default: errorcode = ERR56; goto PCRE_EARLY_ERROR_RETURN;
6084 }
6085
6086 /* Handle different types of newline. The three bits give seven cases. The
6087 current code allows for fixed one- or two-byte sequences, plus "any" and
6088 "anycrlf". */
6089
6090 switch (options & PCRE_NEWLINE_BITS)
6091 {
6092 case 0: newline = NEWLINE; break; /* Build-time default */
6093 case PCRE_NEWLINE_CR: newline = '\r'; break;
6094 case PCRE_NEWLINE_LF: newline = '\n'; break;
6095 case PCRE_NEWLINE_CR+
6096 PCRE_NEWLINE_LF: newline = ('\r' << 8) | '\n'; break;
6097 case PCRE_NEWLINE_ANY: newline = -1; break;
6098 case PCRE_NEWLINE_ANYCRLF: newline = -2; break;
6099 default: errorcode = ERR56; goto PCRE_EARLY_ERROR_RETURN;
6100 }
6101
6102 if (newline == -2)
6103 {
6104 cd->nltype = NLTYPE_ANYCRLF;
6105 }
6106 else if (newline < 0)
6107 {
6108 cd->nltype = NLTYPE_ANY;
6109 }
6110 else
6111 {
6112 cd->nltype = NLTYPE_FIXED;
6113 if (newline > 255)
6114 {
6115 cd->nllen = 2;
6116 cd->nl[0] = (newline >> 8) & 255;
6117 cd->nl[1] = newline & 255;
6118 }
6119 else
6120 {
6121 cd->nllen = 1;
6122 cd->nl[0] = newline;
6123 }
6124 }
6125
6126 /* Maximum back reference and backref bitmap. The bitmap records up to 31 back
6127 references to help in deciding whether (.*) can be treated as anchored or not.
6128 */
6129
6130 cd->top_backref = 0;
6131 cd->backref_map = 0;
6132
6133 /* Reflect pattern for debugging output */
6134
6135 DPRINTF(("------------------------------------------------------------------\n"));
6136 DPRINTF(("%s\n", pattern));
6137
6138 /* Pretend to compile the pattern while actually just accumulating the length
6139 of memory required. This behaviour is triggered by passing a non-NULL final
6140 argument to compile_regex(). We pass a block of workspace (cworkspace) for it
6141 to compile parts of the pattern into; the compiled code is discarded when it is
6142 no longer needed, so hopefully this workspace will never overflow, though there
6143 is a test for its doing so. */
6144
6145 cd->bracount = cd->final_bracount = 0;
6146 cd->names_found = 0;
6147 cd->name_entry_size = 0;
6148 cd->name_table = NULL;
6149 cd->start_workspace = cworkspace;
6150 cd->start_code = cworkspace;
6151 cd->hwm = cworkspace;
6152 cd->start_pattern = (const uschar *)pattern;
6153 cd->end_pattern = (const uschar *)(pattern + strlen(pattern));
6154 cd->req_varyopt = 0;
6155 cd->external_options = options;
6156 cd->external_flags = 0;
6157
6158 /* Now do the pre-compile. On error, errorcode will be set non-zero, so we
6159 don't need to look at the result of the function here. The initial options have
6160 been put into the cd block so that they can be changed if an option setting is
6161 found within the regex right at the beginning. Bringing initial option settings
6162 outside can help speed up starting point checks. */
6163
6164 ptr += skipatstart;
6165 code = cworkspace;
6166 *code = OP_BRA;
6167 (void)compile_regex(cd->external_options, cd->external_options & PCRE_IMS,
6168 &code, &ptr, &errorcode, FALSE, FALSE, 0, &firstbyte, &reqbyte, NULL, cd,
6169 &length);
6170 if (errorcode != 0) goto PCRE_EARLY_ERROR_RETURN;
6171
6172 DPRINTF(("end pre-compile: length=%d workspace=%d\n", length,
6173 cd->hwm - cworkspace));
6174
6175 if (length > MAX_PATTERN_SIZE)
6176 {
6177 errorcode = ERR20;
6178 goto PCRE_EARLY_ERROR_RETURN;
6179 }
6180
6181 /* Compute the size of data block needed and get it, either from malloc or
6182 externally provided function. Integer overflow should no longer be possible
6183 because nowadays we limit the maximum value of cd->names_found and
6184 cd->name_entry_size. */
6185
6186 size = length + sizeof(real_pcre) + cd->names_found * (cd->name_entry_size + 3);
6187 re = (real_pcre *)(pcre_malloc)(size);
6188
6189 if (re == NULL)
6190 {
6191 errorcode = ERR21;
6192 goto PCRE_EARLY_ERROR_RETURN;
6193 }
6194
6195 /* Put in the magic number, and save the sizes, initial options, internal
6196 flags, and character table pointer. NULL is used for the default character
6197 tables. The nullpad field is at the end; it's there to help in the case when a
6198 regex compiled on a system with 4-byte pointers is run on another with 8-byte
6199 pointers. */
6200
6201 re->magic_number = MAGIC_NUMBER;
6202 re->size = size;
6203 re->options = cd->external_options;
6204 re->flags = cd->external_flags;
6205 re->dummy1 = 0;
6206 re->first_byte = 0;
6207 re->req_byte = 0;
6208 re->name_table_offset = sizeof(real_pcre);
6209 re->name_entry_size = cd->name_entry_size;
6210 re->name_count = cd->names_found;
6211 re->ref_count = 0;
6212 re->tables = (tables == _pcre_default_tables)? NULL : tables;
6213 re->nullpad = NULL;
6214
6215 /* The starting points of the name/number translation table and of the code are
6216 passed around in the compile data block. The start/end pattern and initial
6217 options are already set from the pre-compile phase, as is the name_entry_size
6218 field. Reset the bracket count and the names_found field. Also reset the hwm
6219 field; this time it's used for remembering forward references to subpatterns.
6220 */
6221
6222 cd->final_bracount = cd->bracount; /* Save for checking forward references */
6223 cd->bracount = 0;
6224 cd->names_found = 0;
6225 cd->name_table = (uschar *)re + re->name_table_offset;
6226 codestart = cd->name_table + re->name_entry_size * re->name_count;
6227 cd->start_code = codestart;
6228 cd->hwm = cworkspace;
6229 cd->req_varyopt = 0;
6230 cd->had_accept = FALSE;
6231
6232 /* Set up a starting, non-extracting bracket, then compile the expression. On
6233 error, errorcode will be set non-zero, so we don't need to look at the result
6234 of the function here. */
6235
6236 ptr = (const uschar *)pattern + skipatstart;
6237 code = (uschar *)codestart;
6238 *code = OP_BRA;
6239 (void)compile_regex(re->options, re->options & PCRE_IMS, &code, &ptr,
6240 &errorcode, FALSE, FALSE, 0, &firstbyte, &reqbyte, NULL, cd, NULL);
6241 re->top_bracket = cd->bracount;
6242 re->top_backref = cd->top_backref;
6243 re->flags = cd->external_flags;
6244
6245 if (cd->had_accept) reqbyte = -1; /* Must disable after (*ACCEPT) */
6246
6247 /* If not reached end of pattern on success, there's an excess bracket. */
6248
6249 if (errorcode == 0 && *ptr != 0) errorcode = ERR22;
6250
6251 /* Fill in the terminating state and check for disastrous overflow, but
6252 if debugging, leave the test till after things are printed out. */
6253
6254 *code++ = OP_END;
6255
6256 #ifndef DEBUG
6257 if (code - codestart > length) errorcode = ERR23;
6258 #endif
6259
6260 /* Fill in any forward references that are required. */
6261
6262 while (errorcode == 0 && cd->hwm > cworkspace)
6263 {
6264 int offset, recno;
6265 const uschar *groupptr;
6266 cd->hwm -= LINK_SIZE;
6267 offset = GET(cd->hwm, 0);
6268 recno = GET(codestart, offset);
6269 groupptr = find_bracket(codestart, (re->options & PCRE_UTF8) != 0, recno);
6270 if (groupptr == NULL) errorcode = ERR53;
6271 else PUT(((uschar *)codestart), offset, groupptr - codestart);
6272 }
6273
6274 /* Give an error if there's back reference to a non-existent capturing
6275 subpattern. */
6276
6277 if (errorcode == 0 && re->top_backref > re->top_bracket) errorcode = ERR15;
6278
6279 /* Failed to compile, or error while post-processing */
6280
6281 if (errorcode != 0)
6282 {
6283 (pcre_free)(re);
6284 PCRE_EARLY_ERROR_RETURN:
6285 *erroroffset = ptr - (const uschar *)pattern;
6286 PCRE_EARLY_ERROR_RETURN2:
6287 *errorptr = find_error_text(errorcode);
6288 if (errorcodeptr != NULL) *errorcodeptr = errorcode;
6289 return NULL;
6290 }
6291
6292 /* If the anchored option was not passed, set the flag if we can determine that
6293 the pattern is anchored by virtue of ^ characters or \A or anything else (such
6294 as starting with .* when DOTALL is set).
6295
6296 Otherwise, if we know what the first byte has to be, save it, because that
6297 speeds up unanchored matches no end. If not, see if we can set the
6298 PCRE_STARTLINE flag. This is helpful for multiline matches when all branches
6299 start with ^. and also when all branches start with .* for non-DOTALL matches.
6300 */
6301
6302 if ((re->options & PCRE_ANCHORED) == 0)
6303 {
6304 int temp_options = re->options; /* May get changed during these scans */
6305 if (is_anchored(codestart, &temp_options, 0, cd->backref_map))
6306 re->options |= PCRE_ANCHORED;
6307 else
6308 {
6309 if (firstbyte < 0)
6310 firstbyte = find_firstassertedchar(codestart, &temp_options, FALSE);
6311 if (firstbyte >= 0) /* Remove caseless flag for non-caseable chars */
6312 {
6313 int ch = firstbyte & 255;
6314 re->first_byte = ((firstbyte & REQ_CASELESS) != 0 &&
6315 cd->fcc[ch] == ch)? ch : firstbyte;
6316 re->flags |= PCRE_FIRSTSET;
6317 }
6318 else if (is_startline(codestart, 0, cd->backref_map))
6319 re->flags |= PCRE_STARTLINE;
6320 }
6321 }
6322
6323 /* For an anchored pattern, we use the "required byte" only if it follows a
6324 variable length item in the regex. Remove the caseless flag for non-caseable
6325 bytes. */
6326
6327 if (reqbyte >= 0 &&
6328 ((re->options & PCRE_ANCHORED) == 0 || (reqbyte & REQ_VARY) != 0))
6329 {
6330 int ch = reqbyte & 255;
6331 re->req_byte = ((reqbyte & REQ_CASELESS) != 0 &&
6332 cd->fcc[ch] == ch)? (reqbyte & ~REQ_CASELESS) : reqbyte;
6333 re->flags |= PCRE_REQCHSET;
6334 }
6335
6336 /* Print out the compiled data if debugging is enabled. This is never the
6337 case when building a production library. */
6338
6339 #ifdef DEBUG
6340
6341 printf("Length = %d top_bracket = %d top_backref = %d\n",
6342 length, re->top_bracket, re->top_backref);
6343
6344 printf("Options=%08x\n", re->options);
6345
6346 if ((re->flags & PCRE_FIRSTSET) != 0)
6347 {
6348 int ch = re->first_byte & 255;
6349 const char *caseless = ((re->first_byte & REQ_CASELESS) == 0)?
6350 "" : " (caseless)";
6351 if (isprint(ch)) printf("First char = %c%s\n", ch, caseless);
6352 else printf("First char = \\x%02x%s\n", ch, caseless);
6353 }
6354
6355 if ((re->flags & PCRE_REQCHSET) != 0)
6356 {
6357 int ch = re->req_byte & 255;
6358 const char *caseless = ((re->req_byte & REQ_CASELESS) == 0)?
6359 "" : " (caseless)";
6360 if (isprint(ch)) printf("Req char = %c%s\n", ch, caseless);
6361 else printf("Req char = \\x%02x%s\n", ch, caseless);
6362 }
6363
6364 pcre_printint(re, stdout, TRUE);
6365
6366 /* This check is done here in the debugging case so that the code that
6367 was compiled can be seen. */
6368
6369 if (code - codestart > length)
6370 {
6371 (pcre_free)(re);
6372 *errorptr = find_error_text(ERR23);
6373 *erroroffset = ptr - (uschar *)pattern;
6374 if (errorcodeptr != NULL) *errorcodeptr = ERR23;
6375 return NULL;
6376 }
6377 #endif /* DEBUG */
6378
6379 return (pcre *)re;
6380 }
6381
6382 /* End of pcre_compile.c */

Properties

Name Value
svn:eol-style native
svn:keywords "Author Date Id Revision Url"

webmaster@exim.org
ViewVC Help
Powered by ViewVC 1.1.12