/[pcre]/code/trunk/pcre_compile.c
ViewVC logotype

Contents of /code/trunk/pcre_compile.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 309 - (show annotations) (download)
Mon Jan 21 15:22:09 2008 UTC (6 years, 3 months ago) by ph10
File MIME type: text/plain
File size: 197155 byte(s)
Tidies for 7.6-RC1 test release.

1 /*************************************************
2 * Perl-Compatible Regular Expressions *
3 *************************************************/
4
5 /* PCRE is a library of functions to support regular expressions whose syntax
6 and semantics are as close as possible to those of the Perl 5 language.
7
8 Written by Philip Hazel
9 Copyright (c) 1997-2008 University of Cambridge
10
11 -----------------------------------------------------------------------------
12 Redistribution and use in source and binary forms, with or without
13 modification, are permitted provided that the following conditions are met:
14
15 * Redistributions of source code must retain the above copyright notice,
16 this list of conditions and the following disclaimer.
17
18 * Redistributions in binary form must reproduce the above copyright
19 notice, this list of conditions and the following disclaimer in the
20 documentation and/or other materials provided with the distribution.
21
22 * Neither the name of the University of Cambridge nor the names of its
23 contributors may be used to endorse or promote products derived from
24 this software without specific prior written permission.
25
26 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
27 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
30 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 POSSIBILITY OF SUCH DAMAGE.
37 -----------------------------------------------------------------------------
38 */
39
40
41 /* This module contains the external function pcre_compile(), along with
42 supporting internal functions that are not used by other modules. */
43
44
45 #ifdef HAVE_CONFIG_H
46 #include "config.h"
47 #endif
48
49 #define NLBLOCK cd /* Block containing newline information */
50 #define PSSTART start_pattern /* Field containing processed string start */
51 #define PSEND end_pattern /* Field containing processed string end */
52
53 #include "pcre_internal.h"
54
55
56 /* When DEBUG is defined, we need the pcre_printint() function, which is also
57 used by pcretest. DEBUG is not defined when building a production library. */
58
59 #ifdef DEBUG
60 #include "pcre_printint.src"
61 #endif
62
63
64 /* Macro for setting individual bits in class bitmaps. */
65
66 #define SETBIT(a,b) a[b/8] |= (1 << (b%8))
67
68 /* Maximum length value to check against when making sure that the integer that
69 holds the compiled pattern length does not overflow. We make it a bit less than
70 INT_MAX to allow for adding in group terminating bytes, so that we don't have
71 to check them every time. */
72
73 #define OFLOW_MAX (INT_MAX - 20)
74
75
76 /*************************************************
77 * Code parameters and static tables *
78 *************************************************/
79
80 /* This value specifies the size of stack workspace that is used during the
81 first pre-compile phase that determines how much memory is required. The regex
82 is partly compiled into this space, but the compiled parts are discarded as
83 soon as they can be, so that hopefully there will never be an overrun. The code
84 does, however, check for an overrun. The largest amount I've seen used is 218,
85 so this number is very generous.
86
87 The same workspace is used during the second, actual compile phase for
88 remembering forward references to groups so that they can be filled in at the
89 end. Each entry in this list occupies LINK_SIZE bytes, so even when LINK_SIZE
90 is 4 there is plenty of room. */
91
92 #define COMPILE_WORK_SIZE (4096)
93
94
95 /* Table for handling escaped characters in the range '0'-'z'. Positive returns
96 are simple data values; negative values are for special things like \d and so
97 on. Zero means further processing is needed (for things like \x), or the escape
98 is invalid. */
99
100 #ifndef EBCDIC /* This is the "normal" table for ASCII systems */
101 static const short int escapes[] = {
102 0, 0, 0, 0, 0, 0, 0, 0, /* 0 - 7 */
103 0, 0, ':', ';', '<', '=', '>', '?', /* 8 - ? */
104 '@', -ESC_A, -ESC_B, -ESC_C, -ESC_D, -ESC_E, 0, -ESC_G, /* @ - G */
105 -ESC_H, 0, 0, -ESC_K, 0, 0, 0, 0, /* H - O */
106 -ESC_P, -ESC_Q, -ESC_R, -ESC_S, 0, 0, -ESC_V, -ESC_W, /* P - W */
107 -ESC_X, 0, -ESC_Z, '[', '\\', ']', '^', '_', /* X - _ */
108 '`', 7, -ESC_b, 0, -ESC_d, ESC_e, ESC_f, 0, /* ` - g */
109 -ESC_h, 0, 0, -ESC_k, 0, 0, ESC_n, 0, /* h - o */
110 -ESC_p, 0, ESC_r, -ESC_s, ESC_tee, 0, -ESC_v, -ESC_w, /* p - w */
111 0, 0, -ESC_z /* x - z */
112 };
113
114 #else /* This is the "abnormal" table for EBCDIC systems */
115 static const short int escapes[] = {
116 /* 48 */ 0, 0, 0, '.', '<', '(', '+', '|',
117 /* 50 */ '&', 0, 0, 0, 0, 0, 0, 0,
118 /* 58 */ 0, 0, '!', '$', '*', ')', ';', '~',
119 /* 60 */ '-', '/', 0, 0, 0, 0, 0, 0,
120 /* 68 */ 0, 0, '|', ',', '%', '_', '>', '?',
121 /* 70 */ 0, 0, 0, 0, 0, 0, 0, 0,
122 /* 78 */ 0, '`', ':', '#', '@', '\'', '=', '"',
123 /* 80 */ 0, 7, -ESC_b, 0, -ESC_d, ESC_e, ESC_f, 0,
124 /* 88 */-ESC_h, 0, 0, '{', 0, 0, 0, 0,
125 /* 90 */ 0, 0, -ESC_k, 'l', 0, ESC_n, 0, -ESC_p,
126 /* 98 */ 0, ESC_r, 0, '}', 0, 0, 0, 0,
127 /* A0 */ 0, '~', -ESC_s, ESC_tee, 0,-ESC_v, -ESC_w, 0,
128 /* A8 */ 0,-ESC_z, 0, 0, 0, '[', 0, 0,
129 /* B0 */ 0, 0, 0, 0, 0, 0, 0, 0,
130 /* B8 */ 0, 0, 0, 0, 0, ']', '=', '-',
131 /* C0 */ '{',-ESC_A, -ESC_B, -ESC_C, -ESC_D,-ESC_E, 0, -ESC_G,
132 /* C8 */-ESC_H, 0, 0, 0, 0, 0, 0, 0,
133 /* D0 */ '}', 0, -ESC_K, 0, 0, 0, 0, -ESC_P,
134 /* D8 */-ESC_Q,-ESC_R, 0, 0, 0, 0, 0, 0,
135 /* E0 */ '\\', 0, -ESC_S, 0, 0,-ESC_V, -ESC_W, -ESC_X,
136 /* E8 */ 0,-ESC_Z, 0, 0, 0, 0, 0, 0,
137 /* F0 */ 0, 0, 0, 0, 0, 0, 0, 0,
138 /* F8 */ 0, 0, 0, 0, 0, 0, 0, 0
139 };
140 #endif
141
142
143 /* Table of special "verbs" like (*PRUNE). This is a short table, so it is
144 searched linearly. Put all the names into a single string, in order to reduce
145 the number of relocations when a shared library is dynamically linked. */
146
147 typedef struct verbitem {
148 int len;
149 int op;
150 } verbitem;
151
152 static const char verbnames[] =
153 "ACCEPT\0"
154 "COMMIT\0"
155 "F\0"
156 "FAIL\0"
157 "PRUNE\0"
158 "SKIP\0"
159 "THEN";
160
161 static verbitem verbs[] = {
162 { 6, OP_ACCEPT },
163 { 6, OP_COMMIT },
164 { 1, OP_FAIL },
165 { 4, OP_FAIL },
166 { 5, OP_PRUNE },
167 { 4, OP_SKIP },
168 { 4, OP_THEN }
169 };
170
171 static int verbcount = sizeof(verbs)/sizeof(verbitem);
172
173
174 /* Tables of names of POSIX character classes and their lengths. The names are
175 now all in a single string, to reduce the number of relocations when a shared
176 library is dynamically loaded. The list of lengths is terminated by a zero
177 length entry. The first three must be alpha, lower, upper, as this is assumed
178 for handling case independence. */
179
180 static const char posix_names[] =
181 "alpha\0" "lower\0" "upper\0" "alnum\0" "ascii\0" "blank\0"
182 "cntrl\0" "digit\0" "graph\0" "print\0" "punct\0" "space\0"
183 "word\0" "xdigit";
184
185 static const uschar posix_name_lengths[] = {
186 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 6, 0 };
187
188 /* Table of class bit maps for each POSIX class. Each class is formed from a
189 base map, with an optional addition or removal of another map. Then, for some
190 classes, there is some additional tweaking: for [:blank:] the vertical space
191 characters are removed, and for [:alpha:] and [:alnum:] the underscore
192 character is removed. The triples in the table consist of the base map offset,
193 second map offset or -1 if no second map, and a non-negative value for map
194 addition or a negative value for map subtraction (if there are two maps). The
195 absolute value of the third field has these meanings: 0 => no tweaking, 1 =>
196 remove vertical space characters, 2 => remove underscore. */
197
198 static const int posix_class_maps[] = {
199 cbit_word, cbit_digit, -2, /* alpha */
200 cbit_lower, -1, 0, /* lower */
201 cbit_upper, -1, 0, /* upper */
202 cbit_word, -1, 2, /* alnum - word without underscore */
203 cbit_print, cbit_cntrl, 0, /* ascii */
204 cbit_space, -1, 1, /* blank - a GNU extension */
205 cbit_cntrl, -1, 0, /* cntrl */
206 cbit_digit, -1, 0, /* digit */
207 cbit_graph, -1, 0, /* graph */
208 cbit_print, -1, 0, /* print */
209 cbit_punct, -1, 0, /* punct */
210 cbit_space, -1, 0, /* space */
211 cbit_word, -1, 0, /* word - a Perl extension */
212 cbit_xdigit,-1, 0 /* xdigit */
213 };
214
215
216 #define STRING(a) # a
217 #define XSTRING(s) STRING(s)
218
219 /* The texts of compile-time error messages. These are "char *" because they
220 are passed to the outside world. Do not ever re-use any error number, because
221 they are documented. Always add a new error instead. Messages marked DEAD below
222 are no longer used. This used to be a table of strings, but in order to reduce
223 the number of relocations needed when a shared library is loaded dynamically,
224 it is now one long string. We cannot use a table of offsets, because the
225 lengths of inserts such as XSTRING(MAX_NAME_SIZE) are not known. Instead, we
226 simply count through to the one we want - this isn't a performance issue
227 because these strings are used only when there is a compilation error. */
228
229 static const char error_texts[] =
230 "no error\0"
231 "\\ at end of pattern\0"
232 "\\c at end of pattern\0"
233 "unrecognized character follows \\\0"
234 "numbers out of order in {} quantifier\0"
235 /* 5 */
236 "number too big in {} quantifier\0"
237 "missing terminating ] for character class\0"
238 "invalid escape sequence in character class\0"
239 "range out of order in character class\0"
240 "nothing to repeat\0"
241 /* 10 */
242 "operand of unlimited repeat could match the empty string\0" /** DEAD **/
243 "internal error: unexpected repeat\0"
244 "unrecognized character after (? or (?-\0"
245 "POSIX named classes are supported only within a class\0"
246 "missing )\0"
247 /* 15 */
248 "reference to non-existent subpattern\0"
249 "erroffset passed as NULL\0"
250 "unknown option bit(s) set\0"
251 "missing ) after comment\0"
252 "parentheses nested too deeply\0" /** DEAD **/
253 /* 20 */
254 "regular expression is too large\0"
255 "failed to get memory\0"
256 "unmatched parentheses\0"
257 "internal error: code overflow\0"
258 "unrecognized character after (?<\0"
259 /* 25 */
260 "lookbehind assertion is not fixed length\0"
261 "malformed number or name after (?(\0"
262 "conditional group contains more than two branches\0"
263 "assertion expected after (?(\0"
264 "(?R or (?[+-]digits must be followed by )\0"
265 /* 30 */
266 "unknown POSIX class name\0"
267 "POSIX collating elements are not supported\0"
268 "this version of PCRE is not compiled with PCRE_UTF8 support\0"
269 "spare error\0" /** DEAD **/
270 "character value in \\x{...} sequence is too large\0"
271 /* 35 */
272 "invalid condition (?(0)\0"
273 "\\C not allowed in lookbehind assertion\0"
274 "PCRE does not support \\L, \\l, \\N, \\U, or \\u\0"
275 "number after (?C is > 255\0"
276 "closing ) for (?C expected\0"
277 /* 40 */
278 "recursive call could loop indefinitely\0"
279 "unrecognized character after (?P\0"
280 "syntax error in subpattern name (missing terminator)\0"
281 "two named subpatterns have the same name\0"
282 "invalid UTF-8 string\0"
283 /* 45 */
284 "support for \\P, \\p, and \\X has not been compiled\0"
285 "malformed \\P or \\p sequence\0"
286 "unknown property name after \\P or \\p\0"
287 "subpattern name is too long (maximum " XSTRING(MAX_NAME_SIZE) " characters)\0"
288 "too many named subpatterns (maximum " XSTRING(MAX_NAME_COUNT) ")\0"
289 /* 50 */
290 "repeated subpattern is too long\0" /** DEAD **/
291 "octal value is greater than \\377 (not in UTF-8 mode)\0"
292 "internal error: overran compiling workspace\0"
293 "internal error: previously-checked referenced subpattern not found\0"
294 "DEFINE group contains more than one branch\0"
295 /* 55 */
296 "repeating a DEFINE group is not allowed\0"
297 "inconsistent NEWLINE options\0"
298 "\\g is not followed by a braced name or an optionally braced non-zero number\0"
299 "(?+ or (?- or (?(+ or (?(- must be followed by a non-zero number\0"
300 "(*VERB) with an argument is not supported\0"
301 /* 60 */
302 "(*VERB) not recognized\0"
303 "number is too big\0"
304 "subpattern name expected\0"
305 "digit expected after (?+";
306
307
308 /* Table to identify digits and hex digits. This is used when compiling
309 patterns. Note that the tables in chartables are dependent on the locale, and
310 may mark arbitrary characters as digits - but the PCRE compiling code expects
311 to handle only 0-9, a-z, and A-Z as digits when compiling. That is why we have
312 a private table here. It costs 256 bytes, but it is a lot faster than doing
313 character value tests (at least in some simple cases I timed), and in some
314 applications one wants PCRE to compile efficiently as well as match
315 efficiently.
316
317 For convenience, we use the same bit definitions as in chartables:
318
319 0x04 decimal digit
320 0x08 hexadecimal digit
321
322 Then we can use ctype_digit and ctype_xdigit in the code. */
323
324 #ifndef EBCDIC /* This is the "normal" case, for ASCII systems */
325 static const unsigned char digitab[] =
326 {
327 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 0- 7 */
328 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 8- 15 */
329 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 16- 23 */
330 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */
331 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - ' */
332 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ( - / */
333 0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c, /* 0 - 7 */
334 0x0c,0x0c,0x00,0x00,0x00,0x00,0x00,0x00, /* 8 - ? */
335 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* @ - G */
336 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* H - O */
337 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* P - W */
338 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* X - _ */
339 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* ` - g */
340 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* h - o */
341 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* p - w */
342 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* x -127 */
343 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 128-135 */
344 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 136-143 */
345 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 144-151 */
346 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 152-159 */
347 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 160-167 */
348 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 168-175 */
349 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 176-183 */
350 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 184-191 */
351 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 192-199 */
352 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 200-207 */
353 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 208-215 */
354 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 216-223 */
355 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 224-231 */
356 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 232-239 */
357 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 240-247 */
358 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};/* 248-255 */
359
360 #else /* This is the "abnormal" case, for EBCDIC systems */
361 static const unsigned char digitab[] =
362 {
363 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 0- 7 0 */
364 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 8- 15 */
365 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 16- 23 10 */
366 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */
367 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 32- 39 20 */
368 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 40- 47 */
369 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 48- 55 30 */
370 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 56- 63 */
371 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - 71 40 */
372 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 72- | */
373 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* & - 87 50 */
374 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 88- 95 */
375 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - -103 60 */
376 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 104- ? */
377 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 112-119 70 */
378 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 120- " */
379 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* 128- g 80 */
380 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* h -143 */
381 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 144- p 90 */
382 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* q -159 */
383 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 160- x A0 */
384 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* y -175 */
385 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ^ -183 B0 */
386 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 184-191 */
387 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* { - G C0 */
388 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* H -207 */
389 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* } - P D0 */
390 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* Q -223 */
391 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* \ - X E0 */
392 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* Y -239 */
393 0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c, /* 0 - 7 F0 */
394 0x0c,0x0c,0x00,0x00,0x00,0x00,0x00,0x00};/* 8 -255 */
395
396 static const unsigned char ebcdic_chartab[] = { /* chartable partial dup */
397 0x80,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 0- 7 */
398 0x00,0x00,0x00,0x00,0x01,0x01,0x00,0x00, /* 8- 15 */
399 0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 16- 23 */
400 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */
401 0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 32- 39 */
402 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 40- 47 */
403 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 48- 55 */
404 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 56- 63 */
405 0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - 71 */
406 0x00,0x00,0x00,0x80,0x00,0x80,0x80,0x80, /* 72- | */
407 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* & - 87 */
408 0x00,0x00,0x00,0x80,0x80,0x80,0x00,0x00, /* 88- 95 */
409 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - -103 */
410 0x00,0x00,0x00,0x00,0x00,0x10,0x00,0x80, /* 104- ? */
411 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 112-119 */
412 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 120- " */
413 0x00,0x1a,0x1a,0x1a,0x1a,0x1a,0x1a,0x12, /* 128- g */
414 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* h -143 */
415 0x00,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* 144- p */
416 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* q -159 */
417 0x00,0x00,0x12,0x12,0x12,0x12,0x12,0x12, /* 160- x */
418 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* y -175 */
419 0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ^ -183 */
420 0x00,0x00,0x80,0x00,0x00,0x00,0x00,0x00, /* 184-191 */
421 0x80,0x1a,0x1a,0x1a,0x1a,0x1a,0x1a,0x12, /* { - G */
422 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* H -207 */
423 0x00,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* } - P */
424 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* Q -223 */
425 0x00,0x00,0x12,0x12,0x12,0x12,0x12,0x12, /* \ - X */
426 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* Y -239 */
427 0x1c,0x1c,0x1c,0x1c,0x1c,0x1c,0x1c,0x1c, /* 0 - 7 */
428 0x1c,0x1c,0x00,0x00,0x00,0x00,0x00,0x00};/* 8 -255 */
429 #endif
430
431
432 /* Definition to allow mutual recursion */
433
434 static BOOL
435 compile_regex(int, int, uschar **, const uschar **, int *, BOOL, BOOL, int,
436 int *, int *, branch_chain *, compile_data *, int *);
437
438
439
440 /*************************************************
441 * Find an error text *
442 *************************************************/
443
444 /* The error texts are now all in one long string, to save on relocations. As
445 some of the text is of unknown length, we can't use a table of offsets.
446 Instead, just count through the strings. This is not a performance issue
447 because it happens only when there has been a compilation error.
448
449 Argument: the error number
450 Returns: pointer to the error string
451 */
452
453 static const char *
454 find_error_text(int n)
455 {
456 const char *s = error_texts;
457 for (; n > 0; n--) while (*s++ != 0);
458 return s;
459 }
460
461
462 /*************************************************
463 * Handle escapes *
464 *************************************************/
465
466 /* This function is called when a \ has been encountered. It either returns a
467 positive value for a simple escape such as \n, or a negative value which
468 encodes one of the more complicated things such as \d. A backreference to group
469 n is returned as -(ESC_REF + n); ESC_REF is the highest ESC_xxx macro. When
470 UTF-8 is enabled, a positive value greater than 255 may be returned. On entry,
471 ptr is pointing at the \. On exit, it is on the final character of the escape
472 sequence.
473
474 Arguments:
475 ptrptr points to the pattern position pointer
476 errorcodeptr points to the errorcode variable
477 bracount number of previous extracting brackets
478 options the options bits
479 isclass TRUE if inside a character class
480
481 Returns: zero or positive => a data character
482 negative => a special escape sequence
483 on error, errorcodeptr is set
484 */
485
486 static int
487 check_escape(const uschar **ptrptr, int *errorcodeptr, int bracount,
488 int options, BOOL isclass)
489 {
490 BOOL utf8 = (options & PCRE_UTF8) != 0;
491 const uschar *ptr = *ptrptr + 1;
492 int c, i;
493
494 GETCHARINCTEST(c, ptr); /* Get character value, increment pointer */
495 ptr--; /* Set pointer back to the last byte */
496
497 /* If backslash is at the end of the pattern, it's an error. */
498
499 if (c == 0) *errorcodeptr = ERR1;
500
501 /* Non-alphanumerics are literals. For digits or letters, do an initial lookup
502 in a table. A non-zero result is something that can be returned immediately.
503 Otherwise further processing may be required. */
504
505 #ifndef EBCDIC /* ASCII coding */
506 else if (c < '0' || c > 'z') {} /* Not alphanumeric */
507 else if ((i = escapes[c - '0']) != 0) c = i;
508
509 #else /* EBCDIC coding */
510 else if (c < 'a' || (ebcdic_chartab[c] & 0x0E) == 0) {} /* Not alphanumeric */
511 else if ((i = escapes[c - 0x48]) != 0) c = i;
512 #endif
513
514 /* Escapes that need further processing, or are illegal. */
515
516 else
517 {
518 const uschar *oldptr;
519 BOOL braced, negated;
520
521 switch (c)
522 {
523 /* A number of Perl escapes are not handled by PCRE. We give an explicit
524 error. */
525
526 case 'l':
527 case 'L':
528 case 'N':
529 case 'u':
530 case 'U':
531 *errorcodeptr = ERR37;
532 break;
533
534 /* \g must be followed by a number, either plain or braced. If positive, it
535 is an absolute backreference. If negative, it is a relative backreference.
536 This is a Perl 5.10 feature. Perl 5.10 also supports \g{name} as a
537 reference to a named group. This is part of Perl's movement towards a
538 unified syntax for back references. As this is synonymous with \k{name}, we
539 fudge it up by pretending it really was \k. */
540
541 case 'g':
542 if (ptr[1] == '{')
543 {
544 const uschar *p;
545 for (p = ptr+2; *p != 0 && *p != '}'; p++)
546 if (*p != '-' && (digitab[*p] & ctype_digit) == 0) break;
547 if (*p != 0 && *p != '}')
548 {
549 c = -ESC_k;
550 break;
551 }
552 braced = TRUE;
553 ptr++;
554 }
555 else braced = FALSE;
556
557 if (ptr[1] == '-')
558 {
559 negated = TRUE;
560 ptr++;
561 }
562 else negated = FALSE;
563
564 c = 0;
565 while ((digitab[ptr[1]] & ctype_digit) != 0)
566 c = c * 10 + *(++ptr) - '0';
567
568 if (c < 0)
569 {
570 *errorcodeptr = ERR61;
571 break;
572 }
573
574 if (c == 0 || (braced && *(++ptr) != '}'))
575 {
576 *errorcodeptr = ERR57;
577 break;
578 }
579
580 if (negated)
581 {
582 if (c > bracount)
583 {
584 *errorcodeptr = ERR15;
585 break;
586 }
587 c = bracount - (c - 1);
588 }
589
590 c = -(ESC_REF + c);
591 break;
592
593 /* The handling of escape sequences consisting of a string of digits
594 starting with one that is not zero is not straightforward. By experiment,
595 the way Perl works seems to be as follows:
596
597 Outside a character class, the digits are read as a decimal number. If the
598 number is less than 10, or if there are that many previous extracting
599 left brackets, then it is a back reference. Otherwise, up to three octal
600 digits are read to form an escaped byte. Thus \123 is likely to be octal
601 123 (cf \0123, which is octal 012 followed by the literal 3). If the octal
602 value is greater than 377, the least significant 8 bits are taken. Inside a
603 character class, \ followed by a digit is always an octal number. */
604
605 case '1': case '2': case '3': case '4': case '5':
606 case '6': case '7': case '8': case '9':
607
608 if (!isclass)
609 {
610 oldptr = ptr;
611 c -= '0';
612 while ((digitab[ptr[1]] & ctype_digit) != 0)
613 c = c * 10 + *(++ptr) - '0';
614 if (c < 0)
615 {
616 *errorcodeptr = ERR61;
617 break;
618 }
619 if (c < 10 || c <= bracount)
620 {
621 c = -(ESC_REF + c);
622 break;
623 }
624 ptr = oldptr; /* Put the pointer back and fall through */
625 }
626
627 /* Handle an octal number following \. If the first digit is 8 or 9, Perl
628 generates a binary zero byte and treats the digit as a following literal.
629 Thus we have to pull back the pointer by one. */
630
631 if ((c = *ptr) >= '8')
632 {
633 ptr--;
634 c = 0;
635 break;
636 }
637
638 /* \0 always starts an octal number, but we may drop through to here with a
639 larger first octal digit. The original code used just to take the least
640 significant 8 bits of octal numbers (I think this is what early Perls used
641 to do). Nowadays we allow for larger numbers in UTF-8 mode, but no more
642 than 3 octal digits. */
643
644 case '0':
645 c -= '0';
646 while(i++ < 2 && ptr[1] >= '0' && ptr[1] <= '7')
647 c = c * 8 + *(++ptr) - '0';
648 if (!utf8 && c > 255) *errorcodeptr = ERR51;
649 break;
650
651 /* \x is complicated. \x{ddd} is a character number which can be greater
652 than 0xff in utf8 mode, but only if the ddd are hex digits. If not, { is
653 treated as a data character. */
654
655 case 'x':
656 if (ptr[1] == '{')
657 {
658 const uschar *pt = ptr + 2;
659 int count = 0;
660
661 c = 0;
662 while ((digitab[*pt] & ctype_xdigit) != 0)
663 {
664 register int cc = *pt++;
665 if (c == 0 && cc == '0') continue; /* Leading zeroes */
666 count++;
667
668 #ifndef EBCDIC /* ASCII coding */
669 if (cc >= 'a') cc -= 32; /* Convert to upper case */
670 c = (c << 4) + cc - ((cc < 'A')? '0' : ('A' - 10));
671 #else /* EBCDIC coding */
672 if (cc >= 'a' && cc <= 'z') cc += 64; /* Convert to upper case */
673 c = (c << 4) + cc - ((cc >= '0')? '0' : ('A' - 10));
674 #endif
675 }
676
677 if (*pt == '}')
678 {
679 if (c < 0 || count > (utf8? 8 : 2)) *errorcodeptr = ERR34;
680 ptr = pt;
681 break;
682 }
683
684 /* If the sequence of hex digits does not end with '}', then we don't
685 recognize this construct; fall through to the normal \x handling. */
686 }
687
688 /* Read just a single-byte hex-defined char */
689
690 c = 0;
691 while (i++ < 2 && (digitab[ptr[1]] & ctype_xdigit) != 0)
692 {
693 int cc; /* Some compilers don't like ++ */
694 cc = *(++ptr); /* in initializers */
695 #ifndef EBCDIC /* ASCII coding */
696 if (cc >= 'a') cc -= 32; /* Convert to upper case */
697 c = c * 16 + cc - ((cc < 'A')? '0' : ('A' - 10));
698 #else /* EBCDIC coding */
699 if (cc <= 'z') cc += 64; /* Convert to upper case */
700 c = c * 16 + cc - ((cc >= '0')? '0' : ('A' - 10));
701 #endif
702 }
703 break;
704
705 /* For \c, a following letter is upper-cased; then the 0x40 bit is flipped.
706 This coding is ASCII-specific, but then the whole concept of \cx is
707 ASCII-specific. (However, an EBCDIC equivalent has now been added.) */
708
709 case 'c':
710 c = *(++ptr);
711 if (c == 0)
712 {
713 *errorcodeptr = ERR2;
714 break;
715 }
716
717 #ifndef EBCDIC /* ASCII coding */
718 if (c >= 'a' && c <= 'z') c -= 32;
719 c ^= 0x40;
720 #else /* EBCDIC coding */
721 if (c >= 'a' && c <= 'z') c += 64;
722 c ^= 0xC0;
723 #endif
724 break;
725
726 /* PCRE_EXTRA enables extensions to Perl in the matter of escapes. Any
727 other alphanumeric following \ is an error if PCRE_EXTRA was set;
728 otherwise, for Perl compatibility, it is a literal. This code looks a bit
729 odd, but there used to be some cases other than the default, and there may
730 be again in future, so I haven't "optimized" it. */
731
732 default:
733 if ((options & PCRE_EXTRA) != 0) switch(c)
734 {
735 default:
736 *errorcodeptr = ERR3;
737 break;
738 }
739 break;
740 }
741 }
742
743 *ptrptr = ptr;
744 return c;
745 }
746
747
748
749 #ifdef SUPPORT_UCP
750 /*************************************************
751 * Handle \P and \p *
752 *************************************************/
753
754 /* This function is called after \P or \p has been encountered, provided that
755 PCRE is compiled with support for Unicode properties. On entry, ptrptr is
756 pointing at the P or p. On exit, it is pointing at the final character of the
757 escape sequence.
758
759 Argument:
760 ptrptr points to the pattern position pointer
761 negptr points to a boolean that is set TRUE for negation else FALSE
762 dptr points to an int that is set to the detailed property value
763 errorcodeptr points to the error code variable
764
765 Returns: type value from ucp_type_table, or -1 for an invalid type
766 */
767
768 static int
769 get_ucp(const uschar **ptrptr, BOOL *negptr, int *dptr, int *errorcodeptr)
770 {
771 int c, i, bot, top;
772 const uschar *ptr = *ptrptr;
773 char name[32];
774
775 c = *(++ptr);
776 if (c == 0) goto ERROR_RETURN;
777
778 *negptr = FALSE;
779
780 /* \P or \p can be followed by a name in {}, optionally preceded by ^ for
781 negation. */
782
783 if (c == '{')
784 {
785 if (ptr[1] == '^')
786 {
787 *negptr = TRUE;
788 ptr++;
789 }
790 for (i = 0; i < (int)sizeof(name) - 1; i++)
791 {
792 c = *(++ptr);
793 if (c == 0) goto ERROR_RETURN;
794 if (c == '}') break;
795 name[i] = c;
796 }
797 if (c !='}') goto ERROR_RETURN;
798 name[i] = 0;
799 }
800
801 /* Otherwise there is just one following character */
802
803 else
804 {
805 name[0] = c;
806 name[1] = 0;
807 }
808
809 *ptrptr = ptr;
810
811 /* Search for a recognized property name using binary chop */
812
813 bot = 0;
814 top = _pcre_utt_size;
815
816 while (bot < top)
817 {
818 i = (bot + top) >> 1;
819 c = strcmp(name, _pcre_utt_names + _pcre_utt[i].name_offset);
820 if (c == 0)
821 {
822 *dptr = _pcre_utt[i].value;
823 return _pcre_utt[i].type;
824 }
825 if (c > 0) bot = i + 1; else top = i;
826 }
827
828 *errorcodeptr = ERR47;
829 *ptrptr = ptr;
830 return -1;
831
832 ERROR_RETURN:
833 *errorcodeptr = ERR46;
834 *ptrptr = ptr;
835 return -1;
836 }
837 #endif
838
839
840
841
842 /*************************************************
843 * Check for counted repeat *
844 *************************************************/
845
846 /* This function is called when a '{' is encountered in a place where it might
847 start a quantifier. It looks ahead to see if it really is a quantifier or not.
848 It is only a quantifier if it is one of the forms {ddd} {ddd,} or {ddd,ddd}
849 where the ddds are digits.
850
851 Arguments:
852 p pointer to the first char after '{'
853
854 Returns: TRUE or FALSE
855 */
856
857 static BOOL
858 is_counted_repeat(const uschar *p)
859 {
860 if ((digitab[*p++] & ctype_digit) == 0) return FALSE;
861 while ((digitab[*p] & ctype_digit) != 0) p++;
862 if (*p == '}') return TRUE;
863
864 if (*p++ != ',') return FALSE;
865 if (*p == '}') return TRUE;
866
867 if ((digitab[*p++] & ctype_digit) == 0) return FALSE;
868 while ((digitab[*p] & ctype_digit) != 0) p++;
869
870 return (*p == '}');
871 }
872
873
874
875 /*************************************************
876 * Read repeat counts *
877 *************************************************/
878
879 /* Read an item of the form {n,m} and return the values. This is called only
880 after is_counted_repeat() has confirmed that a repeat-count quantifier exists,
881 so the syntax is guaranteed to be correct, but we need to check the values.
882
883 Arguments:
884 p pointer to first char after '{'
885 minp pointer to int for min
886 maxp pointer to int for max
887 returned as -1 if no max
888 errorcodeptr points to error code variable
889
890 Returns: pointer to '}' on success;
891 current ptr on error, with errorcodeptr set non-zero
892 */
893
894 static const uschar *
895 read_repeat_counts(const uschar *p, int *minp, int *maxp, int *errorcodeptr)
896 {
897 int min = 0;
898 int max = -1;
899
900 /* Read the minimum value and do a paranoid check: a negative value indicates
901 an integer overflow. */
902
903 while ((digitab[*p] & ctype_digit) != 0) min = min * 10 + *p++ - '0';
904 if (min < 0 || min > 65535)
905 {
906 *errorcodeptr = ERR5;
907 return p;
908 }
909
910 /* Read the maximum value if there is one, and again do a paranoid on its size.
911 Also, max must not be less than min. */
912
913 if (*p == '}') max = min; else
914 {
915 if (*(++p) != '}')
916 {
917 max = 0;
918 while((digitab[*p] & ctype_digit) != 0) max = max * 10 + *p++ - '0';
919 if (max < 0 || max > 65535)
920 {
921 *errorcodeptr = ERR5;
922 return p;
923 }
924 if (max < min)
925 {
926 *errorcodeptr = ERR4;
927 return p;
928 }
929 }
930 }
931
932 /* Fill in the required variables, and pass back the pointer to the terminating
933 '}'. */
934
935 *minp = min;
936 *maxp = max;
937 return p;
938 }
939
940
941
942 /*************************************************
943 * Find forward referenced subpattern *
944 *************************************************/
945
946 /* This function scans along a pattern's text looking for capturing
947 subpatterns, and counting them. If it finds a named pattern that matches the
948 name it is given, it returns its number. Alternatively, if the name is NULL, it
949 returns when it reaches a given numbered subpattern. This is used for forward
950 references to subpatterns. We know that if (?P< is encountered, the name will
951 be terminated by '>' because that is checked in the first pass.
952
953 Arguments:
954 ptr current position in the pattern
955 count current count of capturing parens so far encountered
956 name name to seek, or NULL if seeking a numbered subpattern
957 lorn name length, or subpattern number if name is NULL
958 xmode TRUE if we are in /x mode
959
960 Returns: the number of the named subpattern, or -1 if not found
961 */
962
963 static int
964 find_parens(const uschar *ptr, int count, const uschar *name, int lorn,
965 BOOL xmode)
966 {
967 const uschar *thisname;
968
969 for (; *ptr != 0; ptr++)
970 {
971 int term;
972
973 /* Skip over backslashed characters and also entire \Q...\E */
974
975 if (*ptr == '\\')
976 {
977 if (*(++ptr) == 0) return -1;
978 if (*ptr == 'Q') for (;;)
979 {
980 while (*(++ptr) != 0 && *ptr != '\\');
981 if (*ptr == 0) return -1;
982 if (*(++ptr) == 'E') break;
983 }
984 continue;
985 }
986
987 /* Skip over character classes */
988
989 if (*ptr == '[')
990 {
991 while (*(++ptr) != ']')
992 {
993 if (*ptr == 0) return -1;
994 if (*ptr == '\\')
995 {
996 if (*(++ptr) == 0) return -1;
997 if (*ptr == 'Q') for (;;)
998 {
999 while (*(++ptr) != 0 && *ptr != '\\');
1000 if (*ptr == 0) return -1;
1001 if (*(++ptr) == 'E') break;
1002 }
1003 continue;
1004 }
1005 }
1006 continue;
1007 }
1008
1009 /* Skip comments in /x mode */
1010
1011 if (xmode && *ptr == '#')
1012 {
1013 while (*(++ptr) != 0 && *ptr != '\n');
1014 if (*ptr == 0) return -1;
1015 continue;
1016 }
1017
1018 /* An opening parens must now be a real metacharacter */
1019
1020 if (*ptr != '(') continue;
1021 if (ptr[1] != '?' && ptr[1] != '*')
1022 {
1023 count++;
1024 if (name == NULL && count == lorn) return count;
1025 continue;
1026 }
1027
1028 ptr += 2;
1029 if (*ptr == 'P') ptr++; /* Allow optional P */
1030
1031 /* We have to disambiguate (?<! and (?<= from (?<name> */
1032
1033 if ((*ptr != '<' || ptr[1] == '!' || ptr[1] == '=') &&
1034 *ptr != '\'')
1035 continue;
1036
1037 count++;
1038
1039 if (name == NULL && count == lorn) return count;
1040 term = *ptr++;
1041 if (term == '<') term = '>';
1042 thisname = ptr;
1043 while (*ptr != term) ptr++;
1044 if (name != NULL && lorn == ptr - thisname &&
1045 strncmp((const char *)name, (const char *)thisname, lorn) == 0)
1046 return count;
1047 }
1048
1049 return -1;
1050 }
1051
1052
1053
1054 /*************************************************
1055 * Find first significant op code *
1056 *************************************************/
1057
1058 /* This is called by several functions that scan a compiled expression looking
1059 for a fixed first character, or an anchoring op code etc. It skips over things
1060 that do not influence this. For some calls, a change of option is important.
1061 For some calls, it makes sense to skip negative forward and all backward
1062 assertions, and also the \b assertion; for others it does not.
1063
1064 Arguments:
1065 code pointer to the start of the group
1066 options pointer to external options
1067 optbit the option bit whose changing is significant, or
1068 zero if none are
1069 skipassert TRUE if certain assertions are to be skipped
1070
1071 Returns: pointer to the first significant opcode
1072 */
1073
1074 static const uschar*
1075 first_significant_code(const uschar *code, int *options, int optbit,
1076 BOOL skipassert)
1077 {
1078 for (;;)
1079 {
1080 switch ((int)*code)
1081 {
1082 case OP_OPT:
1083 if (optbit > 0 && ((int)code[1] & optbit) != (*options & optbit))
1084 *options = (int)code[1];
1085 code += 2;
1086 break;
1087
1088 case OP_ASSERT_NOT:
1089 case OP_ASSERTBACK:
1090 case OP_ASSERTBACK_NOT:
1091 if (!skipassert) return code;
1092 do code += GET(code, 1); while (*code == OP_ALT);
1093 code += _pcre_OP_lengths[*code];
1094 break;
1095
1096 case OP_WORD_BOUNDARY:
1097 case OP_NOT_WORD_BOUNDARY:
1098 if (!skipassert) return code;
1099 /* Fall through */
1100
1101 case OP_CALLOUT:
1102 case OP_CREF:
1103 case OP_RREF:
1104 case OP_DEF:
1105 code += _pcre_OP_lengths[*code];
1106 break;
1107
1108 default:
1109 return code;
1110 }
1111 }
1112 /* Control never reaches here */
1113 }
1114
1115
1116
1117
1118 /*************************************************
1119 * Find the fixed length of a pattern *
1120 *************************************************/
1121
1122 /* Scan a pattern and compute the fixed length of subject that will match it,
1123 if the length is fixed. This is needed for dealing with backward assertions.
1124 In UTF8 mode, the result is in characters rather than bytes.
1125
1126 Arguments:
1127 code points to the start of the pattern (the bracket)
1128 options the compiling options
1129
1130 Returns: the fixed length, or -1 if there is no fixed length,
1131 or -2 if \C was encountered
1132 */
1133
1134 static int
1135 find_fixedlength(uschar *code, int options)
1136 {
1137 int length = -1;
1138
1139 register int branchlength = 0;
1140 register uschar *cc = code + 1 + LINK_SIZE;
1141
1142 /* Scan along the opcodes for this branch. If we get to the end of the
1143 branch, check the length against that of the other branches. */
1144
1145 for (;;)
1146 {
1147 int d;
1148 register int op = *cc;
1149 switch (op)
1150 {
1151 case OP_CBRA:
1152 case OP_BRA:
1153 case OP_ONCE:
1154 case OP_COND:
1155 d = find_fixedlength(cc + ((op == OP_CBRA)? 2:0), options);
1156 if (d < 0) return d;
1157 branchlength += d;
1158 do cc += GET(cc, 1); while (*cc == OP_ALT);
1159 cc += 1 + LINK_SIZE;
1160 break;
1161
1162 /* Reached end of a branch; if it's a ket it is the end of a nested
1163 call. If it's ALT it is an alternation in a nested call. If it is
1164 END it's the end of the outer call. All can be handled by the same code. */
1165
1166 case OP_ALT:
1167 case OP_KET:
1168 case OP_KETRMAX:
1169 case OP_KETRMIN:
1170 case OP_END:
1171 if (length < 0) length = branchlength;
1172 else if (length != branchlength) return -1;
1173 if (*cc != OP_ALT) return length;
1174 cc += 1 + LINK_SIZE;
1175 branchlength = 0;
1176 break;
1177
1178 /* Skip over assertive subpatterns */
1179
1180 case OP_ASSERT:
1181 case OP_ASSERT_NOT:
1182 case OP_ASSERTBACK:
1183 case OP_ASSERTBACK_NOT:
1184 do cc += GET(cc, 1); while (*cc == OP_ALT);
1185 /* Fall through */
1186
1187 /* Skip over things that don't match chars */
1188
1189 case OP_REVERSE:
1190 case OP_CREF:
1191 case OP_RREF:
1192 case OP_DEF:
1193 case OP_OPT:
1194 case OP_CALLOUT:
1195 case OP_SOD:
1196 case OP_SOM:
1197 case OP_EOD:
1198 case OP_EODN:
1199 case OP_CIRC:
1200 case OP_DOLL:
1201 case OP_NOT_WORD_BOUNDARY:
1202 case OP_WORD_BOUNDARY:
1203 cc += _pcre_OP_lengths[*cc];
1204 break;
1205
1206 /* Handle literal characters */
1207
1208 case OP_CHAR:
1209 case OP_CHARNC:
1210 case OP_NOT:
1211 branchlength++;
1212 cc += 2;
1213 #ifdef SUPPORT_UTF8
1214 if ((options & PCRE_UTF8) != 0)
1215 {
1216 while ((*cc & 0xc0) == 0x80) cc++;
1217 }
1218 #endif
1219 break;
1220
1221 /* Handle exact repetitions. The count is already in characters, but we
1222 need to skip over a multibyte character in UTF8 mode. */
1223
1224 case OP_EXACT:
1225 branchlength += GET2(cc,1);
1226 cc += 4;
1227 #ifdef SUPPORT_UTF8
1228 if ((options & PCRE_UTF8) != 0)
1229 {
1230 while((*cc & 0x80) == 0x80) cc++;
1231 }
1232 #endif
1233 break;
1234
1235 case OP_TYPEEXACT:
1236 branchlength += GET2(cc,1);
1237 if (cc[3] == OP_PROP || cc[3] == OP_NOTPROP) cc += 2;
1238 cc += 4;
1239 break;
1240
1241 /* Handle single-char matchers */
1242
1243 case OP_PROP:
1244 case OP_NOTPROP:
1245 cc += 2;
1246 /* Fall through */
1247
1248 case OP_NOT_DIGIT:
1249 case OP_DIGIT:
1250 case OP_NOT_WHITESPACE:
1251 case OP_WHITESPACE:
1252 case OP_NOT_WORDCHAR:
1253 case OP_WORDCHAR:
1254 case OP_ANY:
1255 branchlength++;
1256 cc++;
1257 break;
1258
1259 /* The single-byte matcher isn't allowed */
1260
1261 case OP_ANYBYTE:
1262 return -2;
1263
1264 /* Check a class for variable quantification */
1265
1266 #ifdef SUPPORT_UTF8
1267 case OP_XCLASS:
1268 cc += GET(cc, 1) - 33;
1269 /* Fall through */
1270 #endif
1271
1272 case OP_CLASS:
1273 case OP_NCLASS:
1274 cc += 33;
1275
1276 switch (*cc)
1277 {
1278 case OP_CRSTAR:
1279 case OP_CRMINSTAR:
1280 case OP_CRQUERY:
1281 case OP_CRMINQUERY:
1282 return -1;
1283
1284 case OP_CRRANGE:
1285 case OP_CRMINRANGE:
1286 if (GET2(cc,1) != GET2(cc,3)) return -1;
1287 branchlength += GET2(cc,1);
1288 cc += 5;
1289 break;
1290
1291 default:
1292 branchlength++;
1293 }
1294 break;
1295
1296 /* Anything else is variable length */
1297
1298 default:
1299 return -1;
1300 }
1301 }
1302 /* Control never gets here */
1303 }
1304
1305
1306
1307
1308 /*************************************************
1309 * Scan compiled regex for numbered bracket *
1310 *************************************************/
1311
1312 /* This little function scans through a compiled pattern until it finds a
1313 capturing bracket with the given number.
1314
1315 Arguments:
1316 code points to start of expression
1317 utf8 TRUE in UTF-8 mode
1318 number the required bracket number
1319
1320 Returns: pointer to the opcode for the bracket, or NULL if not found
1321 */
1322
1323 static const uschar *
1324 find_bracket(const uschar *code, BOOL utf8, int number)
1325 {
1326 for (;;)
1327 {
1328 register int c = *code;
1329 if (c == OP_END) return NULL;
1330
1331 /* XCLASS is used for classes that cannot be represented just by a bit
1332 map. This includes negated single high-valued characters. The length in
1333 the table is zero; the actual length is stored in the compiled code. */
1334
1335 if (c == OP_XCLASS) code += GET(code, 1);
1336
1337 /* Handle capturing bracket */
1338
1339 else if (c == OP_CBRA)
1340 {
1341 int n = GET2(code, 1+LINK_SIZE);
1342 if (n == number) return (uschar *)code;
1343 code += _pcre_OP_lengths[c];
1344 }
1345
1346 /* Otherwise, we can get the item's length from the table, except that for
1347 repeated character types, we have to test for \p and \P, which have an extra
1348 two bytes of parameters. */
1349
1350 else
1351 {
1352 switch(c)
1353 {
1354 case OP_TYPESTAR:
1355 case OP_TYPEMINSTAR:
1356 case OP_TYPEPLUS:
1357 case OP_TYPEMINPLUS:
1358 case OP_TYPEQUERY:
1359 case OP_TYPEMINQUERY:
1360 case OP_TYPEPOSSTAR:
1361 case OP_TYPEPOSPLUS:
1362 case OP_TYPEPOSQUERY:
1363 if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2;
1364 break;
1365
1366 case OP_TYPEUPTO:
1367 case OP_TYPEMINUPTO:
1368 case OP_TYPEEXACT:
1369 case OP_TYPEPOSUPTO:
1370 if (code[3] == OP_PROP || code[3] == OP_NOTPROP) code += 2;
1371 break;
1372 }
1373
1374 /* Add in the fixed length from the table */
1375
1376 code += _pcre_OP_lengths[c];
1377
1378 /* In UTF-8 mode, opcodes that are followed by a character may be followed by
1379 a multi-byte character. The length in the table is a minimum, so we have to
1380 arrange to skip the extra bytes. */
1381
1382 #ifdef SUPPORT_UTF8
1383 if (utf8) switch(c)
1384 {
1385 case OP_CHAR:
1386 case OP_CHARNC:
1387 case OP_EXACT:
1388 case OP_UPTO:
1389 case OP_MINUPTO:
1390 case OP_POSUPTO:
1391 case OP_STAR:
1392 case OP_MINSTAR:
1393 case OP_POSSTAR:
1394 case OP_PLUS:
1395 case OP_MINPLUS:
1396 case OP_POSPLUS:
1397 case OP_QUERY:
1398 case OP_MINQUERY:
1399 case OP_POSQUERY:
1400 if (code[-1] >= 0xc0) code += _pcre_utf8_table4[code[-1] & 0x3f];
1401 break;
1402 }
1403 #endif
1404 }
1405 }
1406 }
1407
1408
1409
1410 /*************************************************
1411 * Scan compiled regex for recursion reference *
1412 *************************************************/
1413
1414 /* This little function scans through a compiled pattern until it finds an
1415 instance of OP_RECURSE.
1416
1417 Arguments:
1418 code points to start of expression
1419 utf8 TRUE in UTF-8 mode
1420
1421 Returns: pointer to the opcode for OP_RECURSE, or NULL if not found
1422 */
1423
1424 static const uschar *
1425 find_recurse(const uschar *code, BOOL utf8)
1426 {
1427 for (;;)
1428 {
1429 register int c = *code;
1430 if (c == OP_END) return NULL;
1431 if (c == OP_RECURSE) return code;
1432
1433 /* XCLASS is used for classes that cannot be represented just by a bit
1434 map. This includes negated single high-valued characters. The length in
1435 the table is zero; the actual length is stored in the compiled code. */
1436
1437 if (c == OP_XCLASS) code += GET(code, 1);
1438
1439 /* Otherwise, we can get the item's length from the table, except that for
1440 repeated character types, we have to test for \p and \P, which have an extra
1441 two bytes of parameters. */
1442
1443 else
1444 {
1445 switch(c)
1446 {
1447 case OP_TYPESTAR:
1448 case OP_TYPEMINSTAR:
1449 case OP_TYPEPLUS:
1450 case OP_TYPEMINPLUS:
1451 case OP_TYPEQUERY:
1452 case OP_TYPEMINQUERY:
1453 case OP_TYPEPOSSTAR:
1454 case OP_TYPEPOSPLUS:
1455 case OP_TYPEPOSQUERY:
1456 if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2;
1457 break;
1458
1459 case OP_TYPEPOSUPTO:
1460 case OP_TYPEUPTO:
1461 case OP_TYPEMINUPTO:
1462 case OP_TYPEEXACT:
1463 if (code[3] == OP_PROP || code[3] == OP_NOTPROP) code += 2;
1464 break;
1465 }
1466
1467 /* Add in the fixed length from the table */
1468
1469 code += _pcre_OP_lengths[c];
1470
1471 /* In UTF-8 mode, opcodes that are followed by a character may be followed
1472 by a multi-byte character. The length in the table is a minimum, so we have
1473 to arrange to skip the extra bytes. */
1474
1475 #ifdef SUPPORT_UTF8
1476 if (utf8) switch(c)
1477 {
1478 case OP_CHAR:
1479 case OP_CHARNC:
1480 case OP_EXACT:
1481 case OP_UPTO:
1482 case OP_MINUPTO:
1483 case OP_POSUPTO:
1484 case OP_STAR:
1485 case OP_MINSTAR:
1486 case OP_POSSTAR:
1487 case OP_PLUS:
1488 case OP_MINPLUS:
1489 case OP_POSPLUS:
1490 case OP_QUERY:
1491 case OP_MINQUERY:
1492 case OP_POSQUERY:
1493 if (code[-1] >= 0xc0) code += _pcre_utf8_table4[code[-1] & 0x3f];
1494 break;
1495 }
1496 #endif
1497 }
1498 }
1499 }
1500
1501
1502
1503 /*************************************************
1504 * Scan compiled branch for non-emptiness *
1505 *************************************************/
1506
1507 /* This function scans through a branch of a compiled pattern to see whether it
1508 can match the empty string or not. It is called from could_be_empty()
1509 below and from compile_branch() when checking for an unlimited repeat of a
1510 group that can match nothing. Note that first_significant_code() skips over
1511 backward and negative forward assertions when its final argument is TRUE. If we
1512 hit an unclosed bracket, we return "empty" - this means we've struck an inner
1513 bracket whose current branch will already have been scanned.
1514
1515 Arguments:
1516 code points to start of search
1517 endcode points to where to stop
1518 utf8 TRUE if in UTF8 mode
1519
1520 Returns: TRUE if what is matched could be empty
1521 */
1522
1523 static BOOL
1524 could_be_empty_branch(const uschar *code, const uschar *endcode, BOOL utf8)
1525 {
1526 register int c;
1527 for (code = first_significant_code(code + _pcre_OP_lengths[*code], NULL, 0, TRUE);
1528 code < endcode;
1529 code = first_significant_code(code + _pcre_OP_lengths[c], NULL, 0, TRUE))
1530 {
1531 const uschar *ccode;
1532
1533 c = *code;
1534
1535 /* Skip over forward assertions; the other assertions are skipped by
1536 first_significant_code() with a TRUE final argument. */
1537
1538 if (c == OP_ASSERT)
1539 {
1540 do code += GET(code, 1); while (*code == OP_ALT);
1541 c = *code;
1542 continue;
1543 }
1544
1545 /* Groups with zero repeats can of course be empty; skip them. */
1546
1547 if (c == OP_BRAZERO || c == OP_BRAMINZERO)
1548 {
1549 code += _pcre_OP_lengths[c];
1550 do code += GET(code, 1); while (*code == OP_ALT);
1551 c = *code;
1552 continue;
1553 }
1554
1555 /* For other groups, scan the branches. */
1556
1557 if (c == OP_BRA || c == OP_CBRA || c == OP_ONCE || c == OP_COND)
1558 {
1559 BOOL empty_branch;
1560 if (GET(code, 1) == 0) return TRUE; /* Hit unclosed bracket */
1561
1562 /* Scan a closed bracket */
1563
1564 empty_branch = FALSE;
1565 do
1566 {
1567 if (!empty_branch && could_be_empty_branch(code, endcode, utf8))
1568 empty_branch = TRUE;
1569 code += GET(code, 1);
1570 }
1571 while (*code == OP_ALT);
1572 if (!empty_branch) return FALSE; /* All branches are non-empty */
1573 c = *code;
1574 continue;
1575 }
1576
1577 /* Handle the other opcodes */
1578
1579 switch (c)
1580 {
1581 /* Check for quantifiers after a class. XCLASS is used for classes that
1582 cannot be represented just by a bit map. This includes negated single
1583 high-valued characters. The length in _pcre_OP_lengths[] is zero; the
1584 actual length is stored in the compiled code, so we must update "code"
1585 here. */
1586
1587 #ifdef SUPPORT_UTF8
1588 case OP_XCLASS:
1589 ccode = code += GET(code, 1);
1590 goto CHECK_CLASS_REPEAT;
1591 #endif
1592
1593 case OP_CLASS:
1594 case OP_NCLASS:
1595 ccode = code + 33;
1596
1597 #ifdef SUPPORT_UTF8
1598 CHECK_CLASS_REPEAT:
1599 #endif
1600
1601 switch (*ccode)
1602 {
1603 case OP_CRSTAR: /* These could be empty; continue */
1604 case OP_CRMINSTAR:
1605 case OP_CRQUERY:
1606 case OP_CRMINQUERY:
1607 break;
1608
1609 default: /* Non-repeat => class must match */
1610 case OP_CRPLUS: /* These repeats aren't empty */
1611 case OP_CRMINPLUS:
1612 return FALSE;
1613
1614 case OP_CRRANGE:
1615 case OP_CRMINRANGE:
1616 if (GET2(ccode, 1) > 0) return FALSE; /* Minimum > 0 */
1617 break;
1618 }
1619 break;
1620
1621 /* Opcodes that must match a character */
1622
1623 case OP_PROP:
1624 case OP_NOTPROP:
1625 case OP_EXTUNI:
1626 case OP_NOT_DIGIT:
1627 case OP_DIGIT:
1628 case OP_NOT_WHITESPACE:
1629 case OP_WHITESPACE:
1630 case OP_NOT_WORDCHAR:
1631 case OP_WORDCHAR:
1632 case OP_ANY:
1633 case OP_ANYBYTE:
1634 case OP_CHAR:
1635 case OP_CHARNC:
1636 case OP_NOT:
1637 case OP_PLUS:
1638 case OP_MINPLUS:
1639 case OP_POSPLUS:
1640 case OP_EXACT:
1641 case OP_NOTPLUS:
1642 case OP_NOTMINPLUS:
1643 case OP_NOTPOSPLUS:
1644 case OP_NOTEXACT:
1645 case OP_TYPEPLUS:
1646 case OP_TYPEMINPLUS:
1647 case OP_TYPEPOSPLUS:
1648 case OP_TYPEEXACT:
1649 return FALSE;
1650
1651 /* These are going to continue, as they may be empty, but we have to
1652 fudge the length for the \p and \P cases. */
1653
1654 case OP_TYPESTAR:
1655 case OP_TYPEMINSTAR:
1656 case OP_TYPEPOSSTAR:
1657 case OP_TYPEQUERY:
1658 case OP_TYPEMINQUERY:
1659 case OP_TYPEPOSQUERY:
1660 if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2;
1661 break;
1662
1663 /* Same for these */
1664
1665 case OP_TYPEUPTO:
1666 case OP_TYPEMINUPTO:
1667 case OP_TYPEPOSUPTO:
1668 if (code[3] == OP_PROP || code[3] == OP_NOTPROP) code += 2;
1669 break;
1670
1671 /* End of branch */
1672
1673 case OP_KET:
1674 case OP_KETRMAX:
1675 case OP_KETRMIN:
1676 case OP_ALT:
1677 return TRUE;
1678
1679 /* In UTF-8 mode, STAR, MINSTAR, POSSTAR, QUERY, MINQUERY, POSQUERY, UPTO,
1680 MINUPTO, and POSUPTO may be followed by a multibyte character */
1681
1682 #ifdef SUPPORT_UTF8
1683 case OP_STAR:
1684 case OP_MINSTAR:
1685 case OP_POSSTAR:
1686 case OP_QUERY:
1687 case OP_MINQUERY:
1688 case OP_POSQUERY:
1689 case OP_UPTO:
1690 case OP_MINUPTO:
1691 case OP_POSUPTO:
1692 if (utf8) while ((code[2] & 0xc0) == 0x80) code++;
1693 break;
1694 #endif
1695 }
1696 }
1697
1698 return TRUE;
1699 }
1700
1701
1702
1703 /*************************************************
1704 * Scan compiled regex for non-emptiness *
1705 *************************************************/
1706
1707 /* This function is called to check for left recursive calls. We want to check
1708 the current branch of the current pattern to see if it could match the empty
1709 string. If it could, we must look outwards for branches at other levels,
1710 stopping when we pass beyond the bracket which is the subject of the recursion.
1711
1712 Arguments:
1713 code points to start of the recursion
1714 endcode points to where to stop (current RECURSE item)
1715 bcptr points to the chain of current (unclosed) branch starts
1716 utf8 TRUE if in UTF-8 mode
1717
1718 Returns: TRUE if what is matched could be empty
1719 */
1720
1721 static BOOL
1722 could_be_empty(const uschar *code, const uschar *endcode, branch_chain *bcptr,
1723 BOOL utf8)
1724 {
1725 while (bcptr != NULL && bcptr->current >= code)
1726 {
1727 if (!could_be_empty_branch(bcptr->current, endcode, utf8)) return FALSE;
1728 bcptr = bcptr->outer;
1729 }
1730 return TRUE;
1731 }
1732
1733
1734
1735 /*************************************************
1736 * Check for POSIX class syntax *
1737 *************************************************/
1738
1739 /* This function is called when the sequence "[:" or "[." or "[=" is
1740 encountered in a character class. It checks whether this is followed by a
1741 sequence of characters terminated by a matching ":]" or ".]" or "=]". If we
1742 reach an unescaped ']' without the special preceding character, return FALSE.
1743
1744 Originally, this function only recognized a sequence of letters between the
1745 terminators, but it seems that Perl recognizes any sequence of characters,
1746 though of course unknown POSIX names are subsequently rejected. Perl gives an
1747 "Unknown POSIX class" error for [:f\oo:] for example, where previously PCRE
1748 didn't consider this to be a POSIX class. Likewise for [:1234:].
1749
1750 The problem in trying to be exactly like Perl is in the handling of escapes. We
1751 have to be sure that [abc[:x\]pqr] is *not* treated as containing a POSIX
1752 class, but [abc[:x\]pqr:]] is (so that an error can be generated). The code
1753 below handles the special case of \], but does not try to do any other escape
1754 processing. This makes it different from Perl for cases such as [:l\ower:]
1755 where Perl recognizes it as the POSIX class "lower" but PCRE does not recognize
1756 "l\ower". This is a lesser evil that not diagnosing bad classes when Perl does,
1757 I think.
1758
1759 Arguments:
1760 ptr pointer to the initial [
1761 endptr where to return the end pointer
1762
1763 Returns: TRUE or FALSE
1764 */
1765
1766 static BOOL
1767 check_posix_syntax(const uschar *ptr, const uschar **endptr)
1768 {
1769 int terminator; /* Don't combine these lines; the Solaris cc */
1770 terminator = *(++ptr); /* compiler warns about "non-constant" initializer. */
1771 for (++ptr; *ptr != 0; ptr++)
1772 {
1773 if (*ptr == '\\' && ptr[1] == ']') ptr++; else
1774 {
1775 if (*ptr == ']') return FALSE;
1776 if (*ptr == terminator && ptr[1] == ']')
1777 {
1778 *endptr = ptr;
1779 return TRUE;
1780 }
1781 }
1782 }
1783 return FALSE;
1784 }
1785
1786
1787
1788
1789 /*************************************************
1790 * Check POSIX class name *
1791 *************************************************/
1792
1793 /* This function is called to check the name given in a POSIX-style class entry
1794 such as [:alnum:].
1795
1796 Arguments:
1797 ptr points to the first letter
1798 len the length of the name
1799
1800 Returns: a value representing the name, or -1 if unknown
1801 */
1802
1803 static int
1804 check_posix_name(const uschar *ptr, int len)
1805 {
1806 const char *pn = posix_names;
1807 register int yield = 0;
1808 while (posix_name_lengths[yield] != 0)
1809 {
1810 if (len == posix_name_lengths[yield] &&
1811 strncmp((const char *)ptr, pn, len) == 0) return yield;
1812 pn += posix_name_lengths[yield] + 1;
1813 yield++;
1814 }
1815 return -1;
1816 }
1817
1818
1819 /*************************************************
1820 * Adjust OP_RECURSE items in repeated group *
1821 *************************************************/
1822
1823 /* OP_RECURSE items contain an offset from the start of the regex to the group
1824 that is referenced. This means that groups can be replicated for fixed
1825 repetition simply by copying (because the recursion is allowed to refer to
1826 earlier groups that are outside the current group). However, when a group is
1827 optional (i.e. the minimum quantifier is zero), OP_BRAZERO is inserted before
1828 it, after it has been compiled. This means that any OP_RECURSE items within it
1829 that refer to the group itself or any contained groups have to have their
1830 offsets adjusted. That one of the jobs of this function. Before it is called,
1831 the partially compiled regex must be temporarily terminated with OP_END.
1832
1833 This function has been extended with the possibility of forward references for
1834 recursions and subroutine calls. It must also check the list of such references
1835 for the group we are dealing with. If it finds that one of the recursions in
1836 the current group is on this list, it adjusts the offset in the list, not the
1837 value in the reference (which is a group number).
1838
1839 Arguments:
1840 group points to the start of the group
1841 adjust the amount by which the group is to be moved
1842 utf8 TRUE in UTF-8 mode
1843 cd contains pointers to tables etc.
1844 save_hwm the hwm forward reference pointer at the start of the group
1845
1846 Returns: nothing
1847 */
1848
1849 static void
1850 adjust_recurse(uschar *group, int adjust, BOOL utf8, compile_data *cd,
1851 uschar *save_hwm)
1852 {
1853 uschar *ptr = group;
1854
1855 while ((ptr = (uschar *)find_recurse(ptr, utf8)) != NULL)
1856 {
1857 int offset;
1858 uschar *hc;
1859
1860 /* See if this recursion is on the forward reference list. If so, adjust the
1861 reference. */
1862
1863 for (hc = save_hwm; hc < cd->hwm; hc += LINK_SIZE)
1864 {
1865 offset = GET(hc, 0);
1866 if (cd->start_code + offset == ptr + 1)
1867 {
1868 PUT(hc, 0, offset + adjust);
1869 break;
1870 }
1871 }
1872
1873 /* Otherwise, adjust the recursion offset if it's after the start of this
1874 group. */
1875
1876 if (hc >= cd->hwm)
1877 {
1878 offset = GET(ptr, 1);
1879 if (cd->start_code + offset >= group) PUT(ptr, 1, offset + adjust);
1880 }
1881
1882 ptr += 1 + LINK_SIZE;
1883 }
1884 }
1885
1886
1887
1888 /*************************************************
1889 * Insert an automatic callout point *
1890 *************************************************/
1891
1892 /* This function is called when the PCRE_AUTO_CALLOUT option is set, to insert
1893 callout points before each pattern item.
1894
1895 Arguments:
1896 code current code pointer
1897 ptr current pattern pointer
1898 cd pointers to tables etc
1899
1900 Returns: new code pointer
1901 */
1902
1903 static uschar *
1904 auto_callout(uschar *code, const uschar *ptr, compile_data *cd)
1905 {
1906 *code++ = OP_CALLOUT;
1907 *code++ = 255;
1908 PUT(code, 0, ptr - cd->start_pattern); /* Pattern offset */
1909 PUT(code, LINK_SIZE, 0); /* Default length */
1910 return code + 2*LINK_SIZE;
1911 }
1912
1913
1914
1915 /*************************************************
1916 * Complete a callout item *
1917 *************************************************/
1918
1919 /* A callout item contains the length of the next item in the pattern, which
1920 we can't fill in till after we have reached the relevant point. This is used
1921 for both automatic and manual callouts.
1922
1923 Arguments:
1924 previous_callout points to previous callout item
1925 ptr current pattern pointer
1926 cd pointers to tables etc
1927
1928 Returns: nothing
1929 */
1930
1931 static void
1932 complete_callout(uschar *previous_callout, const uschar *ptr, compile_data *cd)
1933 {
1934 int length = ptr - cd->start_pattern - GET(previous_callout, 2);
1935 PUT(previous_callout, 2 + LINK_SIZE, length);
1936 }
1937
1938
1939
1940 #ifdef SUPPORT_UCP
1941 /*************************************************
1942 * Get othercase range *
1943 *************************************************/
1944
1945 /* This function is passed the start and end of a class range, in UTF-8 mode
1946 with UCP support. It searches up the characters, looking for internal ranges of
1947 characters in the "other" case. Each call returns the next one, updating the
1948 start address.
1949
1950 Arguments:
1951 cptr points to starting character value; updated
1952 d end value
1953 ocptr where to put start of othercase range
1954 odptr where to put end of othercase range
1955
1956 Yield: TRUE when range returned; FALSE when no more
1957 */
1958
1959 static BOOL
1960 get_othercase_range(unsigned int *cptr, unsigned int d, unsigned int *ocptr,
1961 unsigned int *odptr)
1962 {
1963 unsigned int c, othercase, next;
1964
1965 for (c = *cptr; c <= d; c++)
1966 { if ((othercase = _pcre_ucp_othercase(c)) != NOTACHAR) break; }
1967
1968 if (c > d) return FALSE;
1969
1970 *ocptr = othercase;
1971 next = othercase + 1;
1972
1973 for (++c; c <= d; c++)
1974 {
1975 if (_pcre_ucp_othercase(c) != next) break;
1976 next++;
1977 }
1978
1979 *odptr = next - 1;
1980 *cptr = c;
1981
1982 return TRUE;
1983 }
1984 #endif /* SUPPORT_UCP */
1985
1986
1987
1988 /*************************************************
1989 * Check if auto-possessifying is possible *
1990 *************************************************/
1991
1992 /* This function is called for unlimited repeats of certain items, to see
1993 whether the next thing could possibly match the repeated item. If not, it makes
1994 sense to automatically possessify the repeated item.
1995
1996 Arguments:
1997 op_code the repeated op code
1998 this data for this item, depends on the opcode
1999 utf8 TRUE in UTF-8 mode
2000 utf8_char used for utf8 character bytes, NULL if not relevant
2001 ptr next character in pattern
2002 options options bits
2003 cd contains pointers to tables etc.
2004
2005 Returns: TRUE if possessifying is wanted
2006 */
2007
2008 static BOOL
2009 check_auto_possessive(int op_code, int item, BOOL utf8, uschar *utf8_char,
2010 const uschar *ptr, int options, compile_data *cd)
2011 {
2012 int next;
2013
2014 /* Skip whitespace and comments in extended mode */
2015
2016 if ((options & PCRE_EXTENDED) != 0)
2017 {
2018 for (;;)
2019 {
2020 while ((cd->ctypes[*ptr] & ctype_space) != 0) ptr++;
2021 if (*ptr == '#')
2022 {
2023 while (*(++ptr) != 0)
2024 if (IS_NEWLINE(ptr)) { ptr += cd->nllen; break; }
2025 }
2026 else break;
2027 }
2028 }
2029
2030 /* If the next item is one that we can handle, get its value. A non-negative
2031 value is a character, a negative value is an escape value. */
2032
2033 if (*ptr == '\\')
2034 {
2035 int temperrorcode = 0;
2036 next = check_escape(&ptr, &temperrorcode, cd->bracount, options, FALSE);
2037 if (temperrorcode != 0) return FALSE;
2038 ptr++; /* Point after the escape sequence */
2039 }
2040
2041 else if ((cd->ctypes[*ptr] & ctype_meta) == 0)
2042 {
2043 #ifdef SUPPORT_UTF8
2044 if (utf8) { GETCHARINC(next, ptr); } else
2045 #endif
2046 next = *ptr++;
2047 }
2048
2049 else return FALSE;
2050
2051 /* Skip whitespace and comments in extended mode */
2052
2053 if ((options & PCRE_EXTENDED) != 0)
2054 {
2055 for (;;)
2056 {
2057 while ((cd->ctypes[*ptr] & ctype_space) != 0) ptr++;
2058 if (*ptr == '#')
2059 {
2060 while (*(++ptr) != 0)
2061 if (IS_NEWLINE(ptr)) { ptr += cd->nllen; break; }
2062 }
2063 else break;
2064 }
2065 }
2066
2067 /* If the next thing is itself optional, we have to give up. */
2068
2069 if (*ptr == '*' || *ptr == '?' || strncmp((char *)ptr, "{0,", 3) == 0)
2070 return FALSE;
2071
2072 /* Now compare the next item with the previous opcode. If the previous is a
2073 positive single character match, "item" either contains the character or, if
2074 "item" is greater than 127 in utf8 mode, the character's bytes are in
2075 utf8_char. */
2076
2077
2078 /* Handle cases when the next item is a character. */
2079
2080 if (next >= 0) switch(op_code)
2081 {
2082 case OP_CHAR:
2083 #ifdef SUPPORT_UTF8
2084 if (utf8 && item > 127) { GETCHAR(item, utf8_char); }
2085 #endif
2086 return item != next;
2087
2088 /* For CHARNC (caseless character) we must check the other case. If we have
2089 Unicode property support, we can use it to test the other case of
2090 high-valued characters. */
2091
2092 case OP_CHARNC:
2093 #ifdef SUPPORT_UTF8
2094 if (utf8 && item > 127) { GETCHAR(item, utf8_char); }
2095 #endif
2096 if (item == next) return FALSE;
2097 #ifdef SUPPORT_UTF8
2098 if (utf8)
2099 {
2100 unsigned int othercase;
2101 if (next < 128) othercase = cd->fcc[next]; else
2102 #ifdef SUPPORT_UCP
2103 othercase = _pcre_ucp_othercase((unsigned int)next);
2104 #else
2105 othercase = NOTACHAR;
2106 #endif
2107 return (unsigned int)item != othercase;
2108 }
2109 else
2110 #endif /* SUPPORT_UTF8 */
2111 return (item != cd->fcc[next]); /* Non-UTF-8 mode */
2112
2113 /* For OP_NOT, "item" must be a single-byte character. */
2114
2115 case OP_NOT:
2116 if (next < 0) return FALSE; /* Not a character */
2117 if (item == next) return TRUE;
2118 if ((options & PCRE_CASELESS) == 0) return FALSE;
2119 #ifdef SUPPORT_UTF8
2120 if (utf8)
2121 {
2122 unsigned int othercase;
2123 if (next < 128) othercase = cd->fcc[next]; else
2124 #ifdef SUPPORT_UCP
2125 othercase = _pcre_ucp_othercase(next);
2126 #else
2127 othercase = NOTACHAR;
2128 #endif
2129 return (unsigned int)item == othercase;
2130 }
2131 else
2132 #endif /* SUPPORT_UTF8 */
2133 return (item == cd->fcc[next]); /* Non-UTF-8 mode */
2134
2135 case OP_DIGIT:
2136 return next > 127 || (cd->ctypes[next] & ctype_digit) == 0;
2137
2138 case OP_NOT_DIGIT:
2139 return next <= 127 && (cd->ctypes[next] & ctype_digit) != 0;
2140
2141 case OP_WHITESPACE:
2142 return next > 127 || (cd->ctypes[next] & ctype_space) == 0;
2143
2144 case OP_NOT_WHITESPACE:
2145 return next <= 127 && (cd->ctypes[next] & ctype_space) != 0;
2146
2147 case OP_WORDCHAR:
2148 return next > 127 || (cd->ctypes[next] & ctype_word) == 0;
2149
2150 case OP_NOT_WORDCHAR:
2151 return next <= 127 && (cd->ctypes[next] & ctype_word) != 0;
2152
2153 case OP_HSPACE:
2154 case OP_NOT_HSPACE:
2155 switch(next)
2156 {
2157 case 0x09:
2158 case 0x20:
2159 case 0xa0:
2160 case 0x1680:
2161 case 0x180e:
2162 case 0x2000:
2163 case 0x2001:
2164 case 0x2002:
2165 case 0x2003:
2166 case 0x2004:
2167 case 0x2005:
2168 case 0x2006:
2169 case 0x2007:
2170 case 0x2008:
2171 case 0x2009:
2172 case 0x200A:
2173 case 0x202f:
2174 case 0x205f:
2175 case 0x3000:
2176 return op_code != OP_HSPACE;
2177 default:
2178 return op_code == OP_HSPACE;
2179 }
2180
2181 case OP_VSPACE:
2182 case OP_NOT_VSPACE:
2183 switch(next)
2184 {
2185 case 0x0a:
2186 case 0x0b:
2187 case 0x0c:
2188 case 0x0d:
2189 case 0x85:
2190 case 0x2028:
2191 case 0x2029:
2192 return op_code != OP_VSPACE;
2193 default:
2194 return op_code == OP_VSPACE;
2195 }
2196
2197 default:
2198 return FALSE;
2199 }
2200
2201
2202 /* Handle the case when the next item is \d, \s, etc. */
2203
2204 switch(op_code)
2205 {
2206 case OP_CHAR:
2207 case OP_CHARNC:
2208 #ifdef SUPPORT_UTF8
2209 if (utf8 && item > 127) { GETCHAR(item, utf8_char); }
2210 #endif
2211 switch(-next)
2212 {
2213 case ESC_d:
2214 return item > 127 || (cd->ctypes[item] & ctype_digit) == 0;
2215
2216 case ESC_D:
2217 return item <= 127 && (cd->ctypes[item] & ctype_digit) != 0;
2218
2219 case ESC_s:
2220 return item > 127 || (cd->ctypes[item] & ctype_space) == 0;
2221
2222 case ESC_S:
2223 return item <= 127 && (cd->ctypes[item] & ctype_space) != 0;
2224
2225 case ESC_w:
2226 return item > 127 || (cd->ctypes[item] & ctype_word) == 0;
2227
2228 case ESC_W:
2229 return item <= 127 && (cd->ctypes[item] & ctype_word) != 0;
2230
2231 case ESC_h:
2232 case ESC_H:
2233 switch(item)
2234 {
2235 case 0x09:
2236 case 0x20:
2237 case 0xa0:
2238 case 0x1680:
2239 case 0x180e:
2240 case 0x2000:
2241 case 0x2001:
2242 case 0x2002:
2243 case 0x2003:
2244 case 0x2004:
2245 case 0x2005:
2246 case 0x2006:
2247 case 0x2007:
2248 case 0x2008:
2249 case 0x2009:
2250 case 0x200A:
2251 case 0x202f:
2252 case 0x205f:
2253 case 0x3000:
2254 return -next != ESC_h;
2255 default:
2256 return -next == ESC_h;
2257 }
2258
2259 case ESC_v:
2260 case ESC_V:
2261 switch(item)
2262 {
2263 case 0x0a:
2264 case 0x0b:
2265 case 0x0c:
2266 case 0x0d:
2267 case 0x85:
2268 case 0x2028:
2269 case 0x2029:
2270 return -next != ESC_v;
2271 default:
2272 return -next == ESC_v;
2273 }
2274
2275 default:
2276 return FALSE;
2277 }
2278
2279 case OP_DIGIT:
2280 return next == -ESC_D || next == -ESC_s || next == -ESC_W ||
2281 next == -ESC_h || next == -ESC_v;
2282
2283 case OP_NOT_DIGIT:
2284 return next == -ESC_d;
2285
2286 case OP_WHITESPACE:
2287 return next == -ESC_S || next == -ESC_d || next == -ESC_w;
2288
2289 case OP_NOT_WHITESPACE:
2290 return next == -ESC_s || next == -ESC_h || next == -ESC_v;
2291
2292 case OP_HSPACE:
2293 return next == -ESC_S || next == -ESC_H || next == -ESC_d || next == -ESC_w;
2294
2295 case OP_NOT_HSPACE:
2296 return next == -ESC_h;
2297
2298 /* Can't have \S in here because VT matches \S (Perl anomaly) */
2299 case OP_VSPACE:
2300 return next == -ESC_V || next == -ESC_d || next == -ESC_w;
2301
2302 case OP_NOT_VSPACE:
2303 return next == -ESC_v;
2304
2305 case OP_WORDCHAR:
2306 return next == -ESC_W || next == -ESC_s || next == -ESC_h || next == -ESC_v;
2307
2308 case OP_NOT_WORDCHAR:
2309 return next == -ESC_w || next == -ESC_d;
2310
2311 default:
2312 return FALSE;
2313 }
2314
2315 /* Control does not reach here */
2316 }
2317
2318
2319
2320 /*************************************************
2321 * Compile one branch *
2322 *************************************************/
2323
2324 /* Scan the pattern, compiling it into the a vector. If the options are
2325 changed during the branch, the pointer is used to change the external options
2326 bits. This function is used during the pre-compile phase when we are trying
2327 to find out the amount of memory needed, as well as during the real compile
2328 phase. The value of lengthptr distinguishes the two phases.
2329
2330 Arguments:
2331 optionsptr pointer to the option bits
2332 codeptr points to the pointer to the current code point
2333 ptrptr points to the current pattern pointer
2334 errorcodeptr points to error code variable
2335 firstbyteptr set to initial literal character, or < 0 (REQ_UNSET, REQ_NONE)
2336 reqbyteptr set to the last literal character required, else < 0
2337 bcptr points to current branch chain
2338 cd contains pointers to tables etc.
2339 lengthptr NULL during the real compile phase
2340 points to length accumulator during pre-compile phase
2341
2342 Returns: TRUE on success
2343 FALSE, with *errorcodeptr set non-zero on error
2344 */
2345
2346 static BOOL
2347 compile_branch(int *optionsptr, uschar **codeptr, const uschar **ptrptr,
2348 int *errorcodeptr, int *firstbyteptr, int *reqbyteptr, branch_chain *bcptr,
2349 compile_data *cd, int *lengthptr)
2350 {
2351 int repeat_type, op_type;
2352 int repeat_min = 0, repeat_max = 0; /* To please picky compilers */
2353 int bravalue = 0;
2354 int greedy_default, greedy_non_default;
2355 int firstbyte, reqbyte;
2356 int zeroreqbyte, zerofirstbyte;
2357 int req_caseopt, reqvary, tempreqvary;
2358 int options = *optionsptr;
2359 int after_manual_callout = 0;
2360 int length_prevgroup = 0;
2361 register int c;
2362 register uschar *code = *codeptr;
2363 uschar *last_code = code;
2364 uschar *orig_code = code;
2365 uschar *tempcode;
2366 BOOL inescq = FALSE;
2367 BOOL groupsetfirstbyte = FALSE;
2368 const uschar *ptr = *ptrptr;
2369 const uschar *tempptr;
2370 uschar *previous = NULL;
2371 uschar *previous_callout = NULL;
2372 uschar *save_hwm = NULL;
2373 uschar classbits[32];
2374
2375 #ifdef SUPPORT_UTF8
2376 BOOL class_utf8;
2377 BOOL utf8 = (options & PCRE_UTF8) != 0;
2378 uschar *class_utf8data;
2379 uschar *class_utf8data_base;
2380 uschar utf8_char[6];
2381 #else
2382 BOOL utf8 = FALSE;
2383 uschar *utf8_char = NULL;
2384 #endif
2385
2386 #ifdef DEBUG
2387 if (lengthptr != NULL) DPRINTF((">> start branch\n"));
2388 #endif
2389
2390 /* Set up the default and non-default settings for greediness */
2391
2392 greedy_default = ((options & PCRE_UNGREEDY) != 0);
2393 greedy_non_default = greedy_default ^ 1;
2394
2395 /* Initialize no first byte, no required byte. REQ_UNSET means "no char
2396 matching encountered yet". It gets changed to REQ_NONE if we hit something that
2397 matches a non-fixed char first char; reqbyte just remains unset if we never
2398 find one.
2399
2400 When we hit a repeat whose minimum is zero, we may have to adjust these values
2401 to take the zero repeat into account. This is implemented by setting them to
2402 zerofirstbyte and zeroreqbyte when such a repeat is encountered. The individual
2403 item types that can be repeated set these backoff variables appropriately. */
2404
2405 firstbyte = reqbyte = zerofirstbyte = zeroreqbyte = REQ_UNSET;
2406
2407 /* The variable req_caseopt contains either the REQ_CASELESS value or zero,
2408 according to the current setting of the caseless flag. REQ_CASELESS is a bit
2409 value > 255. It is added into the firstbyte or reqbyte variables to record the
2410 case status of the value. This is used only for ASCII characters. */
2411
2412 req_caseopt = ((options & PCRE_CASELESS) != 0)? REQ_CASELESS : 0;
2413
2414 /* Switch on next character until the end of the branch */
2415
2416 for (;; ptr++)
2417 {
2418 BOOL negate_class;
2419 BOOL should_flip_negation;
2420 BOOL possessive_quantifier;
2421 BOOL is_quantifier;
2422 BOOL is_recurse;
2423 BOOL reset_bracount;
2424 int class_charcount;
2425 int class_lastchar;
2426 int newoptions;
2427 int recno;
2428 int refsign;
2429 int skipbytes;
2430 int subreqbyte;
2431 int subfirstbyte;
2432 int terminator;
2433 int mclength;
2434 uschar mcbuffer[8];
2435
2436 /* Get next byte in the pattern */
2437
2438 c = *ptr;
2439
2440 /* If we are in the pre-compile phase, accumulate the length used for the
2441 previous cycle of this loop. */
2442
2443 if (lengthptr != NULL)
2444 {
2445 #ifdef DEBUG
2446 if (code > cd->hwm) cd->hwm = code; /* High water info */
2447 #endif
2448 if (code > cd->start_workspace + COMPILE_WORK_SIZE) /* Check for overrun */
2449 {
2450 *errorcodeptr = ERR52;
2451 goto FAILED;
2452 }
2453
2454 /* There is at least one situation where code goes backwards: this is the
2455 case of a zero quantifier after a class (e.g. [ab]{0}). At compile time,
2456 the class is simply eliminated. However, it is created first, so we have to
2457 allow memory for it. Therefore, don't ever reduce the length at this point.
2458 */
2459
2460 if (code < last_code) code = last_code;
2461
2462 /* Paranoid check for integer overflow */
2463
2464 if (OFLOW_MAX - *lengthptr < code - last_code)
2465 {
2466 *errorcodeptr = ERR20;
2467 goto FAILED;
2468 }
2469
2470 *lengthptr += code - last_code;
2471 DPRINTF(("length=%d added %d c=%c\n", *lengthptr, code - last_code, c));
2472
2473 /* If "previous" is set and it is not at the start of the work space, move
2474 it back to there, in order to avoid filling up the work space. Otherwise,
2475 if "previous" is NULL, reset the current code pointer to the start. */
2476
2477 if (previous != NULL)
2478 {
2479 if (previous > orig_code)
2480 {
2481 memmove(orig_code, previous, code - previous);
2482 code -= previous - orig_code;
2483 previous = orig_code;
2484 }
2485 }
2486 else code = orig_code;
2487
2488 /* Remember where this code item starts so we can pick up the length
2489 next time round. */
2490
2491 last_code = code;
2492 }
2493
2494 /* In the real compile phase, just check the workspace used by the forward
2495 reference list. */
2496
2497 else if (cd->hwm > cd->start_workspace + COMPILE_WORK_SIZE)
2498 {
2499 *errorcodeptr = ERR52;
2500 goto FAILED;
2501 }
2502
2503 /* If in \Q...\E, check for the end; if not, we have a literal */
2504
2505 if (inescq && c != 0)
2506 {
2507 if (c == '\\' && ptr[1] == 'E')
2508 {
2509 inescq = FALSE;
2510 ptr++;
2511 continue;
2512 }
2513 else
2514 {
2515 if (previous_callout != NULL)
2516 {
2517 if (lengthptr == NULL) /* Don't attempt in pre-compile phase */
2518 complete_callout(previous_callout, ptr, cd);
2519 previous_callout = NULL;
2520 }
2521 if ((options & PCRE_AUTO_CALLOUT) != 0)
2522 {
2523 previous_callout = code;
2524 code = auto_callout(code, ptr, cd);
2525 }
2526 goto NORMAL_CHAR;
2527 }
2528 }
2529
2530 /* Fill in length of a previous callout, except when the next thing is
2531 a quantifier. */
2532
2533 is_quantifier = c == '*' || c == '+' || c == '?' ||
2534 (c == '{' && is_counted_repeat(ptr+1));
2535
2536 if (!is_quantifier && previous_callout != NULL &&
2537 after_manual_callout-- <= 0)
2538 {
2539 if (lengthptr == NULL) /* Don't attempt in pre-compile phase */
2540 complete_callout(previous_callout, ptr, cd);
2541 previous_callout = NULL;
2542 }
2543
2544 /* In extended mode, skip white space and comments */
2545
2546 if ((options & PCRE_EXTENDED) != 0)
2547 {
2548 if ((cd->ctypes[c] & ctype_space) != 0) continue;
2549 if (c == '#')
2550 {
2551 while (*(++ptr) != 0)
2552 {
2553 if (IS_NEWLINE(ptr)) { ptr += cd->nllen - 1; break; }
2554 }
2555 if (*ptr != 0) continue;
2556
2557 /* Else fall through to handle end of string */
2558 c = 0;
2559 }
2560 }
2561
2562 /* No auto callout for quantifiers. */
2563
2564 if ((options & PCRE_AUTO_CALLOUT) != 0 && !is_quantifier)
2565 {
2566 previous_callout = code;
2567 code = auto_callout(code, ptr, cd);
2568 }
2569
2570 switch(c)
2571 {
2572 /* ===================================================================*/
2573 case 0: /* The branch terminates at string end */
2574 case '|': /* or | or ) */
2575 case ')':
2576 *firstbyteptr = firstbyte;
2577 *reqbyteptr = reqbyte;
2578 *codeptr = code;
2579 *ptrptr = ptr;
2580 if (lengthptr != NULL)
2581 {
2582 if (OFLOW_MAX - *lengthptr < code - last_code)
2583 {
2584 *errorcodeptr = ERR20;
2585 goto FAILED;
2586 }
2587 *lengthptr += code - last_code; /* To include callout length */
2588 DPRINTF((">> end branch\n"));
2589 }
2590 return TRUE;
2591
2592
2593 /* ===================================================================*/
2594 /* Handle single-character metacharacters. In multiline mode, ^ disables
2595 the setting of any following char as a first character. */
2596
2597 case '^':
2598 if ((options & PCRE_MULTILINE) != 0)
2599 {
2600 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
2601 }
2602 previous = NULL;
2603 *code++ = OP_CIRC;
2604 break;
2605
2606 case '$':
2607 previous = NULL;
2608 *code++ = OP_DOLL;
2609 break;
2610
2611 /* There can never be a first char if '.' is first, whatever happens about
2612 repeats. The value of reqbyte doesn't change either. */
2613
2614 case '.':
2615 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
2616 zerofirstbyte = firstbyte;
2617 zeroreqbyte = reqbyte;
2618 previous = code;
2619 *code++ = OP_ANY;
2620 break;
2621
2622
2623 /* ===================================================================*/
2624 /* Character classes. If the included characters are all < 256, we build a
2625 32-byte bitmap of the permitted characters, except in the special case
2626 where there is only one such character. For negated classes, we build the
2627 map as usual, then invert it at the end. However, we use a different opcode
2628 so that data characters > 255 can be handled correctly.
2629
2630 If the class contains characters outside the 0-255 range, a different
2631 opcode is compiled. It may optionally have a bit map for characters < 256,
2632 but those above are are explicitly listed afterwards. A flag byte tells
2633 whether the bitmap is present, and whether this is a negated class or not.
2634 */
2635
2636 case '[':
2637 previous = code;
2638
2639 /* PCRE supports POSIX class stuff inside a class. Perl gives an error if
2640 they are encountered at the top level, so we'll do that too. */
2641
2642 if ((ptr[1] == ':' || ptr[1] == '.' || ptr[1] == '=') &&
2643 check_posix_syntax(ptr, &tempptr))
2644 {
2645 *errorcodeptr = (ptr[1] == ':')? ERR13 : ERR31;
2646 goto FAILED;
2647 }
2648
2649 /* If the first character is '^', set the negation flag and skip it. Also,
2650 if the first few characters (either before or after ^) are \Q\E or \E we
2651 skip them too. This makes for compatibility with Perl. */
2652
2653 negate_class = FALSE;
2654 for (;;)
2655 {
2656 c = *(++ptr);
2657 if (c == '\\')
2658 {
2659 if (ptr[1] == 'E') ptr++;
2660 else if (strncmp((const char *)ptr+1, "Q\\E", 3) == 0) ptr += 3;
2661 else break;
2662 }
2663 else if (!negate_class && c == '^')
2664 negate_class = TRUE;
2665 else break;
2666 }
2667
2668 /* If a class contains a negative special such as \S, we need to flip the
2669 negation flag at the end, so that support for characters > 255 works
2670 correctly (they are all included in the class). */
2671
2672 should_flip_negation = FALSE;
2673
2674 /* Keep a count of chars with values < 256 so that we can optimize the case
2675 of just a single character (as long as it's < 256). However, For higher
2676 valued UTF-8 characters, we don't yet do any optimization. */
2677
2678 class_charcount = 0;
2679 class_lastchar = -1;
2680
2681 /* Initialize the 32-char bit map to all zeros. We build the map in a
2682 temporary bit of memory, in case the class contains only 1 character (less
2683 than 256), because in that case the compiled code doesn't use the bit map.
2684 */
2685
2686 memset(classbits, 0, 32 * sizeof(uschar));
2687
2688 #ifdef SUPPORT_UTF8
2689 class_utf8 = FALSE; /* No chars >= 256 */
2690 class_utf8data = code + LINK_SIZE + 2; /* For UTF-8 items */
2691 class_utf8data_base = class_utf8data; /* For resetting in pass 1 */
2692 #endif
2693
2694 /* Process characters until ] is reached. By writing this as a "do" it
2695 means that an initial ] is taken as a data character. At the start of the
2696 loop, c contains the first byte of the character. */
2697
2698 if (c != 0) do
2699 {
2700 const uschar *oldptr;
2701
2702 #ifdef SUPPORT_UTF8
2703 if (utf8 && c > 127)
2704 { /* Braces are required because the */
2705 GETCHARLEN(c, ptr, ptr); /* macro generates multiple statements */
2706 }
2707
2708 /* In the pre-compile phase, accumulate the length of any UTF-8 extra
2709 data and reset the pointer. This is so that very large classes that
2710 contain a zillion UTF-8 characters no longer overwrite the work space
2711 (which is on the stack). */
2712
2713 if (lengthptr != NULL)
2714 {
2715 *lengthptr += class_utf8data - class_utf8data_base;
2716 class_utf8data = class_utf8data_base;
2717 }
2718
2719 #endif
2720
2721 /* Inside \Q...\E everything is literal except \E */
2722
2723 if (inescq)
2724 {
2725 if (c == '\\' && ptr[1] == 'E') /* If we are at \E */
2726 {
2727 inescq = FALSE; /* Reset literal state */
2728 ptr++; /* Skip the 'E' */
2729 continue; /* Carry on with next */
2730 }
2731 goto CHECK_RANGE; /* Could be range if \E follows */
2732 }
2733
2734 /* Handle POSIX class names. Perl allows a negation extension of the
2735 form [:^name:]. A square bracket that doesn't match the syntax is
2736 treated as a literal. We also recognize the POSIX constructions
2737 [.ch.] and [=ch=] ("collating elements") and fault them, as Perl
2738 5.6 and 5.8 do. */
2739
2740 if (c == '[' &&
2741 (ptr[1] == ':' || ptr[1] == '.' || ptr[1] == '=') &&
2742 check_posix_syntax(ptr, &tempptr))
2743 {
2744 BOOL local_negate = FALSE;
2745 int posix_class, taboffset, tabopt;
2746 register const uschar *cbits = cd->cbits;
2747 uschar pbits[32];
2748
2749 if (ptr[1] != ':')
2750 {
2751 *errorcodeptr = ERR31;
2752 goto FAILED;
2753 }
2754
2755 ptr += 2;
2756 if (*ptr == '^')
2757 {
2758 local_negate = TRUE;
2759 should_flip_negation = TRUE; /* Note negative special */
2760 ptr++;
2761 }
2762
2763 posix_class = check_posix_name(ptr, tempptr - ptr);
2764 if (posix_class < 0)
2765 {
2766 *errorcodeptr = ERR30;
2767 goto FAILED;
2768 }
2769
2770 /* If matching is caseless, upper and lower are converted to
2771 alpha. This relies on the fact that the class table starts with
2772 alpha, lower, upper as the first 3 entries. */
2773
2774 if ((options & PCRE_CASELESS) != 0 && posix_class <= 2)
2775 posix_class = 0;
2776
2777 /* We build the bit map for the POSIX class in a chunk of local store
2778 because we may be adding and subtracting from it, and we don't want to
2779 subtract bits that may be in the main map already. At the end we or the
2780 result into the bit map that is being built. */
2781
2782 posix_class *= 3;
2783
2784 /* Copy in the first table (always present) */
2785
2786 memcpy(pbits, cbits + posix_class_maps[posix_class],
2787 32 * sizeof(uschar));
2788
2789 /* If there is a second table, add or remove it as required. */
2790
2791 taboffset = posix_class_maps[posix_class + 1];
2792 tabopt = posix_class_maps[posix_class + 2];
2793
2794 if (taboffset >= 0)
2795 {
2796 if (tabopt >= 0)
2797 for (c = 0; c < 32; c++) pbits[c] |= cbits[c + taboffset];
2798 else
2799 for (c = 0; c < 32; c++) pbits[c] &= ~cbits[c + taboffset];
2800 }
2801
2802 /* Not see if we need to remove any special characters. An option
2803 value of 1 removes vertical space and 2 removes underscore. */
2804
2805 if (tabopt < 0) tabopt = -tabopt;
2806 if (tabopt == 1) pbits[1] &= ~0x3c;
2807 else if (tabopt == 2) pbits[11] &= 0x7f;
2808
2809 /* Add the POSIX table or its complement into the main table that is
2810 being built and we are done. */
2811
2812 if (local_negate)
2813 for (c = 0; c < 32; c++) classbits[c] |= ~pbits[c];
2814 else
2815 for (c = 0; c < 32; c++) classbits[c] |= pbits[c];
2816
2817 ptr = tempptr + 1;
2818 class_charcount = 10; /* Set > 1; assumes more than 1 per class */
2819 continue; /* End of POSIX syntax handling */
2820 }
2821
2822 /* Backslash may introduce a single character, or it may introduce one
2823 of the specials, which just set a flag. The sequence \b is a special
2824 case. Inside a class (and only there) it is treated as backspace.
2825 Elsewhere it marks a word boundary. Other escapes have preset maps ready
2826 to 'or' into the one we are building. We assume they have more than one
2827 character in them, so set class_charcount bigger than one. */
2828
2829 if (c == '\\')
2830 {
2831 c = check_escape(&ptr, errorcodeptr, cd->bracount, options, TRUE);
2832 if (*errorcodeptr != 0) goto FAILED;
2833
2834 if (-c == ESC_b) c = '\b'; /* \b is backspace in a class */
2835 else if (-c == ESC_X) c = 'X'; /* \X is literal X in a class */
2836 else if (-c == ESC_R) c = 'R'; /* \R is literal R in a class */
2837 else if (-c == ESC_Q) /* Handle start of quoted string */
2838 {
2839 if (ptr[1] == '\\' && ptr[2] == 'E')
2840 {
2841 ptr += 2; /* avoid empty string */
2842 }
2843 else inescq = TRUE;
2844 continue;
2845 }
2846 else if (-c == ESC_E) continue; /* Ignore orphan \E */
2847
2848 if (c < 0)
2849 {
2850 register const uschar *cbits = cd->cbits;
2851 class_charcount += 2; /* Greater than 1 is what matters */
2852
2853 /* Save time by not doing this in the pre-compile phase. */
2854
2855 if (lengthptr == NULL) switch (-c)
2856 {
2857 case ESC_d:
2858 for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_digit];
2859 continue;
2860
2861 case ESC_D:
2862 should_flip_negation = TRUE;
2863 for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_digit];
2864 continue;
2865
2866 case ESC_w:
2867 for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_word];
2868 continue;
2869
2870 case ESC_W:
2871 should_flip_negation = TRUE;
2872 for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_word];
2873 continue;
2874
2875 case ESC_s:
2876 for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_space];
2877 classbits[1] &= ~0x08; /* Perl 5.004 onwards omits VT from \s */
2878 continue;
2879
2880 case ESC_S:
2881 should_flip_negation = TRUE;
2882 for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_space];
2883 classbits[1] |= 0x08; /* Perl 5.004 onwards omits VT from \s */
2884 continue;
2885
2886 default: /* Not recognized; fall through */
2887 break; /* Need "default" setting to stop compiler warning. */
2888 }
2889
2890 /* In the pre-compile phase, just do the recognition. */
2891
2892 else if (c == -ESC_d || c == -ESC_D || c == -ESC_w ||
2893 c == -ESC_W || c == -ESC_s || c == -ESC_S) continue;
2894
2895 /* We need to deal with \H, \h, \V, and \v in both phases because
2896 they use extra memory. */
2897
2898 if (-c == ESC_h)
2899 {
2900 SETBIT(classbits, 0x09); /* VT */
2901 SETBIT(classbits, 0x20); /* SPACE */
2902 SETBIT(classbits, 0xa0); /* NSBP */
2903 #ifdef SUPPORT_UTF8
2904 if (utf8)
2905 {
2906 class_utf8 = TRUE;
2907 *class_utf8data++ = XCL_SINGLE;
2908 class_utf8data += _pcre_ord2utf8(0x1680, class_utf8data);
2909 *class_utf8data++ = XCL_SINGLE;
2910 class_utf8data += _pcre_ord2utf8(0x180e, class_utf8data);
2911 *class_utf8data++ = XCL_RANGE;
2912 class_utf8data += _pcre_ord2utf8(0x2000, class_utf8data);
2913 class_utf8data += _pcre_ord2utf8(0x200A, class_utf8data);
2914 *class_utf8data++ = XCL_SINGLE;
2915 class_utf8data += _pcre_ord2utf8(0x202f, class_utf8data);
2916 *class_utf8data++ = XCL_SINGLE;
2917 class_utf8data += _pcre_ord2utf8(0x205f, class_utf8data);
2918 *class_utf8data++ = XCL_SINGLE;
2919 class_utf8data += _pcre_ord2utf8(0x3000, class_utf8data);
2920 }
2921 #endif
2922 continue;
2923 }
2924
2925 if (-c == ESC_H)
2926 {
2927 for (c = 0; c < 32; c++)
2928 {
2929 int x = 0xff;
2930 switch (c)
2931 {
2932 case 0x09/8: x ^= 1 << (0x09%8); break;
2933 case 0x20/8: x ^= 1 << (0x20%8); break;
2934 case 0xa0/8: x ^= 1 << (0xa0%8); break;
2935 default: break;
2936 }
2937 classbits[c] |= x;
2938 }
2939
2940 #ifdef SUPPORT_UTF8
2941 if (utf8)
2942 {
2943 class_utf8 = TRUE;
2944 *class_utf8data++ = XCL_RANGE;
2945 class_utf8data += _pcre_ord2utf8(0x0100, class_utf8data);
2946 class_utf8data += _pcre_ord2utf8(0x167f, class_utf8data);
2947 *class_utf8data++ = XCL_RANGE;
2948 class_utf8data += _pcre_ord2utf8(0x1681, class_utf8data);
2949 class_utf8data += _pcre_ord2utf8(0x180d, class_utf8data);
2950 *class_utf8data++ = XCL_RANGE;
2951 class_utf8data += _pcre_ord2utf8(0x180f, class_utf8data);
2952 class_utf8data += _pcre_ord2utf8(0x1fff, class_utf8data);
2953 *class_utf8data++ = XCL_RANGE;
2954 class_utf8data += _pcre_ord2utf8(0x200B, class_utf8data);
2955 class_utf8data += _pcre_ord2utf8(0x202e, class_utf8data);
2956 *class_utf8data++ = XCL_RANGE;
2957 class_utf8data += _pcre_ord2utf8(0x2030, class_utf8data);
2958 class_utf8data += _pcre_ord2utf8(0x205e, class_utf8data);
2959 *class_utf8data++ = XCL_RANGE;
2960 class_utf8data += _pcre_ord2utf8(0x2060, class_utf8data);
2961 class_utf8data += _pcre_ord2utf8(0x2fff, class_utf8data);
2962 *class_utf8data++ = XCL_RANGE;
2963 class_utf8data += _pcre_ord2utf8(0x3001, class_utf8data);
2964 class_utf8data += _pcre_ord2utf8(0x7fffffff, class_utf8data);
2965 }
2966 #endif
2967 continue;
2968 }
2969
2970 if (-c == ESC_v)
2971 {
2972 SETBIT(classbits, 0x0a); /* LF */
2973 SETBIT(classbits, 0x0b); /* VT */
2974 SETBIT(classbits, 0x0c); /* FF */
2975 SETBIT(classbits, 0x0d); /* CR */
2976 SETBIT(classbits, 0x85); /* NEL */
2977 #ifdef SUPPORT_UTF8
2978 if (utf8)
2979 {
2980 class_utf8 = TRUE;
2981 *class_utf8data++ = XCL_RANGE;
2982 class_utf8data += _pcre_ord2utf8(0x2028, class_utf8data);
2983 class_utf8data += _pcre_ord2utf8(0x2029, class_utf8data);
2984 }
2985 #endif
2986 continue;
2987 }
2988
2989 if (-c == ESC_V)
2990 {
2991 for (c = 0; c < 32; c++)
2992 {
2993 int x = 0xff;
2994 switch (c)
2995 {
2996 case 0x0a/8: x ^= 1 << (0x0a%8);
2997 x ^= 1 << (0x0b%8);
2998 x ^= 1 << (0x0c%8);
2999 x ^= 1 << (0x0d%8);
3000 break;
3001 case 0x85/8: x ^= 1 << (0x85%8); break;
3002 default: break;
3003 }
3004 classbits[c] |= x;
3005 }
3006
3007 #ifdef SUPPORT_UTF8
3008 if (utf8)
3009 {
3010 class_utf8 = TRUE;
3011 *class_utf8data++ = XCL_RANGE;
3012 class_utf8data += _pcre_ord2utf8(0x0100, class_utf8data);
3013 class_utf8data += _pcre_ord2utf8(0x2027, class_utf8data);
3014 *class_utf8data++ = XCL_RANGE;
3015 class_utf8data += _pcre_ord2utf8(0x2029, class_utf8data);
3016 class_utf8data += _pcre_ord2utf8(0x7fffffff, class_utf8data);
3017 }
3018 #endif
3019 continue;
3020 }
3021
3022 /* We need to deal with \P and \p in both phases. */
3023
3024 #ifdef SUPPORT_UCP
3025 if (-c == ESC_p || -c == ESC_P)
3026 {
3027 BOOL negated;
3028 int pdata;
3029 int ptype = get_ucp(&ptr, &negated, &pdata, errorcodeptr);
3030 if (ptype < 0) goto FAILED;
3031 class_utf8 = TRUE;
3032 *class_utf8data++ = ((-c == ESC_p) != negated)?
3033 XCL_PROP : XCL_NOTPROP;
3034 *class_utf8data++ = ptype;
3035 *class_utf8data++ = pdata;
3036 class_charcount -= 2; /* Not a < 256 character */
3037 continue;
3038 }
3039 #endif
3040 /* Unrecognized escapes are faulted if PCRE is running in its
3041 strict mode. By default, for compatibility with Perl, they are
3042 treated as literals. */
3043
3044 if ((options & PCRE_EXTRA) != 0)
3045 {
3046 *errorcodeptr = ERR7;
3047 goto FAILED;
3048 }
3049
3050 class_charcount -= 2; /* Undo the default count from above */
3051 c = *ptr; /* Get the final character and fall through */
3052 }
3053
3054 /* Fall through if we have a single character (c >= 0). This may be
3055 greater than 256 in UTF-8 mode. */
3056
3057 } /* End of backslash handling */
3058
3059 /* A single character may be followed by '-' to form a range. However,
3060 Perl does not permit ']' to be the end of the range. A '-' character
3061 at the end is treated as a literal. Perl ignores orphaned \E sequences
3062 entirely. The code for handling \Q and \E is messy. */
3063
3064 CHECK_RANGE:
3065 while (ptr[1] == '\\' && ptr[2] == 'E')
3066 {
3067 inescq = FALSE;
3068 ptr += 2;
3069 }
3070
3071 oldptr = ptr;
3072
3073 /* Remember \r or \n */
3074
3075 if (c == '\r' || c == '\n') cd->external_flags |= PCRE_HASCRORLF;
3076
3077 /* Check for range */
3078
3079 if (!inescq && ptr[1] == '-')
3080 {
3081 int d;
3082 ptr += 2;
3083 while (*ptr == '\\' && ptr[1] == 'E') ptr += 2;
3084
3085 /* If we hit \Q (not followed by \E) at this point, go into escaped
3086 mode. */
3087
3088 while (*ptr == '\\' && ptr[1] == 'Q')
3089 {
3090 ptr += 2;
3091 if (*ptr == '\\' && ptr[1] == 'E') { ptr += 2; continue; }
3092 inescq = TRUE;
3093 break;
3094 }
3095
3096 if (*ptr == 0 || (!inescq && *ptr == ']'))
3097 {
3098 ptr = oldptr;
3099 goto LONE_SINGLE_CHARACTER;
3100 }
3101
3102 #ifdef SUPPORT_UTF8
3103 if (utf8)
3104 { /* Braces are required because the */
3105 GETCHARLEN(d, ptr, ptr); /* macro generates multiple statements */
3106 }
3107 else
3108 #endif
3109 d = *ptr; /* Not UTF-8 mode */
3110
3111 /* The second part of a range can be a single-character escape, but
3112 not any of the other escapes. Perl 5.6 treats a hyphen as a literal
3113 in such circumstances. */
3114
3115 if (!inescq && d == '\\')
3116 {
3117 d = check_escape(&ptr, errorcodeptr, cd->bracount, options, TRUE);
3118 if (*errorcodeptr != 0) goto FAILED;
3119
3120 /* \b is backspace; \X is literal X; \R is literal R; any other
3121 special means the '-' was literal */
3122
3123 if (d < 0)
3124 {
3125 if (d == -ESC_b) d = '\b';
3126 else if (d == -ESC_X) d = 'X';
3127 else if (d == -ESC_R) d = 'R'; else
3128 {
3129 ptr = oldptr;
3130 goto LONE_SINGLE_CHARACTER; /* A few lines below */
3131 }
3132 }
3133 }
3134
3135 /* Check that the two values are in the correct order. Optimize
3136 one-character ranges */
3137
3138 if (d < c)
3139 {
3140 *errorcodeptr = ERR8;
3141 goto FAILED;
3142 }
3143
3144 if (d == c) goto LONE_SINGLE_CHARACTER; /* A few lines below */
3145
3146 /* Remember \r or \n */
3147
3148 if (d == '\r' || d == '\n') cd->external_flags |= PCRE_HASCRORLF;
3149
3150 /* In UTF-8 mode, if the upper limit is > 255, or > 127 for caseless
3151 matching, we have to use an XCLASS with extra data items. Caseless
3152 matching for characters > 127 is available only if UCP support is
3153 available. */
3154
3155 #ifdef SUPPORT_UTF8
3156 if (utf8 && (d > 255 || ((options & PCRE_CASELESS) != 0 && d > 127)))
3157 {
3158 class_utf8 = TRUE;
3159
3160 /* With UCP support, we can find the other case equivalents of
3161 the relevant characters. There may be several ranges. Optimize how
3162 they fit with the basic range. */
3163
3164 #ifdef SUPPORT_UCP
3165 if ((options & PCRE_CASELESS) != 0)
3166 {
3167 unsigned int occ, ocd;
3168 unsigned int cc = c;
3169 unsigned int origd = d;
3170 while (get_othercase_range(&cc, origd, &occ, &ocd))
3171 {
3172 if (occ >= (unsigned int)c &&
3173 ocd <= (unsigned int)d)
3174 continue; /* Skip embedded ranges */
3175
3176 if (occ < (unsigned int)c &&
3177 ocd >= (unsigned int)c - 1) /* Extend the basic range */
3178 { /* if there is overlap, */
3179 c = occ; /* noting that if occ < c */
3180 continue; /* we can't have ocd > d */
3181 } /* because a subrange is */
3182 if (ocd > (unsigned int)d &&
3183 occ <= (unsigned int)d + 1) /* always shorter than */
3184 { /* the basic range. */
3185 d = ocd;
3186 continue;
3187 }
3188
3189 if (occ == ocd)
3190 {
3191 *class_utf8data++ = XCL_SINGLE;
3192 }
3193 else
3194 {
3195 *class_utf8data++ = XCL_RANGE;
3196 class_utf8data += _pcre_ord2utf8(occ, class_utf8data);
3197 }
3198 class_utf8data += _pcre_ord2utf8(ocd, class_utf8data);
3199 }
3200 }
3201 #endif /* SUPPORT_UCP */
3202
3203 /* Now record the original range, possibly modified for UCP caseless
3204 overlapping ranges. */
3205
3206 *class_utf8data++ = XCL_RANGE;
3207 class_utf8data += _pcre_ord2utf8(c, class_utf8data);
3208 class_utf8data += _pcre_ord2utf8(d, class_utf8data);
3209
3210 /* With UCP support, we are done. Without UCP support, there is no
3211 caseless matching for UTF-8 characters > 127; we can use the bit map
3212 for the smaller ones. */
3213
3214 #ifdef SUPPORT_UCP
3215 continue; /* With next character in the class */
3216 #else
3217 if ((options & PCRE_CASELESS) == 0 || c > 127) continue;
3218
3219 /* Adjust upper limit and fall through to set up the map */
3220
3221 d = 127;
3222
3223 #endif /* SUPPORT_UCP */
3224 }
3225 #endif /* SUPPORT_UTF8 */
3226
3227 /* We use the bit map for all cases when not in UTF-8 mode; else
3228 ranges that lie entirely within 0-127 when there is UCP support; else
3229 for partial ranges without UCP support. */
3230
3231 class_charcount += d - c + 1;
3232 class_lastchar = d;
3233
3234 /* We can save a bit of time by skipping this in the pre-compile. */
3235
3236 if (lengthptr == NULL) for (; c <= d; c++)
3237 {
3238 classbits[c/8] |= (1 << (c&7));
3239 if ((options & PCRE_CASELESS) != 0)
3240 {
3241 int uc = cd->fcc[c]; /* flip case */
3242 classbits[uc/8] |= (1 << (uc&7));
3243 }
3244 }
3245
3246 continue; /* Go get the next char in the class */
3247 }
3248
3249 /* Handle a lone single character - we can get here for a normal
3250 non-escape char, or after \ that introduces a single character or for an
3251 apparent range that isn't. */
3252
3253 LONE_SINGLE_CHARACTER:
3254
3255 /* Handle a character that cannot go in the bit map */
3256
3257 #ifdef SUPPORT_UTF8
3258 if (utf8 && (c > 255 || ((options & PCRE_CASELESS) != 0 && c > 127)))
3259 {
3260 class_utf8 = TRUE;
3261 *class_utf8data++ = XCL_SINGLE;
3262 class_utf8data += _pcre_ord2utf8(c, class_utf8data);
3263
3264 #ifdef SUPPORT_UCP
3265 if ((options & PCRE_CASELESS) != 0)
3266 {
3267 unsigned int othercase;
3268 if ((othercase = _pcre_ucp_othercase(c)) != NOTACHAR)
3269 {
3270 *class_utf8data++ = XCL_SINGLE;
3271 class_utf8data += _pcre_ord2utf8(othercase, class_utf8data);
3272 }
3273 }
3274 #endif /* SUPPORT_UCP */
3275
3276 }
3277 else
3278 #endif /* SUPPORT_UTF8 */
3279
3280 /* Handle a single-byte character */
3281 {
3282 classbits[c/8] |= (1 << (c&7));
3283 if ((options & PCRE_CASELESS) != 0)
3284 {
3285 c = cd->fcc[c]; /* flip case */
3286 classbits[c/8] |= (1 << (c&7));
3287 }
3288 class_charcount++;
3289 class_lastchar = c;
3290 }
3291 }
3292
3293 /* Loop until ']' reached. This "while" is the end of the "do" above. */
3294
3295 while ((c = *(++ptr)) != 0 && (c != ']' || inescq));
3296
3297 if (c == 0) /* Missing terminating ']' */
3298 {
3299 *errorcodeptr = ERR6;
3300 goto FAILED;
3301 }
3302
3303
3304 /* This code has been disabled because it would mean that \s counts as
3305 an explicit \r or \n reference, and that's not really what is wanted. Now
3306 we set the flag only if there is a literal "\r" or "\n" in the class. */
3307
3308 #if 0
3309 /* Remember whether \r or \n are in this class */
3310
3311 if (negate_class)
3312 {
3313 if ((classbits[1] & 0x24) != 0x24) cd->external_flags |= PCRE_HASCRORLF;
3314 }
3315 else
3316 {
3317 if ((classbits[1] & 0x24) != 0) cd->external_flags |= PCRE_HASCRORLF;
3318 }
3319 #endif
3320
3321
3322 /* If class_charcount is 1, we saw precisely one character whose value is
3323 less than 256. As long as there were no characters >= 128 and there was no
3324 use of \p or \P, in other words, no use of any XCLASS features, we can
3325 optimize.
3326
3327 In UTF-8 mode, we can optimize the negative case only if there were no
3328 characters >= 128 because OP_NOT and the related opcodes like OP_NOTSTAR
3329 operate on single-bytes only. This is an historical hangover. Maybe one day
3330 we can tidy these opcodes to handle multi-byte characters.
3331
3332 The optimization throws away the bit map. We turn the item into a
3333 1-character OP_CHAR[NC] if it's positive, or OP_NOT if it's negative. Note
3334 that OP_NOT does not support multibyte characters. In the positive case, it
3335 can cause firstbyte to be set. Otherwise, there can be no first char if
3336 this item is first, whatever repeat count may follow. In the case of
3337 reqbyte, save the previous value for reinstating. */
3338
3339 #ifdef SUPPORT_UTF8
3340 if (class_charcount == 1 && !class_utf8 &&
3341 (!utf8 || !negate_class || class_lastchar < 128))
3342 #else
3343 if (class_charcount == 1)
3344 #endif
3345 {
3346 zeroreqbyte = reqbyte;
3347
3348 /* The OP_NOT opcode works on one-byte characters only. */
3349
3350 if (negate_class)
3351 {
3352 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
3353 zerofirstbyte = firstbyte;
3354 *code++ = OP_NOT;
3355 *code++ = class_lastchar;
3356 break;
3357 }
3358
3359 /* For a single, positive character, get the value into mcbuffer, and
3360 then we can handle this with the normal one-character code. */
3361
3362 #ifdef SUPPORT_UTF8
3363 if (utf8 && class_lastchar > 127)
3364 mclength = _pcre_ord2utf8(class_lastchar, mcbuffer);
3365 else
3366 #endif
3367 {
3368 mcbuffer[0] = class_lastchar;
3369 mclength = 1;
3370 }
3371 goto ONE_CHAR;
3372 } /* End of 1-char optimization */
3373
3374 /* The general case - not the one-char optimization. If this is the first
3375 thing in the branch, there can be no first char setting, whatever the
3376 repeat count. Any reqbyte setting must remain unchanged after any kind of
3377 repeat. */
3378
3379 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
3380 zerofirstbyte = firstbyte;
3381 zeroreqbyte = reqbyte;
3382
3383 /* If there are characters with values > 255, we have to compile an
3384 extended class, with its own opcode, unless there was a negated special
3385 such as \S in the class, because in that case all characters > 255 are in
3386 the class, so any that were explicitly given as well can be ignored. If
3387 (when there are explicit characters > 255 that must be listed) there are no
3388 characters < 256, we can omit the bitmap in the actual compiled code. */
3389
3390 #ifdef SUPPORT_UTF8
3391 if (class_utf8 && !should_flip_negation)
3392 {
3393 *class_utf8data++ = XCL_END; /* Marks the end of extra data */
3394 *code++ = OP_XCLASS;
3395 code += LINK_SIZE;
3396 *code = negate_class? XCL_NOT : 0;
3397
3398 /* If the map is required, move up the extra data to make room for it;
3399 otherwise just move the code pointer to the end of the extra data. */
3400
3401 if (class_charcount > 0)
3402 {
3403 *code++ |= XCL_MAP;
3404 memmove(code + 32, code, class_utf8data - code);
3405 memcpy(code, classbits, 32);
3406 code = class_utf8data + 32;
3407 }
3408 else code = class_utf8data;
3409
3410 /* Now fill in the complete length of the item */
3411
3412 PUT(previous, 1, code - previous);
3413 break; /* End of class handling */
3414 }
3415 #endif
3416
3417 /* If there are no characters > 255, set the opcode to OP_CLASS or
3418 OP_NCLASS, depending on whether the whole class was negated and whether
3419 there were negative specials such as \S in the class. Then copy the 32-byte
3420 map into the code vector, negating it if necessary. */
3421
3422 *code++ = (negate_class == should_flip_negation) ? OP_CLASS : OP_NCLASS;
3423 if (negate_class)
3424 {
3425 if (lengthptr == NULL) /* Save time in the pre-compile phase */
3426 for (c = 0; c < 32; c++) code[c] = ~classbits[c];
3427 }
3428 else
3429 {
3430 memcpy(code, classbits, 32);
3431 }
3432 code += 32;
3433 break;
3434
3435
3436 /* ===================================================================*/
3437 /* Various kinds of repeat; '{' is not necessarily a quantifier, but this
3438 has been tested above. */
3439
3440 case '{':
3441 if (!is_quantifier) goto NORMAL_CHAR;
3442 ptr = read_repeat_counts(ptr+1, &repeat_min, &repeat_max, errorcodeptr);
3443 if (*errorcodeptr != 0) goto FAILED;
3444 goto REPEAT;
3445
3446 case '*':
3447 repeat_min = 0;
3448 repeat_max = -1;
3449 goto REPEAT;
3450
3451 case '+':
3452 repeat_min = 1;
3453 repeat_max = -1;
3454 goto REPEAT;
3455
3456 case '?':
3457 repeat_min = 0;
3458 repeat_max = 1;
3459
3460 REPEAT:
3461 if (previous == NULL)
3462 {
3463 *errorcodeptr = ERR9;
3464 goto FAILED;
3465 }
3466
3467 if (repeat_min == 0)
3468 {
3469 firstbyte = zerofirstbyte; /* Adjust for zero repeat */
3470 reqbyte = zeroreqbyte; /* Ditto */
3471 }
3472
3473 /* Remember whether this is a variable length repeat */
3474
3475 reqvary = (repeat_min == repeat_max)? 0 : REQ_VARY;
3476
3477 op_type = 0; /* Default single-char op codes */
3478 possessive_quantifier = FALSE; /* Default not possessive quantifier */
3479
3480 /* Save start of previous item, in case we have to move it up to make space
3481 for an inserted OP_ONCE for the additional '+' extension. */
3482
3483 tempcode = previous;
3484
3485 /* If the next character is '+', we have a possessive quantifier. This
3486 implies greediness, whatever the setting of the PCRE_UNGREEDY option.
3487 If the next character is '?' this is a minimizing repeat, by default,
3488 but if PCRE_UNGREEDY is set, it works the other way round. We change the
3489 repeat type to the non-default. */
3490
3491 if (ptr[1] == '+')
3492 {
3493 repeat_type = 0; /* Force greedy */
3494 possessive_quantifier = TRUE;
3495 ptr++;
3496 }
3497 else if (ptr[1] == '?')
3498 {
3499 repeat_type = greedy_non_default;
3500 ptr++;
3501 }
3502 else repeat_type = greedy_default;
3503
3504 /* If previous was a character match, abolish the item and generate a
3505 repeat item instead. If a char item has a minumum of more than one, ensure
3506 that it is set in reqbyte - it might not be if a sequence such as x{3} is
3507 the first thing in a branch because the x will have gone into firstbyte
3508 instead. */
3509
3510 if (*previous == OP_CHAR || *previous == OP_CHARNC)
3511 {
3512 /* Deal with UTF-8 characters that take up more than one byte. It's
3513 easier to write this out separately than try to macrify it. Use c to
3514 hold the length of the character in bytes, plus 0x80 to flag that it's a
3515 length rather than a small character. */
3516
3517 #ifdef SUPPORT_UTF8
3518 if (utf8 && (code[-1] & 0x80) != 0)
3519 {
3520 uschar *lastchar = code - 1;
3521 while((*lastchar & 0xc0) == 0x80) lastchar--;
3522 c = code - lastchar; /* Length of UTF-8 character */
3523 memcpy(utf8_char, lastchar, c); /* Save the char */
3524 c |= 0x80; /* Flag c as a length */
3525 }
3526 else
3527 #endif
3528
3529 /* Handle the case of a single byte - either with no UTF8 support, or
3530 with UTF-8 disabled, or for a UTF-8 character < 128. */
3531
3532 {
3533 c = code[-1];
3534 if (repeat_min > 1) reqbyte = c | req_caseopt | cd->req_varyopt;
3535 }
3536
3537 /* If the repetition is unlimited, it pays to see if the next thing on
3538 the line is something that cannot possibly match this character. If so,
3539 automatically possessifying this item gains some performance in the case
3540 where the match fails. */
3541
3542 if (!possessive_quantifier &&
3543 repeat_max < 0 &&
3544 check_auto_possessive(*previous, c, utf8, utf8_char, ptr + 1,
3545 options, cd))
3546 {
3547 repeat_type = 0; /* Force greedy */
3548 possessive_quantifier = TRUE;
3549 }
3550
3551 goto OUTPUT_SINGLE_REPEAT; /* Code shared with single character types */
3552 }
3553
3554 /* If previous was a single negated character ([^a] or similar), we use
3555 one of the special opcodes, replacing it. The code is shared with single-
3556 character repeats by setting opt_type to add a suitable offset into
3557 repeat_type. We can also test for auto-possessification. OP_NOT is
3558 currently used only for single-byte chars. */
3559
3560 else if (*previous == OP_NOT)
3561 {
3562 op_type = OP_NOTSTAR - OP_STAR; /* Use "not" opcodes */
3563 c = previous[1];
3564 if (!possessive_quantifier &&
3565 repeat_max < 0 &&
3566 check_auto_possessive(OP_NOT, c, utf8, NULL, ptr + 1, options, cd))
3567 {
3568 repeat_type = 0; /* Force greedy */
3569 possessive_quantifier = TRUE;
3570 }
3571 goto OUTPUT_SINGLE_REPEAT;
3572 }
3573
3574 /* If previous was a character type match (\d or similar), abolish it and
3575 create a suitable repeat item. The code is shared with single-character
3576 repeats by setting op_type to add a suitable offset into repeat_type. Note
3577 the the Unicode property types will be present only when SUPPORT_UCP is
3578 defined, but we don't wrap the little bits of code here because it just
3579 makes it horribly messy. */
3580
3581 else if (*previous < OP_EODN)
3582 {
3583 uschar *oldcode;
3584 int prop_type, prop_value;
3585 op_type = OP_TYPESTAR - OP_STAR; /* Use type opcodes */
3586 c = *previous;
3587
3588 if (!possessive_quantifier &&
3589 repeat_max < 0 &&
3590 check_auto_possessive(c, 0, utf8, NULL, ptr + 1, options, cd))
3591 {
3592 repeat_type = 0; /* Force greedy */
3593 possessive_quantifier = TRUE;
3594 }
3595
3596 OUTPUT_SINGLE_REPEAT:
3597 if (*previous == OP_PROP || *previous == OP_NOTPROP)
3598 {
3599 prop_type = previous[1];
3600 prop_value = previous[2];
3601 }
3602 else prop_type = prop_value = -1;
3603
3604 oldcode = code;
3605 code = previous; /* Usually overwrite previous item */
3606
3607 /* If the maximum is zero then the minimum must also be zero; Perl allows
3608 this case, so we do too - by simply omitting the item altogether. */
3609
3610 if (repeat_max == 0) goto END_REPEAT;
3611
3612 /* All real repeats make it impossible to handle partial matching (maybe
3613 one day we will be able to remove this restriction). */
3614
3615 if (repeat_max != 1) cd->external_flags |= PCRE_NOPARTIAL;
3616
3617 /* Combine the op_type with the repeat_type */
3618
3619 repeat_type += op_type;
3620
3621 /* A minimum of zero is handled either as the special case * or ?, or as
3622 an UPTO, with the maximum given. */
3623
3624 if (repeat_min == 0)
3625 {
3626 if (repeat_max == -1) *code++ = OP_STAR + repeat_type;
3627 else if (repeat_max == 1) *code++ = OP_QUERY + repeat_type;
3628 else
3629 {
3630 *code++ = OP_UPTO + repeat_type;
3631 PUT2INC(code, 0, repeat_max);
3632 }
3633 }
3634
3635 /* A repeat minimum of 1 is optimized into some special cases. If the
3636 maximum is unlimited, we use OP_PLUS. Otherwise, the original item is
3637 left in place and, if the maximum is greater than 1, we use OP_UPTO with
3638 one less than the maximum. */
3639
3640 else if (repeat_min == 1)
3641 {
3642 if (repeat_max == -1)
3643 *code++ = OP_PLUS + repeat_type;
3644 else
3645 {
3646 code = oldcode; /* leave previous item in place */
3647 if (repeat_max == 1) goto END_REPEAT;
3648 *code++ = OP_UPTO + repeat_type;
3649 PUT2INC(code, 0, repeat_max - 1);
3650 }
3651 }
3652
3653 /* The case {n,n} is just an EXACT, while the general case {n,m} is
3654 handled as an EXACT followed by an UPTO. */
3655
3656 else
3657 {
3658 *code++ = OP_EXACT + op_type; /* NB EXACT doesn't have repeat_type */
3659 PUT2INC(code, 0, repeat_min);
3660
3661 /* If the maximum is unlimited, insert an OP_STAR. Before doing so,
3662 we have to insert the character for the previous code. For a repeated
3663 Unicode property match, there are two extra bytes that define the
3664 required property. In UTF-8 mode, long characters have their length in
3665 c, with the 0x80 bit as a flag. */
3666
3667 if (repeat_max < 0)
3668 {
3669 #ifdef SUPPORT_UTF8
3670 if (utf8 && c >= 128)
3671 {
3672 memcpy(code, utf8_char, c & 7);
3673 code += c & 7;
3674 }
3675 else
3676 #endif
3677 {
3678 *code++ = c;
3679 if (prop_type >= 0)
3680 {
3681 *code++ = prop_type;
3682 *code++ = prop_value;
3683 }
3684 }
3685 *code++ = OP_STAR + repeat_type;
3686 }
3687
3688 /* Else insert an UPTO if the max is greater than the min, again
3689 preceded by the character, for the previously inserted code. If the
3690 UPTO is just for 1 instance, we can use QUERY instead. */
3691
3692 else if (repeat_max != repeat_min)
3693 {
3694 #ifdef SUPPORT_UTF8
3695 if (utf8 && c >= 128)
3696 {
3697 memcpy(code, utf8_char, c & 7);
3698 code += c & 7;
3699 }
3700 else
3701 #endif
3702 *code++ = c;
3703 if (prop_type >= 0)
3704 {
3705 *code++ = prop_type;
3706 *code++ = prop_value;
3707 }
3708 repeat_max -= repeat_min;
3709
3710 if (repeat_max == 1)
3711 {
3712 *code++ = OP_QUERY + repeat_type;
3713 }
3714 else
3715 {
3716 *code++ = OP_UPTO + repeat_type;
3717 PUT2INC(code, 0, repeat_max);
3718 }
3719 }
3720 }
3721
3722 /* The character or character type itself comes last in all cases. */
3723
3724 #ifdef SUPPORT_UTF8
3725 if (utf8 && c >= 128)
3726 {
3727 memcpy(code, utf8_char, c & 7);
3728 code += c & 7;
3729 }
3730 else
3731 #endif
3732 *code++ = c;
3733
3734 /* For a repeated Unicode property match, there are two extra bytes that
3735 define the required property. */
3736
3737 #ifdef SUPPORT_UCP
3738 if (prop_type >= 0)
3739 {
3740 *code++ = prop_type;
3741 *code++ = prop_value;
3742 }
3743 #endif
3744 }
3745
3746 /* If previous was a character class or a back reference, we put the repeat
3747 stuff after it, but just skip the item if the repeat was {0,0}. */
3748
3749 else if (*previous == OP_CLASS ||
3750 *previous == OP_NCLASS ||
3751 #ifdef SUPPORT_UTF8
3752 *previous == OP_XCLASS ||
3753 #endif
3754 *previous == OP_REF)
3755 {
3756 if (repeat_max == 0)
3757 {
3758 code = previous;
3759 goto END_REPEAT;
3760 }
3761
3762 /* All real repeats make it impossible to handle partial matching (maybe
3763 one day we will be able to remove this restriction). */
3764
3765 if (repeat_max != 1) cd->external_flags |= PCRE_NOPARTIAL;
3766
3767 if (repeat_min == 0 && repeat_max == -1)
3768 *code++ = OP_CRSTAR + repeat_type;
3769 else if (repeat_min == 1 && repeat_max == -1)
3770 *code++ = OP_CRPLUS + repeat_type;
3771 else if (repeat_min == 0 && repeat_max == 1)
3772 *code++ = OP_CRQUERY + repeat_type;
3773 else
3774 {
3775 *code++ = OP_CRRANGE + repeat_type;
3776 PUT2INC(code, 0, repeat_min);
3777 if (repeat_max == -1) repeat_max = 0; /* 2-byte encoding for max */
3778 PUT2INC(code, 0, repeat_max);
3779 }
3780 }
3781
3782 /* If previous was a bracket group, we may have to replicate it in certain
3783 cases. */
3784
3785 else if (*previous == OP_BRA || *previous == OP_CBRA ||
3786 *previous == OP_ONCE || *previous == OP_COND)
3787 {
3788 register int i;
3789 int ketoffset = 0;
3790 int len = code - previous;
3791 uschar *bralink = NULL;
3792
3793 /* Repeating a DEFINE group is pointless */
3794
3795 if (*previous == OP_COND && previous[LINK_SIZE+1] == OP_DEF)
3796 {
3797 *errorcodeptr = ERR55;
3798 goto FAILED;
3799 }
3800
3801 /* If the maximum repeat count is unlimited, find the end of the bracket
3802 by scanning through from the start, and compute the offset back to it
3803 from the current code pointer. There may be an OP_OPT setting following
3804 the final KET, so we can't find the end just by going back from the code
3805 pointer. */
3806
3807 if (repeat_max == -1)
3808 {
3809 register uschar *ket = previous;
3810 do ket += GET(ket, 1); while (*ket != OP_KET);
3811 ketoffset = code - ket;
3812 }
3813
3814 /* The case of a zero minimum is special because of the need to stick
3815 OP_BRAZERO in front of it, and because the group appears once in the
3816 data, whereas in other cases it appears the minimum number of times. For
3817 this reason, it is simplest to treat this case separately, as otherwise
3818 the code gets far too messy. There are several special subcases when the
3819 minimum is zero. */
3820
3821 if (repeat_min == 0)
3822 {
3823 /* If the maximum is also zero, we just omit the group from the output
3824 altogether. */
3825
3826 if (repeat_max == 0)
3827 {
3828 code = previous;
3829 goto END_REPEAT;
3830 }
3831
3832 /* If the maximum is 1 or unlimited, we just have to stick in the
3833 BRAZERO and do no more at this point. However, we do need to adjust
3834 any OP_RECURSE calls inside the group that refer to the group itself or
3835 any internal or forward referenced group, because the offset is from
3836 the start of the whole regex. Temporarily terminate the pattern while
3837 doing this. */
3838
3839 if (repeat_max <= 1)
3840 {
3841 *code = OP_END;
3842 adjust_recurse(previous, 1, utf8, cd, save_hwm);
3843 memmove(previous+1, previous, len);
3844 code++;
3845 *previous++ = OP_BRAZERO + repeat_type;
3846 }
3847
3848 /* If the maximum is greater than 1 and limited, we have to replicate
3849 in a nested fashion, sticking OP_BRAZERO before each set of brackets.
3850 The first one has to be handled carefully because it's the original
3851 copy, which has to be moved up. The remainder can be handled by code
3852 that is common with the non-zero minimum case below. We have to
3853 adjust the value or repeat_max, since one less copy is required. Once
3854 again, we may have to adjust any OP_RECURSE calls inside the group. */
3855
3856 else
3857 {
3858 int offset;
3859 *code = OP_END;
3860 adjust_recurse(previous, 2 + LINK_SIZE, utf8, cd, save_hwm);
3861 memmove(previous + 2 + LINK_SIZE, previous, len);
3862 code += 2 + LINK_SIZE;
3863 *previous++ = OP_BRAZERO + repeat_type;
3864 *previous++ = OP_BRA;
3865
3866 /* We chain together the bracket offset fields that have to be
3867 filled in later when the ends of the brackets are reached. */
3868
3869 offset = (bralink == NULL)? 0 : previous - bralink;
3870 bralink = previous;
3871 PUTINC(previous, 0, offset);
3872 }
3873
3874 repeat_max--;
3875 }
3876
3877 /* If the minimum is greater than zero, replicate the group as many
3878 times as necessary, and adjust the maximum to the number of subsequent
3879 copies that we need. If we set a first char from the group, and didn't
3880 set a required char, copy the latter from the former. If there are any
3881 forward reference subroutine calls in the group, there will be entries on
3882 the workspace list; replicate these with an appropriate increment. */
3883
3884 else
3885 {
3886 if (repeat_min > 1)
3887 {
3888 /* In the pre-compile phase, we don't actually do the replication. We
3889 just adjust the length as if we had. Do some paranoid checks for
3890 potential integer overflow. */
3891
3892 if (lengthptr != NULL)
3893 {
3894 int delta = (repeat_min - 1)*length_prevgroup;
3895 if ((double)(repeat_min - 1)*(double)length_prevgroup >
3896 (double)INT_MAX ||
3897 OFLOW_MAX - *lengthptr < delta)
3898 {
3899 *errorcodeptr = ERR20;
3900 goto FAILED;
3901 }
3902 *lengthptr += delta;
3903 }
3904
3905 /* This is compiling for real */
3906
3907 else
3908 {
3909 if (groupsetfirstbyte && reqbyte < 0) reqbyte = firstbyte;
3910 for (i = 1; i < repeat_min; i++)
3911 {
3912 uschar *hc;
3913 uschar *this_hwm = cd->hwm;
3914 memcpy(code, previous, len);
3915 for (hc = save_hwm; hc < this_hwm; hc += LINK_SIZE)
3916 {
3917 PUT(cd->hwm, 0, GET(hc, 0) + len);
3918 cd->hwm += LINK_SIZE;
3919 }
3920 save_hwm = this_hwm;
3921 code += len;
3922 }
3923 }
3924 }
3925
3926 if (repeat_max > 0) repeat_max -= repeat_min;
3927 }
3928
3929 /* This code is common to both the zero and non-zero minimum cases. If
3930 the maximum is limited, it replicates the group in a nested fashion,
3931 remembering the bracket starts on a stack. In the case of a zero minimum,
3932 the first one was set up above. In all cases the repeat_max now specifies
3933 the number of additional copies needed. Again, we must remember to
3934 replicate entries on the forward reference list. */
3935
3936 if (repeat_max >= 0)
3937 {
3938 /* In the pre-compile phase, we don't actually do the replication. We
3939 just adjust the length as if we had. For each repetition we must add 1
3940 to the length for BRAZERO and for all but the last repetition we must
3941 add 2 + 2*LINKSIZE to allow for the nesting that occurs. Do some
3942 paranoid checks to avoid integer overflow. */
3943
3944 if (lengthptr != NULL && repeat_max > 0)
3945 {
3946 int delta = repeat_max * (length_prevgroup + 1 + 2 + 2*LINK_SIZE) -
3947 2 - 2*LINK_SIZE; /* Last one doesn't nest */
3948 if ((double)repeat_max *
3949 (double)(length_prevgroup + 1 + 2 + 2*LINK_SIZE)
3950 > (double)INT_MAX ||
3951 OFLOW_MAX - *lengthptr < delta)
3952 {
3953 *errorcodeptr = ERR20;
3954 goto FAILED;
3955 }
3956 *lengthptr += delta;
3957 }
3958
3959 /* This is compiling for real */
3960
3961 else for (i = repeat_max - 1; i >= 0; i--)
3962 {
3963 uschar *hc;
3964 uschar *this_hwm = cd->hwm;
3965
3966 *code++ = OP_BRAZERO + repeat_type;
3967
3968 /* All but the final copy start a new nesting, maintaining the
3969 chain of brackets outstanding. */
3970
3971 if (i != 0)
3972 {
3973 int offset;
3974 *code++ = OP_BRA;
3975 offset = (bralink == NULL)? 0 : code - bralink;
3976 bralink = code;
3977 PUTINC(code, 0, offset);
3978 }
3979
3980 memcpy(code, previous, len);
3981 for (hc = save_hwm; hc < this_hwm; hc += LINK_SIZE)
3982 {
3983 PUT(cd->hwm, 0, GET(hc, 0) + len + ((i != 0)? 2+LINK_SIZE : 1));
3984 cd->hwm += LINK_SIZE;
3985 }
3986 save_hwm = this_hwm;
3987 code += len;
3988 }
3989
3990 /* Now chain through the pending brackets, and fill in their length
3991 fields (which are holding the chain links pro tem). */
3992
3993 while (bralink != NULL)
3994 {
3995 int oldlinkoffset;
3996 int offset = code - bralink + 1;
3997 uschar *bra = code - offset;
3998 oldlinkoffset = GET(bra, 1);
3999 bralink = (oldlinkoffset == 0)? NULL : bralink - oldlinkoffset;
4000 *code++ = OP_KET;
4001 PUTINC(code, 0, offset);
4002 PUT(bra, 1, offset);
4003 }
4004 }
4005
4006 /* If the maximum is unlimited, set a repeater in the final copy. We
4007 can't just offset backwards from the current code point, because we
4008 don't know if there's been an options resetting after the ket. The
4009 correct offset was computed above.
4010
4011 Then, when we are doing the actual compile phase, check to see whether
4012 this group is a non-atomic one that could match an empty string. If so,
4013 convert the initial operator to the S form (e.g. OP_BRA -> OP_SBRA) so
4014 that runtime checking can be done. [This check is also applied to
4015 atomic groups at runtime, but in a different way.] */
4016
4017 else
4018 {
4019 uschar *ketcode = code - ketoffset;
4020 uschar *bracode = ketcode - GET(ketcode, 1);
4021 *ketcode = OP_KETRMAX + repeat_type;
4022 if (lengthptr == NULL && *bracode != OP_ONCE)
4023 {
4024 uschar *scode = bracode;
4025 do
4026 {
4027 if (could_be_empty_branch(scode, ketcode, utf8))
4028 {
4029 *bracode += OP_SBRA - OP_BRA;
4030 break;
4031 }
4032 scode += GET(scode, 1);
4033 }
4034 while (*scode == OP_ALT);
4035 }
4036 }
4037 }
4038
4039 /* Else there's some kind of shambles */
4040
4041 else
4042 {
4043 *errorcodeptr = ERR11;
4044 goto FAILED;
4045 }
4046
4047 /* If the character following a repeat is '+', or if certain optimization
4048 tests above succeeded, possessive_quantifier is TRUE. For some of the
4049 simpler opcodes, there is an special alternative opcode for this. For
4050 anything else, we wrap the entire repeated item inside OP_ONCE brackets.
4051 The '+' notation is just syntactic sugar, taken from Sun's Java package,
4052 but the special opcodes can optimize it a bit. The repeated item starts at
4053 tempcode, not at previous, which might be the first part of a string whose
4054 (former) last char we repeated.
4055
4056 Possessifying an 'exact' quantifier has no effect, so we can ignore it. But
4057 an 'upto' may follow. We skip over an 'exact' item, and then test the
4058 length of what remains before proceeding. */
4059
4060 if (possessive_quantifier)
4061 {
4062 int len;
4063 if (*tempcode == OP_EXACT || *tempcode == OP_TYPEEXACT ||
4064 *tempcode == OP_NOTEXACT)
4065 tempcode += _pcre_OP_lengths[*tempcode] +
4066 ((*tempcode == OP_TYPEEXACT &&
4067 (tempcode[3] == OP_PROP || tempcode[3] == OP_NOTPROP))? 2:0);
4068 len = code - tempcode;
4069 if (len > 0) switch (*tempcode)
4070 {
4071 case OP_STAR: *tempcode = OP_POSSTAR; break;
4072 case OP_PLUS: *tempcode = OP_POSPLUS; break;
4073 case OP_QUERY: *tempcode = OP_POSQUERY; break;
4074 case OP_UPTO: *tempcode = OP_POSUPTO; break;
4075
4076 case OP_TYPESTAR: *tempcode = OP_TYPEPOSSTAR; break;
4077 case OP_TYPEPLUS: *tempcode = OP_TYPEPOSPLUS; break;
4078 case OP_TYPEQUERY: *tempcode = OP_TYPEPOSQUERY; break;
4079 case OP_TYPEUPTO: *tempcode = OP_TYPEPOSUPTO; break;
4080
4081 case OP_NOTSTAR: *tempcode = OP_NOTPOSSTAR; break;
4082 case OP_NOTPLUS: *tempcode = OP_NOTPOSPLUS; break;
4083 case OP_NOTQUERY: *tempcode = OP_NOTPOSQUERY; break;
4084 case OP_NOTUPTO: *tempcode = OP_NOTPOSUPTO; break;
4085
4086 default:
4087 memmove(tempcode + 1+LINK_SIZE, tempcode, len);
4088 code += 1 + LINK_SIZE;
4089 len += 1 + LINK_SIZE;
4090 tempcode[0] = OP_ONCE;
4091 *code++ = OP_KET;
4092 PUTINC(code, 0, len);
4093 PUT(tempcode, 1, len);
4094 break;
4095 }
4096 }
4097
4098 /* In all case we no longer have a previous item. We also set the
4099 "follows varying string" flag for subsequently encountered reqbytes if
4100 it isn't already set and we have just passed a varying length item. */
4101
4102 END_REPEAT:
4103 previous = NULL;
4104 cd->req_varyopt |= reqvary;
4105 break;
4106
4107
4108 /* ===================================================================*/
4109 /* Start of nested parenthesized sub-expression, or comment or lookahead or
4110 lookbehind or option setting or condition or all the other extended
4111 parenthesis forms. */
4112
4113 case '(':
4114 newoptions = options;
4115 skipbytes = 0;
4116 bravalue = OP_CBRA;
4117 save_hwm = cd->hwm;
4118 reset_bracount = FALSE;
4119
4120 /* First deal with various "verbs" that can be introduced by '*'. */
4121
4122 if (*(++ptr) == '*' && (cd->ctypes[ptr[1]] & ctype_letter) != 0)
4123 {
4124 int i, namelen;
4125 const char *vn = verbnames;
4126 const uschar *name = ++ptr;
4127 previous = NULL;
4128 while ((cd->ctypes[*++ptr] & ctype_letter) != 0);
4129 if (*ptr == ':')
4130 {
4131 *errorcodeptr = ERR59; /* Not supported */
4132 goto FAILED;
4133 }
4134 if (*ptr != ')')
4135 {
4136 *errorcodeptr = ERR60;
4137 goto FAILED;
4138 }
4139 namelen = ptr - name;
4140 for (i = 0; i < verbcount; i++)
4141 {
4142 if (namelen == verbs[i].len &&
4143 strncmp((char *)name, vn, namelen) == 0)
4144 {
4145 *code = verbs[i].op;
4146 if (*code++ == OP_ACCEPT) cd->had_accept = TRUE;
4147 break;
4148 }
4149 vn += verbs[i].len + 1;
4150 }
4151 if (i < verbcount) continue;
4152 *errorcodeptr = ERR60;
4153 goto FAILED;
4154 }
4155
4156 /* Deal with the extended parentheses; all are introduced by '?', and the
4157 appearance of any of them means that this is not a capturing group. */
4158
4159 else if (*ptr == '?')
4160 {
4161 int i, set, unset, namelen;
4162 int *optset;
4163 const uschar *name;
4164 uschar *slot;
4165
4166 switch (*(++ptr))
4167 {
4168 case '#': /* Comment; skip to ket */
4169 ptr++;
4170 while (*ptr != 0 && *ptr != ')') ptr++;
4171 if (*ptr == 0)
4172 {
4173 *errorcodeptr = ERR18;
4174 goto FAILED;
4175 }
4176 continue;
4177
4178
4179 /* ------------------------------------------------------------ */
4180 case '|': /* Reset capture count for each branch */
4181 reset_bracount = TRUE;
4182 /* Fall through */
4183
4184 /* ------------------------------------------------------------ */
4185 case ':': /* Non-capturing bracket */
4186 bravalue = OP_BRA;
4187 ptr++;
4188 break;
4189
4190
4191 /* ------------------------------------------------------------ */
4192 case '(':
4193 bravalue = OP_COND; /* Conditional group */
4194
4195 /* A condition can be an assertion, a number (referring to a numbered
4196 group), a name (referring to a named group), or 'R', referring to
4197 recursion. R<digits> and R&name are also permitted for recursion tests.
4198
4199 There are several syntaxes for testing a named group: (?(name)) is used
4200 by Python; Perl 5.10 onwards uses (?(<name>) or (?('name')).
4201
4202 There are two unfortunate ambiguities, caused by history. (a) 'R' can
4203 be the recursive thing or the name 'R' (and similarly for 'R' followed
4204 by digits), and (b) a number could be a name that consists of digits.
4205 In both cases, we look for a name first; if not found, we try the other
4206 cases. */
4207
4208 /* For conditions that are assertions, check the syntax, and then exit
4209 the switch. This will take control down to where bracketed groups,
4210 including assertions, are processed. */
4211
4212 if (ptr[1] == '?' && (ptr[2] == '=' || ptr[2] == '!' || ptr[2] == '<'))
4213 break;
4214
4215 /* Most other conditions use OP_CREF (a couple change to OP_RREF
4216 below), and all need to skip 3 bytes at the start of the group. */
4217
4218 code[1+LINK_SIZE] = OP_CREF;
4219 skipbytes = 3;
4220 refsign = -1;
4221
4222 /* Check for a test for recursion in a named group. */
4223
4224 if (ptr[1] == 'R' && ptr[2] == '&')
4225 {
4226 terminator = -1;
4227 ptr += 2;
4228 code[1+LINK_SIZE] = OP_RREF; /* Change the type of test */
4229 }
4230
4231 /* Check for a test for a named group's having been set, using the Perl
4232 syntax (?(<name>) or (?('name') */
4233
4234 else if (ptr[1] == '<')
4235 {
4236 terminator = '>';
4237 ptr++;
4238 }
4239 else if (ptr[1] == '\'')
4240 {
4241 terminator = '\'';
4242 ptr++;
4243 }
4244 else
4245 {
4246 terminator = 0;
4247 if (ptr[1] == '-' || ptr[1] == '+') refsign = *(++ptr);
4248 }
4249
4250 /* We now expect to read a name; any thing else is an error */
4251
4252 if ((cd->ctypes[ptr[1]] & ctype_word) == 0)
4253 {
4254 ptr += 1; /* To get the right offset */
4255 *errorcodeptr = ERR28;
4256 goto FAILED;
4257 }
4258
4259 /* Read the name, but also get it as a number if it's all digits */
4260
4261 recno = 0;
4262 name = ++ptr;
4263 while ((cd->ctypes[*ptr] & ctype_word) != 0)
4264 {
4265 if (recno >= 0)
4266 recno = ((digitab[*ptr] & ctype_digit) != 0)?
4267 recno * 10 + *ptr - '0' : -1;
4268 ptr++;
4269 }
4270 namelen = ptr - name;
4271
4272 if ((terminator > 0 && *ptr++ != terminator) || *ptr++ != ')')
4273 {
4274 ptr--; /* Error offset */
4275 *errorcodeptr = ERR26;
4276 goto FAILED;
4277 }
4278
4279 /* Do no further checking in the pre-compile phase. */
4280
4281 if (lengthptr != NULL) break;
4282
4283 /* In the real compile we do the work of looking for the actual
4284 reference. If the string started with "+" or "-" we require the rest to
4285 be digits, in which case recno will be set. */
4286
4287 if (refsign > 0)
4288 {
4289 if (recno <= 0)
4290 {
4291 *errorcodeptr = ERR58;
4292 goto FAILED;
4293 }
4294 recno = (refsign == '-')?
4295 cd->bracount - recno + 1 : recno +cd->bracount;
4296 if (recno <= 0 || recno > cd->final_bracount)
4297 {
4298 *errorcodeptr = ERR15;
4299 goto FAILED;
4300 }
4301 PUT2(code, 2+LINK_SIZE, recno);
4302 break;
4303 }
4304
4305 /* Otherwise (did not start with "+" or "-"), start by looking for the
4306 name. */
4307
4308 slot = cd->name_table;
4309 for (i = 0; i < cd->names_found; i++)
4310 {
4311 if (strncmp((char *)name, (char *)slot+2, namelen) == 0) break;
4312 slot += cd->name_entry_size;
4313 }
4314
4315 /* Found a previous named subpattern */
4316
4317 if (i < cd->names_found)
4318 {
4319 recno = GET2(slot, 0);
4320 PUT2(code, 2+LINK_SIZE, recno);
4321 }
4322
4323 /* Search the pattern for a forward reference */
4324
4325 else if ((i = find_parens(ptr, cd->bracount, name, namelen,
4326 (options & PCRE_EXTENDED) != 0)) > 0)
4327 {
4328 PUT2(code, 2+LINK_SIZE, i);
4329 }
4330
4331 /* If terminator == 0 it means that the name followed directly after
4332 the opening parenthesis [e.g. (?(abc)...] and in this case there are
4333 some further alternatives to try. For the cases where terminator != 0
4334 [things like (?(<name>... or (?('name')... or (?(R&name)... ] we have
4335 now checked all the possibilities, so give an error. */
4336
4337 else if (terminator != 0)
4338 {
4339 *errorcodeptr = ERR15;
4340 goto FAILED;
4341 }
4342
4343 /* Check for (?(R) for recursion. Allow digits after R to specify a
4344 specific group number. */
4345
4346 else if (*name == 'R')
4347 {
4348 recno = 0;
4349 for (i = 1; i < namelen; i++)
4350 {
4351 if ((digitab[name[i]] & ctype_digit) == 0)
4352 {
4353 *errorcodeptr = ERR15;
4354 goto FAILED;
4355 }
4356 recno = recno * 10 + name[i] - '0';
4357 }
4358 if (recno == 0) recno = RREF_ANY;
4359 code[1+LINK_SIZE] = OP_RREF; /* Change test type */
4360 PUT2(code, 2+LINK_SIZE, recno);
4361 }
4362
4363 /* Similarly, check for the (?(DEFINE) "condition", which is always
4364 false. */
4365
4366 else if (namelen == 6 && strncmp((char *)name, "DEFINE", 6) == 0)
4367 {
4368 code[1+LINK_SIZE] = OP_DEF;
4369 skipbytes = 1;
4370 }
4371
4372 /* Check for the "name" actually being a subpattern number. We are
4373 in the second pass here, so final_bracount is set. */
4374
4375 else if (recno > 0 && recno <= cd->final_bracount)
4376 {
4377 PUT2(code, 2+LINK_SIZE, recno);
4378 }
4379
4380 /* Either an unidentified subpattern, or a reference to (?(0) */
4381
4382 else
4383 {
4384 *errorcodeptr = (recno == 0)? ERR35: ERR15;
4385 goto FAILED;
4386 }
4387 break;
4388
4389
4390 /* ------------------------------------------------------------ */
4391 case '=': /* Positive lookahead */
4392 bravalue = OP_ASSERT;
4393 ptr++;
4394 break;
4395
4396
4397 /* ------------------------------------------------------------ */
4398 case '!': /* Negative lookahead */
4399 ptr++;
4400 if (*ptr == ')') /* Optimize (?!) */
4401 {
4402 *code++ = OP_FAIL;
4403 previous = NULL;
4404 continue;
4405 }
4406 bravalue = OP_ASSERT_NOT;
4407 break;
4408
4409
4410 /* ------------------------------------------------------------ */
4411 case '<': /* Lookbehind or named define */
4412 switch (ptr[1])
4413 {
4414 case '=': /* Positive lookbehind */
4415 bravalue = OP_ASSERTBACK;
4416 ptr += 2;
4417 break;
4418
4419 case '!': /* Negative lookbehind */
4420 bravalue = OP_ASSERTBACK_NOT;
4421 ptr += 2;
4422 break;
4423
4424 default: /* Could be name define, else bad */
4425 if ((cd->ctypes[ptr[1]] & ctype_word) != 0) goto DEFINE_NAME;
4426 ptr++; /* Correct offset for error */
4427 *errorcodeptr = ERR24;
4428 goto FAILED;
4429 }
4430 break;
4431
4432
4433 /* ------------------------------------------------------------ */
4434 case '>': /* One-time brackets */
4435 bravalue = OP_ONCE;
4436 ptr++;
4437 break;
4438
4439
4440 /* ------------------------------------------------------------ */
4441 case 'C': /* Callout - may be followed by digits; */
4442 previous_callout = code; /* Save for later completion */
4443 after_manual_callout = 1; /* Skip one item before completing */
4444 *code++ = OP_CALLOUT;
4445 {
4446 int n = 0;
4447 while ((digitab[*(++ptr)] & ctype_digit) != 0)
4448 n = n * 10 + *ptr - '0';
4449 if (*ptr != ')')
4450 {
4451 *errorcodeptr = ERR39;
4452 goto FAILED;
4453 }
4454 if (n > 255)
4455 {
4456 *errorcodeptr = ERR38;
4457 goto FAILED;
4458 }
4459 *code++ = n;
4460 PUT(code, 0, ptr - cd->start_pattern + 1); /* Pattern offset */
4461 PUT(code, LINK_SIZE, 0); /* Default length */
4462 code += 2 * LINK_SIZE;
4463 }
4464 previous = NULL;
4465 continue;
4466
4467
4468 /* ------------------------------------------------------------ */
4469 case 'P': /* Python-style named subpattern handling */
4470 if (*(++ptr) == '=' || *ptr == '>') /* Reference or recursion */
4471 {
4472 is_recurse = *ptr == '>';
4473 terminator = ')';
4474 goto NAMED_REF_OR_RECURSE;
4475 }
4476 else if (*ptr != '<') /* Test for Python-style definition */
4477 {
4478 *errorcodeptr = ERR41;
4479 goto FAILED;
4480 }
4481 /* Fall through to handle (?P< as (?< is handled */
4482
4483
4484 /* ------------------------------------------------------------ */
4485 DEFINE_NAME: /* Come here from (?< handling */
4486 case '\'':
4487 {
4488 terminator = (*ptr == '<')? '>' : '\'';
4489 name = ++ptr;
4490
4491 while ((cd->ctypes[*ptr] & ctype_word) != 0) ptr++;
4492 namelen = ptr - name;
4493
4494 /* In the pre-compile phase, just do a syntax check. */
4495
4496 if (lengthptr != NULL)
4497 {
4498 if (*ptr != terminator)
4499 {
4500 *errorcodeptr = ERR42;
4501 goto FAILED;
4502 }
4503 if (cd->names_found >= MAX_NAME_COUNT)
4504 {
4505 *errorcodeptr = ERR49;
4506 goto FAILED;
4507 }
4508 if (namelen + 3 > cd->name_entry_size)
4509 {
4510 cd->name_entry_size = namelen + 3;
4511 if (namelen > MAX_NAME_SIZE)
4512 {
4513 *errorcodeptr = ERR48;
4514 goto FAILED;
4515 }
4516 }
4517 }
4518
4519 /* In the real compile, create the entry in the table */
4520
4521 else
4522 {
4523 slot = cd->name_table;
4524 for (i = 0; i < cd->names_found; i++)
4525 {
4526 int crc = memcmp(name, slot+2, namelen);
4527 if (crc == 0)
4528 {
4529 if (slot[2+namelen] == 0)
4530 {
4531 if ((options & PCRE_DUPNAMES) == 0)
4532 {
4533 *errorcodeptr = ERR43;
4534 goto FAILED;
4535 }
4536 }
4537 else crc = -1; /* Current name is substring */
4538 }
4539 if (crc < 0)
4540 {
4541 memmove(slot + cd->name_entry_size, slot,
4542 (cd->names_found - i) * cd->name_entry_size);
4543 break;
4544 }
4545 slot += cd->name_entry_size;
4546 }
4547
4548 PUT2(slot, 0, cd->bracount + 1);
4549 memcpy(slot + 2, name, namelen);
4550 slot[2+namelen] = 0;
4551 }
4552 }
4553
4554 /* In both cases, count the number of names we've encountered. */
4555
4556 ptr++; /* Move past > or ' */
4557 cd->names_found++;
4558 goto NUMBERED_GROUP;
4559
4560
4561 /* ------------------------------------------------------------ */
4562 case '&': /* Perl recursion/subroutine syntax */
4563 terminator = ')';
4564 is_recurse = TRUE;
4565 /* Fall through */
4566
4567 /* We come here from the Python syntax above that handles both
4568 references (?P=name) and recursion (?P>name), as well as falling
4569 through from the Perl recursion syntax (?&name). We also come here from
4570 the Perl \k<name> or \k'name' back reference syntax and the \k{name}
4571 .NET syntax. */
4572
4573 NAMED_REF_OR_RECURSE:
4574 name = ++ptr;
4575 while ((cd->ctypes[*ptr] & ctype_word) != 0) ptr++;
4576 namelen = ptr - name;
4577
4578 /* In the pre-compile phase, do a syntax check and set a dummy
4579 reference number. */
4580
4581 if (lengthptr != NULL)
4582 {
4583 if (namelen == 0)
4584 {
4585 *errorcodeptr = ERR62;
4586 goto FAILED;
4587 }
4588 if (*ptr != terminator)
4589 {
4590 *errorcodeptr = ERR42;
4591 goto FAILED;
4592 }
4593 if (namelen > MAX_NAME_SIZE)
4594 {
4595 *errorcodeptr = ERR48;
4596 goto FAILED;
4597 }
4598 recno = 0;
4599 }
4600
4601 /* In the real compile, seek the name in the table. We check the name
4602 first, and then check that we have reached the end of the name in the
4603 table. That way, if the name that is longer than any in the table,
4604 the comparison will fail without reading beyond the table entry. */
4605
4606 else
4607 {
4608 slot = cd->name_table;
4609 for (i = 0; i < cd->names_found; i++)
4610 {
4611 if (strncmp((char *)name, (char *)slot+2, namelen) == 0 &&
4612 slot[2+namelen] == 0)
4613 break;
4614 slot += cd->name_entry_size;
4615 }
4616
4617 if (i < cd->names_found) /* Back reference */
4618 {
4619 recno = GET2(slot, 0);
4620 }
4621 else if ((recno = /* Forward back reference */
4622 find_parens(ptr, cd->bracount, name, namelen,
4623 (options & PCRE_EXTENDED) != 0)) <= 0)
4624 {
4625 *errorcodeptr = ERR15;
4626 goto FAILED;
4627 }
4628 }
4629
4630 /* In both phases, we can now go to the code than handles numerical
4631 recursion or backreferences. */
4632
4633 if (is_recurse) goto HANDLE_RECURSION;
4634 else goto HANDLE_REFERENCE;
4635
4636
4637 /* ------------------------------------------------------------ */
4638 case 'R': /* Recursion */
4639 ptr++; /* Same as (?0) */
4640 /* Fall through */
4641
4642
4643 /* ------------------------------------------------------------ */
4644 case '-': case '+':
4645 case '0': case '1': case '2': case '3': case '4': /* Recursion or */
4646 case '5': case '6': case '7': case '8': case '9': /* subroutine */
4647 {
4648 const uschar *called;
4649
4650 if ((refsign = *ptr) == '+')
4651 {
4652 ptr++;
4653 if ((digitab[*ptr] & ctype_digit) == 0)
4654 {
4655 *errorcodeptr = ERR63;
4656 goto FAILED;
4657 }
4658 }
4659 else if (refsign == '-')
4660 {
4661 if ((digitab[ptr[1]] & ctype_digit) == 0)
4662 goto OTHER_CHAR_AFTER_QUERY;
4663 ptr++;
4664 }
4665
4666 recno = 0;
4667 while((digitab[*ptr] & ctype_digit) != 0)
4668 recno = recno * 10 + *ptr++ - '0';
4669
4670 if (*ptr != ')')
4671 {
4672 *errorcodeptr = ERR29;
4673 goto FAILED;
4674 }
4675
4676 if (refsign == '-')
4677 {
4678 if (recno == 0)
4679 {
4680 *errorcodeptr = ERR58;
4681 goto FAILED;
4682 }
4683 recno = cd->bracount - recno + 1;
4684 if (recno <= 0)
4685 {
4686 *errorcodeptr = ERR15;
4687 goto FAILED;
4688 }
4689 }
4690 else if (refsign == '+')
4691 {
4692 if (recno == 0)
4693 {
4694 *errorcodeptr = ERR58;
4695 goto FAILED;
4696 }
4697 recno += cd->bracount;
4698 }
4699
4700 /* Come here from code above that handles a named recursion */
4701
4702 HANDLE_RECURSION:
4703
4704 previous = code;
4705 called = cd->start_code;
4706
4707 /* When we are actually compiling, find the bracket that is being
4708 referenced. Temporarily end the regex in case it doesn't exist before
4709 this point. If we end up with a forward reference, first check that
4710 the bracket does occur later so we can give the error (and position)
4711 now. Then remember this forward reference in the workspace so it can
4712 be filled in at the end. */
4713
4714 if (lengthptr == NULL)
4715 {
4716 *code = OP_END;
4717 if (recno != 0) called = find_bracket(cd->start_code, utf8, recno);
4718
4719 /* Forward reference */
4720
4721 if (called == NULL)
4722 {
4723 if (find_parens(ptr, cd->bracount, NULL, recno,
4724 (options & PCRE_EXTENDED) != 0) < 0)
4725 {
4726 *errorcodeptr = ERR15;
4727 goto FAILED;
4728 }
4729 called = cd->start_code + recno;
4730 PUTINC(cd->hwm, 0, code + 2 + LINK_SIZE - cd->start_code);
4731 }
4732
4733 /* If not a forward reference, and the subpattern is still open,
4734 this is a recursive call. We check to see if this is a left
4735 recursion that could loop for ever, and diagnose that case. */
4736
4737 else if (GET(called, 1) == 0 &&
4738 could_be_empty(called, code, bcptr, utf8))
4739 {
4740 *errorcodeptr = ERR40;
4741 goto FAILED;
4742 }
4743 }
4744
4745 /* Insert the recursion/subroutine item, automatically wrapped inside
4746 "once" brackets. Set up a "previous group" length so that a
4747 subsequent quantifier will work. */
4748
4749 *code = OP_ONCE;
4750 PUT(code, 1, 2 + 2*LINK_SIZE);
4751 code += 1 + LINK_SIZE;
4752
4753 *code = OP_RECURSE;
4754 PUT(code, 1, called - cd->start_code);
4755 code += 1 + LINK_SIZE;
4756
4757 *code = OP_KET;
4758 PUT(code, 1, 2 + 2*LINK_SIZE);
4759 code += 1 + LINK_SIZE;
4760
4761 length_prevgroup = 3 + 3*LINK_SIZE;
4762 }
4763
4764 /* Can't determine a first byte now */
4765
4766 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
4767 continue;
4768
4769
4770 /* ------------------------------------------------------------ */
4771 default: /* Other characters: check option setting */
4772 OTHER_CHAR_AFTER_QUERY:
4773 set = unset = 0;
4774 optset = &set;
4775
4776 while (*ptr != ')' && *ptr != ':')
4777 {
4778 switch (*ptr++)
4779 {
4780 case '-': optset = &unset; break;
4781
4782 case 'J': /* Record that it changed in the external options */
4783 *optset |= PCRE_DUPNAMES;
4784 cd->external_flags |= PCRE_JCHANGED;
4785 break;
4786
4787 case 'i': *optset |= PCRE_CASELESS; break;
4788 case 'm': *optset |= PCRE_MULTILINE; break;
4789 case 's': *optset |= PCRE_DOTALL; break;
4790 case 'x': *optset |= PCRE_EXTENDED; break;
4791 case 'U': *optset |= PCRE_UNGREEDY; break;
4792 case 'X': *optset |= PCRE_EXTRA; break;
4793
4794 default: *errorcodeptr = ERR12;
4795 ptr--; /* Correct the offset */
4796 goto FAILED;
4797 }
4798 }
4799
4800 /* Set up the changed option bits, but don't change anything yet. */
4801
4802 newoptions = (options | set) & (~unset);
4803
4804 /* If the options ended with ')' this is not the start of a nested
4805 group with option changes, so the options change at this level. If this
4806 item is right at the start of the pattern, the options can be
4807 abstracted and made external in the pre-compile phase, and ignored in
4808 the compile phase. This can be helpful when matching -- for instance in
4809 caseless checking of required bytes.
4810
4811 If the code pointer is not (cd->start_code + 1 + LINK_SIZE), we are
4812 definitely *not* at the start of the pattern because something has been
4813 compiled. In the pre-compile phase, however, the code pointer can have
4814 that value after the start, because it gets reset as code is discarded
4815 during the pre-compile. However, this can happen only at top level - if
4816 we are within parentheses, the starting BRA will still be present. At
4817 any parenthesis level, the length value can be used to test if anything
4818 has been compiled at that level. Thus, a test for both these conditions
4819 is necessary to ensure we correctly detect the start of the pattern in
4820 both phases.
4821
4822 If we are not at the pattern start, compile code to change the ims
4823 options if this setting actually changes any of them. We also pass the
4824 new setting back so that it can be put at the start of any following
4825 branches, and when this group ends (if we are in a group), a resetting
4826 item can be compiled. */
4827
4828 if (*ptr == ')')
4829 {
4830 if (code == cd->start_code + 1 + LINK_SIZE &&
4831 (lengthptr == NULL || *lengthptr == 2 + 2*LINK_SIZE))
4832 {
4833 cd->external_options = newoptions;
4834 options = newoptions;
4835 }
4836 else
4837 {
4838 if ((options & PCRE_IMS) != (newoptions & PCRE_IMS))
4839 {
4840 *code++ = OP_OPT;
4841 *code++ = newoptions & PCRE_IMS;
4842 }
4843
4844 /* Change options at this level, and pass them back for use
4845 in subsequent branches. Reset the greedy defaults and the case
4846 value for firstbyte and reqbyte. */
4847
4848 *optionsptr = options = newoptions;
4849 greedy_default = ((newoptions & PCRE_UNGREEDY) != 0);
4850 greedy_non_default = greedy_default ^ 1;
4851 req_caseopt = ((options & PCRE_CASELESS) != 0)? REQ_CASELESS : 0;
4852 }
4853
4854 previous = NULL; /* This item can't be repeated */
4855 continue; /* It is complete */
4856 }
4857
4858 /* If the options ended with ':' we are heading into a nested group
4859 with possible change of options. Such groups are non-capturing and are
4860 not assertions of any kind. All we need to do is skip over the ':';
4861 the newoptions value is handled below. */
4862
4863 bravalue = OP_BRA;
4864 ptr++;
4865 } /* End of switch for character following (? */
4866 } /* End of (? handling */
4867
4868 /* Opening parenthesis not followed by '?'. If PCRE_NO_AUTO_CAPTURE is set,
4869 all unadorned brackets become non-capturing and behave like (?:...)
4870 brackets. */
4871
4872 else if ((options & PCRE_NO_AUTO_CAPTURE) != 0)
4873 {
4874 bravalue = OP_BRA;
4875 }
4876
4877 /* Else we have a capturing group. */
4878
4879 else
4880 {
4881 NUMBERED_GROUP:
4882 cd->bracount += 1;
4883 PUT2(code, 1+LINK_SIZE, cd->bracount);
4884 skipbytes = 2;
4885 }
4886
4887 /* Process nested bracketed regex. Assertions may not be repeated, but
4888 other kinds can be. All their opcodes are >= OP_ONCE. We copy code into a
4889 non-register variable in order to be able to pass its address because some
4890 compilers complain otherwise. Pass in a new setting for the ims options if
4891 they have changed. */
4892
4893 previous = (bravalue >= OP_ONCE)? code : NULL;
4894 *code = bravalue;
4895 tempcode = code;
4896 tempreqvary = cd->req_varyopt; /* Save value before bracket */
4897 length_prevgroup = 0; /* Initialize for pre-compile phase */
4898
4899 if (!compile_regex(
4900 newoptions, /* The complete new option state */
4901 options & PCRE_IMS, /* The previous ims option state */
4902 &tempcode, /* Where to put code (updated) */
4903 &ptr, /* Input pointer (updated) */
4904 errorcodeptr, /* Where to put an error message */
4905 (bravalue == OP_ASSERTBACK ||
4906 bravalue == OP_ASSERTBACK_NOT), /* TRUE if back assert */
4907 reset_bracount, /* True if (?| group */
4908 skipbytes, /* Skip over bracket number */
4909 &subfirstbyte, /* For possible first char */
4910 &subreqbyte, /* For possible last char */
4911 bcptr, /* Current branch chain */
4912 cd, /* Tables block */
4913 (lengthptr == NULL)? NULL : /* Actual compile phase */
4914 &length_prevgroup /* Pre-compile phase */
4915 ))
4916 goto FAILED;
4917
4918 /* At the end of compiling, code is still pointing to the start of the
4919 group, while tempcode has been updated to point past the end of the group
4920 and any option resetting that may follow it. The pattern pointer (ptr)
4921 is on the bracket. */
4922
4923 /* If this is a conditional bracket, check that there are no more than
4924 two branches in the group, or just one if it's a DEFINE group. We do this
4925 in the real compile phase, not in the pre-pass, where the whole group may
4926 not be available. */
4927
4928 if (bravalue == OP_COND && lengthptr == NULL)
4929 {
4930 uschar *tc = code;
4931 int condcount = 0;
4932
4933 do {
4934 condcount++;
4935 tc += GET(tc,1);
4936 }
4937 while (*tc != OP_KET);
4938
4939 /* A DEFINE group is never obeyed inline (the "condition" is always
4940 false). It must have only one branch. */
4941
4942 if (code[LINK_SIZE+1] == OP_DEF)
4943 {
4944 if (condcount > 1)
4945 {
4946 *errorcodeptr = ERR54;
4947 goto FAILED;
4948 }
4949 bravalue = OP_DEF; /* Just a flag to suppress char handling below */
4950 }
4951
4952 /* A "normal" conditional group. If there is just one branch, we must not
4953 make use of its firstbyte or reqbyte, because this is equivalent to an
4954 empty second branch. */
4955
4956 else
4957 {
4958 if (condcount > 2)
4959 {
4960 *errorcodeptr = ERR27;
4961 goto FAILED;
4962 }
4963 if (condcount == 1) subfirstbyte = subreqbyte = REQ_NONE;
4964 }
4965 }
4966
4967 /* Error if hit end of pattern */
4968
4969 if (*ptr != ')')
4970 {
4971 *errorcodeptr = ERR14;
4972 goto FAILED;
4973 }
4974
4975 /* In the pre-compile phase, update the length by the length of the group,
4976 less the brackets at either end. Then reduce the compiled code to just a
4977 set of non-capturing brackets so that it doesn't use much memory if it is
4978 duplicated by a quantifier.*/
4979
4980 if (lengthptr != NULL)
4981 {
4982 if (OFLOW_MAX - *lengthptr < length_prevgroup - 2 - 2*LINK_SIZE)
4983 {
4984 *errorcodeptr = ERR20;
4985 goto FAILED;
4986 }
4987 *lengthptr += length_prevgroup - 2 - 2*LINK_SIZE;
4988 *code++ = OP_BRA;
4989 PUTINC(code, 0, 1 + LINK_SIZE);
4990 *code++ = OP_KET;
4991 PUTINC(code, 0, 1 + LINK_SIZE);
4992 break; /* No need to waste time with special character handling */
4993 }
4994
4995 /* Otherwise update the main code pointer to the end of the group. */
4996
4997 code = tempcode;
4998
4999 /* For a DEFINE group, required and first character settings are not
5000 relevant. */
5001
5002 if (bravalue == OP_DEF) break;
5003
5004 /* Handle updating of the required and first characters for other types of
5005 group. Update for normal brackets of all kinds, and conditions with two
5006 branches (see code above). If the bracket is followed by a quantifier with
5007 zero repeat, we have to back off. Hence the definition of zeroreqbyte and
5008 zerofirstbyte outside the main loop so that they can be accessed for the
5009 back off. */
5010
5011 zeroreqbyte = reqbyte;
5012 zerofirstbyte = firstbyte;
5013 groupsetfirstbyte = FALSE;
5014
5015 if (bravalue >= OP_ONCE)
5016 {
5017 /* If we have not yet set a firstbyte in this branch, take it from the
5018 subpattern, remembering that it was set here so that a repeat of more
5019 than one can replicate it as reqbyte if necessary. If the subpattern has
5020 no firstbyte, set "none" for the whole branch. In both cases, a zero
5021 repeat forces firstbyte to "none". */
5022
5023 if (firstbyte == REQ_UNSET)
5024 {
5025 if (subfirstbyte >= 0)
5026 {
5027 firstbyte = subfirstbyte;
5028 groupsetfirstbyte = TRUE;
5029 }
5030 else firstbyte = REQ_NONE;
5031 zerofirstbyte = REQ_NONE;
5032 }
5033
5034 /* If firstbyte was previously set, convert the subpattern's firstbyte
5035 into reqbyte if there wasn't one, using the vary flag that was in
5036 existence beforehand. */
5037
5038 else if (subfirstbyte >= 0 && subreqbyte < 0)
5039 subreqbyte = subfirstbyte | tempreqvary;
5040
5041 /* If the subpattern set a required byte (or set a first byte that isn't
5042 really the first byte - see above), set it. */
5043
5044 if (subreqbyte >= 0) reqbyte = subreqbyte;
5045 }
5046
5047 /* For a forward assertion, we take the reqbyte, if set. This can be
5048 helpful if the pattern that follows the assertion doesn't set a different
5049 char. For example, it's useful for /(?=abcde).+/. We can't set firstbyte
5050 for an assertion, however because it leads to incorrect effect for patterns
5051 such as /(?=a)a.+/ when the "real" "a" would then become a reqbyte instead
5052 of a firstbyte. This is overcome by a scan at the end if there's no
5053 firstbyte, looking for an asserted first char. */
5054
5055 else if (bravalue == OP_ASSERT && subreqbyte >= 0) reqbyte = subreqbyte;
5056 break; /* End of processing '(' */
5057
5058
5059 /* ===================================================================*/
5060 /* Handle metasequences introduced by \. For ones like \d, the ESC_ values
5061 are arranged to be the negation of the corresponding OP_values. For the
5062 back references, the values are ESC_REF plus the reference number. Only
5063 back references and those types that consume a character may be repeated.
5064 We can test for values between ESC_b and ESC_Z for the latter; this may
5065 have to change if any new ones are ever created. */
5066
5067 case '\\':
5068 tempptr = ptr;
5069 c = check_escape(&ptr, errorcodeptr, cd->bracount, options, FALSE);
5070 if (*errorcodeptr != 0) goto FAILED;
5071
5072 if (c < 0)
5073 {
5074 if (-c == ESC_Q) /* Handle start of quoted string */
5075 {
5076 if (ptr[1] == '\\' && ptr[2] == 'E') ptr += 2; /* avoid empty string */
5077 else inescq = TRUE;
5078 continue;
5079 }
5080
5081 if (-c == ESC_E) continue; /* Perl ignores an orphan \E */
5082
5083 /* For metasequences that actually match a character, we disable the
5084 setting of a first character if it hasn't already been set. */
5085
5086 if (firstbyte == REQ_UNSET && -c > ESC_b && -c < ESC_Z)
5087 firstbyte = REQ_NONE;
5088
5089 /* Set values to reset to if this is followed by a zero repeat. */
5090
5091 zerofirstbyte = firstbyte;
5092 zeroreqbyte = reqbyte;
5093
5094 /* \k<name> or \k'name' is a back reference by name (Perl syntax).
5095 We also support \k{name} (.NET syntax) */
5096
5097 if (-c == ESC_k && (ptr[1] == '<' || ptr[1] == '\'' || ptr[1] == '{'))
5098 {
5099 is_recurse = FALSE;
5100 terminator = (*(++ptr) == '<')? '>' : (*ptr == '\'')? '\'' : '}';
5101 goto NAMED_REF_OR_RECURSE;
5102 }
5103
5104 /* Back references are handled specially; must disable firstbyte if
5105 not set to cope with cases like (?=(\w+))\1: which would otherwise set
5106 ':' later. */
5107
5108 if (-c >= ESC_REF)
5109 {
5110 recno = -c - ESC_REF;
5111
5112 HANDLE_REFERENCE: /* Come here from named backref handling */
5113 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
5114 previous = code;
5115 *code++ = OP_REF;
5116 PUT2INC(code, 0, recno);
5117 cd->backref_map |= (recno < 32)? (1 << recno) : 1;
5118 if (recno > cd->top_backref) cd->top_backref = recno;
5119 }
5120
5121 /* So are Unicode property matches, if supported. */
5122
5123 #ifdef SUPPORT_UCP
5124 else if (-c == ESC_P || -c == ESC_p)
5125 {
5126 BOOL negated;
5127 int pdata;
5128 int ptype = get_ucp(&ptr, &negated, &pdata, errorcodeptr);
5129 if (ptype < 0) goto FAILED;
5130 previous = code;
5131 *code++ = ((-c == ESC_p) != negated)? OP_PROP : OP_NOTPROP;
5132 *code++ = ptype;
5133 *code++ = pdata;
5134 }
5135 #else
5136
5137 /* If Unicode properties are not supported, \X, \P, and \p are not
5138 allowed. */
5139
5140 else if (-c == ESC_X || -c == ESC_P || -c == ESC_p)
5141 {
5142 *errorcodeptr = ERR45;
5143 goto FAILED;
5144 }
5145 #endif
5146
5147 /* For the rest (including \X when Unicode properties are supported), we
5148 can obtain the OP value by negating the escape value. */
5149
5150 else
5151 {
5152 previous = (-c > ESC_b && -c < ESC_Z)? code : NULL;
5153 *code++ = -c;
5154 }
5155 continue;
5156 }
5157
5158 /* We have a data character whose value is in c. In UTF-8 mode it may have
5159 a value > 127. We set its representation in the length/buffer, and then
5160 handle it as a data character. */
5161
5162 #ifdef SUPPORT_UTF8
5163 if (utf8 && c > 127)
5164 mclength = _pcre_ord2utf8(c, mcbuffer);
5165 else
5166 #endif
5167
5168 {
5169 mcbuffer[0] = c;
5170 mclength = 1;
5171 }
5172 goto ONE_CHAR;
5173
5174
5175 /* ===================================================================*/
5176 /* Handle a literal character. It is guaranteed not to be whitespace or #
5177 when the extended flag is set. If we are in UTF-8 mode, it may be a
5178 multi-byte literal character. */
5179
5180 default:
5181 NORMAL_CHAR:
5182 mclength = 1;
5183 mcbuffer[0] = c;
5184
5185 #ifdef SUPPORT_UTF8
5186 if (utf8 && c >= 0xc0)
5187 {
5188 while ((ptr[1] & 0xc0) == 0x80)
5189 mcbuffer[mclength++] = *(++ptr);
5190 }
5191 #endif
5192
5193 /* At this point we have the character's bytes in mcbuffer, and the length
5194 in mclength. When not in UTF-8 mode, the length is always 1. */
5195
5196 ONE_CHAR:
5197 previous = code;
5198 *code++ = ((options & PCRE_CASELESS) != 0)? OP_CHARNC : OP_CHAR;
5199 for (c = 0; c < mclength; c++) *code++ = mcbuffer[c];
5200
5201 /* Remember if \r or \n were seen */
5202
5203 if (mcbuffer[0] == '\r' || mcbuffer[0] == '\n')
5204 cd->external_flags |= PCRE_HASCRORLF;
5205
5206 /* Set the first and required bytes appropriately. If no previous first
5207 byte, set it from this character, but revert to none on a zero repeat.
5208 Otherwise, leave the firstbyte value alone, and don't change it on a zero
5209 repeat. */
5210
5211 if (firstbyte == REQ_UNSET)
5212 {
5213 zerofirstbyte = REQ_NONE;
5214 zeroreqbyte = reqbyte;
5215
5216 /* If the character is more than one byte long, we can set firstbyte
5217 only if it is not to be matched caselessly. */
5218
5219 if (mclength == 1 || req_caseopt == 0)
5220 {
5221 firstbyte = mcbuffer[0] | req_caseopt;
5222 if (mclength != 1) reqbyte = code[-1] | cd->req_varyopt;
5223 }
5224 else firstbyte = reqbyte = REQ_NONE;
5225 }
5226
5227 /* firstbyte was previously set; we can set reqbyte only the length is
5228 1 or the matching is caseful. */
5229
5230 else
5231 {
5232 zerofirstbyte = firstbyte;
5233 zeroreqbyte = reqbyte;
5234 if (mclength == 1 || req_caseopt == 0)
5235 reqbyte = code[-1] | req_caseopt | cd->req_varyopt;
5236 }
5237
5238 break; /* End of literal character handling */
5239 }
5240 } /* end of big loop */
5241
5242
5243 /* Control never reaches here by falling through, only by a goto for all the
5244 error states. Pass back the position in the pattern so that it can be displayed
5245 to the user for diagnosing the error. */
5246
5247 FAILED:
5248 *ptrptr = ptr;
5249 return FALSE;
5250 }
5251
5252
5253
5254
5255 /*************************************************
5256 * Compile sequence of alternatives *
5257 *************************************************/
5258
5259 /* On entry, ptr is pointing past the bracket character, but on return it
5260 points to the closing bracket, or vertical bar, or end of string. The code
5261 variable is pointing at the byte into which the BRA operator has been stored.
5262 If the ims options are changed at the start (for a (?ims: group) or during any
5263 branch, we need to insert an OP_OPT item at the start of every following branch
5264 to ensure they get set correctly at run time, and also pass the new options
5265 into every subsequent branch compile.
5266
5267 This function is used during the pre-compile phase when we are trying to find
5268 out the amount of memory needed, as well as during the real compile phase. The
5269 value of lengthptr distinguishes the two phases.
5270
5271 Arguments:
5272 options option bits, including any changes for this subpattern
5273 oldims previous settings of ims option bits
5274 codeptr -> the address of the current code pointer
5275 ptrptr -> the address of the current pattern pointer
5276 errorcodeptr -> pointer to error code variable
5277 lookbehind TRUE if this is a lookbehind assertion
5278 reset_bracount TRUE to reset the count for each branch
5279 skipbytes skip this many bytes at start (for brackets and OP_COND)
5280 firstbyteptr place to put the first required character, or a negative number
5281 reqbyteptr place to put the last required character, or a negative number
5282 bcptr pointer to the chain of currently open branches
5283 cd points to the data block with tables pointers etc.
5284 lengthptr NULL during the real compile phase
5285 points to length accumulator during pre-compile phase
5286
5287 Returns: TRUE on success
5288 */
5289
5290 static BOOL
5291 compile_regex(int options, int oldims, uschar **codeptr, const uschar **ptrptr,
5292 int *errorcodeptr, BOOL lookbehind, BOOL reset_bracount, int skipbytes,
5293 int *firstbyteptr, int *reqbyteptr, branch_chain *bcptr, compile_data *cd,
5294 int *lengthptr)
5295 {
5296 const uschar *ptr = *ptrptr;
5297 uschar *code = *codeptr;
5298 uschar *last_branch = code;
5299 uschar *start_bracket = code;
5300 uschar *reverse_count = NULL;
5301 int firstbyte, reqbyte;
5302 int branchfirstbyte, branchreqbyte;
5303 int length;
5304 int orig_bracount;
5305 int max_bracount;
5306 branch_chain bc;
5307
5308 bc.outer = bcptr;
5309 bc.current = code;
5310
5311 firstbyte = reqbyte = REQ_UNSET;
5312
5313 /* Accumulate the length for use in the pre-compile phase. Start with the
5314 length of the BRA and KET and any extra bytes that are required at the
5315 beginning. We accumulate in a local variable to save frequent testing of
5316 lenthptr for NULL. We cannot do this by looking at the value of code at the
5317 start and end of each alternative, because compiled items are discarded during
5318 the pre-compile phase so that the work space is not exceeded. */
5319
5320 length = 2 + 2*LINK_SIZE + skipbytes;
5321
5322 /* WARNING: If the above line is changed for any reason, you must also change
5323 the code that abstracts option settings at the start of the pattern and makes
5324 them global. It tests the value of length for (2 + 2*LINK_SIZE) in the
5325 pre-compile phase to find out whether anything has yet been compiled or not. */
5326
5327 /* Offset is set zero to mark that this bracket is still open */
5328
5329 PUT(code, 1, 0);
5330 code += 1 + LINK_SIZE + skipbytes;
5331
5332 /* Loop for each alternative branch */
5333
5334 orig_bracount = max_bracount = cd->bracount;
5335 for (;;)
5336 {
5337 /* For a (?| group, reset the capturing bracket count so that each branch
5338 uses the same numbers. */
5339
5340 if (reset_bracount) cd->bracount = orig_bracount;
5341
5342 /* Handle a change of ims options at the start of the branch */
5343
5344 if ((options & PCRE_IMS) != oldims)
5345 {
5346 *code++ = OP_OPT;
5347 *code++ = options & PCRE_IMS;
5348 length += 2;
5349 }
5350
5351 /* Set up dummy OP_REVERSE if lookbehind assertion */
5352
5353 if (lookbehind)
5354 {
5355 *code++ = OP_REVERSE;
5356 reverse_count = code;
5357 PUTINC(code, 0, 0);
5358 length += 1 + LINK_SIZE;
5359 }
5360
5361 /* Now compile the branch; in the pre-compile phase its length gets added
5362 into the length. */
5363
5364 if (!compile_branch(&options, &code, &ptr, errorcodeptr, &branchfirstbyte,
5365 &branchreqbyte, &bc, cd, (lengthptr == NULL)? NULL : &length))
5366 {
5367 *ptrptr = ptr;
5368 return FALSE;
5369 }
5370
5371 /* Keep the highest bracket count in case (?| was used and some branch
5372 has fewer than the rest. */
5373
5374 if (cd->bracount > max_bracount) max_bracount = cd->bracount;
5375
5376 /* In the real compile phase, there is some post-processing to be done. */
5377
5378 if (lengthptr == NULL)
5379 {
5380 /* If this is the first branch, the firstbyte and reqbyte values for the
5381 branch become the values for the regex. */
5382
5383 if (*last_branch != OP_ALT)
5384 {
5385 firstbyte = branchfirstbyte;
5386 reqbyte = branchreqbyte;
5387 }
5388
5389 /* If this is not the first branch, the first char and reqbyte have to
5390 match the values from all the previous branches, except that if the
5391 previous value for reqbyte didn't have REQ_VARY set, it can still match,
5392 and we set REQ_VARY for the regex. */
5393
5394 else
5395 {
5396 /* If we previously had a firstbyte, but it doesn't match the new branch,
5397 we have to abandon the firstbyte for the regex, but if there was
5398 previously no reqbyte, it takes on the value of the old firstbyte. */
5399
5400 if (firstbyte >= 0 && firstbyte != branchfirstbyte)
5401 {
5402 if (reqbyte < 0) reqbyte = firstbyte;
5403 firstbyte = REQ_NONE;
5404 }
5405
5406 /* If we (now or from before) have no firstbyte, a firstbyte from the
5407 branch becomes a reqbyte if there isn't a branch reqbyte. */
5408
5409 if (firstbyte < 0 && branchfirstbyte >= 0 && branchreqbyte < 0)
5410 branchreqbyte = branchfirstbyte;
5411
5412 /* Now ensure that the reqbytes match */
5413
5414 if ((reqbyte & ~REQ_VARY) != (branchreqbyte & ~REQ_VARY))
5415 reqbyte = REQ_NONE;
5416 else reqbyte |= branchreqbyte; /* To "or" REQ_VARY */
5417 }
5418
5419 /* If lookbehind, check that this branch matches a fixed-length string, and
5420 put the length into the OP_REVERSE item. Temporarily mark the end of the
5421 branch with OP_END. */
5422
5423 if (lookbehind)
5424 {
5425 int fixed_length;
5426 *code = OP_END;
5427 fixed_length = find_fixedlength(last_branch, options);
5428 DPRINTF(("fixed length = %d\n", fixed_length));
5429 if (fixed_length < 0)
5430 {
5431 *errorcodeptr = (fixed_length == -2)? ERR36 : ERR25;
5432 *ptrptr = ptr;
5433 return FALSE;
5434 }
5435 PUT(reverse_count, 0, fixed_length);
5436 }
5437 }
5438
5439 /* Reached end of expression, either ')' or end of pattern. In the real
5440 compile phase, go back through the alternative branches and reverse the chain
5441 of offsets, with the field in the BRA item now becoming an offset to the
5442 first alternative. If there are no alternatives, it points to the end of the
5443 group. The length in the terminating ket is always the length of the whole
5444 bracketed item. If any of the ims options were changed inside the group,
5445 compile a resetting op-code following, except at the very end of the pattern.
5446 Return leaving the pointer at the terminating char. */
5447
5448 if (*ptr != '|')
5449 {
5450 if (lengthptr == NULL)
5451 {
5452 int branch_length = code - last_branch;
5453 do
5454 {
5455 int prev_length = GET(last_branch, 1);
5456 PUT(last_branch, 1, branch_length);
5457 branch_length = prev_length;
5458 last_branch -= branch_length;
5459 }
5460 while (branch_length > 0);
5461 }
5462
5463 /* Fill in the ket */
5464
5465 *code = OP_KET;
5466 PUT(code, 1, code - start_bracket);
5467 code += 1 + LINK_SIZE;
5468
5469 /* Resetting option if needed */
5470
5471 if ((options & PCRE_IMS) != oldims && *ptr == ')')
5472 {
5473 *code++ = OP_OPT;
5474 *code++ = oldims;
5475 length += 2;
5476 }
5477
5478 /* Retain the highest bracket number, in case resetting was used. */
5479
5480 cd->bracount = max_bracount;
5481
5482 /* Set values to pass back */
5483
5484 *codeptr = code;
5485 *ptrptr = ptr;
5486 *firstbyteptr = firstbyte;
5487 *reqbyteptr = reqbyte;
5488 if (lengthptr != NULL)
5489 {
5490 if (OFLOW_MAX - *lengthptr < length)
5491 {
5492 *errorcodeptr = ERR20;
5493 return FALSE;
5494 }
5495 *lengthptr += length;
5496 }
5497 return TRUE;
5498 }
5499
5500 /* Another branch follows. In the pre-compile phase, we can move the code
5501 pointer back to where it was for the start of the first branch. (That is,
5502 pretend that each branch is the only one.)
5503
5504 In the real compile phase, insert an ALT node. Its length field points back
5505 to the previous branch while the bracket remains open. At the end the chain
5506 is reversed. It's done like this so that the start of the bracket has a
5507 zero offset until it is closed, making it possible to detect recursion. */
5508
5509 if (lengthptr != NULL)
5510 {
5511 code = *codeptr + 1 + LINK_SIZE + skipbytes;
5512 length += 1 + LINK_SIZE;
5513 }
5514 else
5515 {
5516 *code = OP_ALT;
5517 PUT(code, 1, code - last_branch);
5518 bc.current = last_branch = code;
5519 code += 1 + LINK_SIZE;
5520 }
5521
5522 ptr++;
5523 }
5524 /* Control never reaches here */
5525 }
5526
5527
5528
5529
5530 /*************************************************
5531 * Check for anchored expression *
5532 *************************************************/
5533
5534 /* Try to find out if this is an anchored regular expression. Consider each
5535 alternative branch. If they all start with OP_SOD or OP_CIRC, or with a bracket
5536 all of whose alternatives start with OP_SOD or OP_CIRC (recurse ad lib), then
5537 it's anchored. However, if this is a multiline pattern, then only OP_SOD
5538 counts, since OP_CIRC can match in the middle.
5539
5540 We can also consider a regex to be anchored if OP_SOM starts all its branches.
5541 This is the code for \G, which means "match at start of match position, taking
5542 into account the match offset".
5543
5544 A branch is also implicitly anchored if it starts with .* and DOTALL is set,
5545 because that will try the rest of the pattern at all possible matching points,
5546 so there is no point trying again.... er ....
5547
5548 .... except when the .* appears inside capturing parentheses, and there is a
5549 subsequent back reference to those parentheses. We haven't enough information
5550 to catch that case precisely.
5551
5552 At first, the best we could do was to detect when .* was in capturing brackets
5553 and the highest back reference was greater than or equal to that level.
5554 However, by keeping a bitmap of the first 31 back references, we can catch some
5555 of the more common cases more precisely.
5556
5557 Arguments:
5558 code points to start of expression (the bracket)
5559 options points to the options setting
5560 bracket_map a bitmap of which brackets we are inside while testing; this
5561 handles up to substring 31; after that we just have to take
5562 the less precise approach
5563 backref_map the back reference bitmap
5564
5565 Returns: TRUE or FALSE
5566 */
5567
5568 static BOOL
5569 is_anchored(register const uschar *code, int *options, unsigned int bracket_map,
5570 unsigned int backref_map)
5571 {
5572 do {
5573 const uschar *scode = first_significant_code(code + _pcre_OP_lengths[*code],
5574 options, PCRE_MULTILINE, FALSE);
5575 register int op = *scode;
5576
5577 /* Non-capturing brackets */
5578
5579 if (op == OP_BRA)
5580 {
5581 if (!is_anchored(scode, options, bracket_map, backref_map)) return FALSE;
5582 }
5583
5584 /* Capturing brackets */
5585
5586 else if (op == OP_CBRA)
5587 {
5588 int n = GET2(scode, 1+LINK_SIZE);
5589 int new_map = bracket_map | ((n < 32)? (1 << n) : 1);
5590 if (!is_anchored(scode, options, new_map, backref_map)) return FALSE;
5591 }
5592
5593 /* Other brackets */
5594
5595 else if (op == OP_ASSERT || op == OP_ONCE || op == OP_COND)
5596 {
5597 if (!is_anchored(scode, options, bracket_map, backref_map)) return FALSE;
5598 }
5599
5600 /* .* is not anchored unless DOTALL is set and it isn't in brackets that
5601 are or may be referenced. */
5602
5603 else if ((op == OP_TYPESTAR || op == OP_TYPEMINSTAR ||
5604 op == OP_TYPEPOSSTAR) &&
5605 (*options & PCRE_DOTALL) != 0)
5606 {
5607 if (scode[1] != OP_ANY || (bracket_map & backref_map) != 0) return FALSE;
5608 }
5609
5610 /* Check for explicit anchoring */
5611
5612 else if (op != OP_SOD && op != OP_SOM &&
5613 ((*options & PCRE_MULTILINE) != 0 || op != OP_CIRC))
5614 return FALSE;
5615 code += GET(code, 1);
5616 }
5617 while (*code == OP_ALT); /* Loop for each alternative */
5618 return TRUE;
5619 }
5620
5621
5622
5623 /*************************************************
5624 * Check for starting with ^ or .* *
5625 *************************************************/
5626
5627 /* This is called to find out if every branch starts with ^ or .* so that
5628 "first char" processing can be done to speed things up in multiline
5629 matching and for non-DOTALL patterns that start with .* (which must start at
5630 the beginning or after \n). As in the case of is_anchored() (see above), we
5631 have to take account of back references to capturing brackets that contain .*
5632 because in that case we can't make the assumption.
5633
5634 Arguments:
5635 code points to start of expression (the bracket)
5636 bracket_map a bitmap of which brackets we are inside while testing; this
5637 handles up to substring 31; after that we just have to take
5638 the less precise approach
5639 backref_map the back reference bitmap
5640
5641 Returns: TRUE or FALSE
5642 */
5643
5644 static BOOL
5645 is_startline(const uschar *code, unsigned int bracket_map,
5646 unsigned int backref_map)
5647 {
5648 do {
5649 const uschar *scode = first_significant_code(code + _pcre_OP_lengths[*code],
5650 NULL, 0, FALSE);
5651 register int op = *scode;
5652
5653 /* Non-capturing brackets */
5654
5655 if (op == OP_BRA)
5656 {
5657 if (!is_startline(scode, bracket_map, backref_map)) return FALSE;
5658 }
5659
5660 /* Capturing brackets */
5661
5662 else if (op == OP_CBRA)
5663 {
5664 int n = GET2(scode, 1+LINK_SIZE);
5665 int new_map = bracket_map | ((n < 32)? (1 << n) : 1);
5666 if (!is_startline(scode, new_map, backref_map)) return FALSE;
5667 }
5668
5669 /* Other brackets */
5670
5671 else if (op == OP_ASSERT || op == OP_ONCE || op == OP_COND)
5672 { if (!is_startline(scode, bracket_map, backref_map)) return FALSE; }
5673
5674 /* .* means "start at start or after \n" if it isn't in brackets that
5675 may be referenced. */
5676
5677 else if (op == OP_TYPESTAR || op == OP_TYPEMINSTAR || op == OP_TYPEPOSSTAR)
5678 {
5679 if (scode[1] != OP_ANY || (bracket_map & backref_map) != 0) return FALSE;
5680 }
5681
5682 /* Check for explicit circumflex */
5683
5684 else if (op != OP_CIRC) return FALSE;
5685
5686 /* Move on to the next alternative */
5687
5688 code += GET(code, 1);
5689 }
5690 while (*code == OP_ALT); /* Loop for each alternative */
5691 return TRUE;
5692 }
5693
5694
5695
5696 /*************************************************
5697 * Check for asserted fixed first char *
5698 *************************************************/
5699
5700 /* During compilation, the "first char" settings from forward assertions are
5701 discarded, because they can cause conflicts with actual literals that follow.
5702 However, if we end up without a first char setting for an unanchored pattern,
5703 it is worth scanning the regex to see if there is an initial asserted first
5704 char. If all branches start with the same asserted char, or with a bracket all
5705 of whose alternatives start with the same asserted char (recurse ad lib), then
5706 we return that char, otherwise -1.
5707
5708 Arguments:
5709 code points to start of expression (the bracket)
5710 options pointer to the options (used to check casing changes)
5711 inassert TRUE if in an assertion
5712
5713 Returns: -1 or the fixed first char
5714 */
5715
5716 static int
5717 find_firstassertedchar(const uschar *code, int *options, BOOL inassert)
5718 {
5719 register int c = -1;
5720 do {
5721 int d;
5722 const uschar *scode =
5723 first_significant_code(code + 1+LINK_SIZE, options, PCRE_CASELESS, TRUE);
5724 register int op = *scode;
5725
5726 switch(op)
5727 {
5728 default:
5729 return -1;
5730
5731 case OP_BRA:
5732 case OP_CBRA:
5733 case OP_ASSERT:
5734 case OP_ONCE:
5735 case OP_COND:
5736 if ((d = find_firstassertedchar(scode, options, op == OP_ASSERT)) < 0)
5737 return -1;
5738 if (c < 0) c = d; else if (c != d) return -1;
5739 break;
5740
5741 case OP_EXACT: /* Fall through */
5742 scode += 2;
5743
5744 case OP_CHAR:
5745 case OP_CHARNC:
5746 case OP_PLUS:
5747 case OP_MINPLUS:
5748 case OP_POSPLUS:
5749 if (!inassert) return -1;
5750 if (c < 0)
5751 {
5752 c = scode[1];
5753 if ((*options & PCRE_CASELESS) != 0) c |= REQ_CASELESS;
5754 }
5755 else if (c != scode[1]) return -1;
5756 break;
5757 }
5758
5759 code += GET(code, 1);
5760 }
5761 while (*code == OP_ALT);
5762 return c;
5763 }
5764
5765
5766
5767 /*************************************************
5768 * Compile a Regular Expression *
5769 *************************************************/
5770
5771 /* This function takes a string and returns a pointer to a block of store
5772 holding a compiled version of the expression. The original API for this
5773 function had no error code return variable; it is retained for backwards
5774 compatibility. The new function is given a new name.
5775
5776 Arguments:
5777 pattern the regular expression
5778 options various option bits
5779 errorcodeptr pointer to error code variable (pcre_compile2() only)
5780 can be NULL if you don't want a code value
5781 errorptr pointer to pointer to error text
5782 erroroffset ptr offset in pattern where error was detected
5783 tables pointer to character tables or NULL
5784
5785 Returns: pointer to compiled data block, or NULL on error,
5786 with errorptr and erroroffset set
5787 */
5788
5789 PCRE_EXP_DEFN pcre *
5790 pcre_compile(const char *pattern, int options, const char **errorptr,
5791 int *erroroffset, const unsigned char *tables)
5792 {
5793 return pcre_compile2(pattern, options, NULL, errorptr, erroroffset, tables);
5794 }
5795
5796
5797 PCRE_EXP_DEFN pcre *
5798 pcre_compile2(const char *pattern, int options, int *errorcodeptr,
5799 const char **errorptr, int *erroroffset, const unsigned char *tables)
5800 {
5801 real_pcre *re;
5802 int length = 1; /* For final END opcode */
5803 int firstbyte, reqbyte, newline;
5804 int errorcode = 0;
5805 int skipatstart = 0;
5806 #ifdef SUPPORT_UTF8
5807 BOOL utf8;
5808 #endif
5809 size_t size;
5810 uschar *code;
5811 const uschar *codestart;
5812 const uschar *ptr;
5813 compile_data compile_block;
5814 compile_data *cd = &compile_block;
5815
5816 /* This space is used for "compiling" into during the first phase, when we are
5817 computing the amount of memory that is needed. Compiled items are thrown away
5818 as soon as possible, so that a fairly large buffer should be sufficient for
5819 this purpose. The same space is used in the second phase for remembering where
5820 to fill in forward references to subpatterns. */
5821
5822 uschar cworkspace[COMPILE_WORK_SIZE];
5823
5824 /* Set this early so that early errors get offset 0. */
5825
5826 ptr = (const uschar *)pattern;
5827
5828 /* We can't pass back an error message if errorptr is NULL; I guess the best we
5829 can do is just return NULL, but we can set a code value if there is a code
5830 pointer. */
5831
5832 if (errorptr == NULL)
5833 {
5834 if (errorcodeptr != NULL) *errorcodeptr = 99;
5835 return NULL;
5836 }
5837
5838 *errorptr = NULL;
5839 if (errorcodeptr != NULL) *errorcodeptr = ERR0;
5840
5841 /* However, we can give a message for this error */
5842
5843 if (erroroffset == NULL)
5844 {
5845 errorcode = ERR16;
5846 goto PCRE_EARLY_ERROR_RETURN2;
5847 }
5848
5849 *erroroffset = 0;
5850
5851 /* Can't support UTF8 unless PCRE has been compiled to include the code. */
5852
5853 #ifdef SUPPORT_UTF8
5854 utf8 = (options & PCRE_UTF8) != 0;
5855 if (utf8 && (options & PCRE_NO_UTF8_CHECK) == 0 &&
5856 (*erroroffset = _pcre_valid_utf8((uschar *)pattern, -1)) >= 0)
5857 {
5858 errorcode = ERR44;
5859 goto PCRE_EARLY_ERROR_RETURN2;
5860 }
5861 #else
5862 if ((options & PCRE_UTF8) != 0)
5863 {
5864 errorcode = ERR32;
5865 goto PCRE_EARLY_ERROR_RETURN;
5866 }
5867 #endif
5868
5869 if ((options & ~PUBLIC_OPTIONS) != 0)
5870 {
5871 errorcode = ERR17;
5872 goto PCRE_EARLY_ERROR_RETURN;
5873 }
5874
5875 /* Set up pointers to the individual character tables */
5876
5877 if (tables == NULL) tables = _pcre_default_tables;
5878 cd->lcc = tables + lcc_offset;
5879 cd->fcc = tables + fcc_offset;
5880 cd->cbits = tables + cbits_offset;
5881 cd->ctypes = tables + ctypes_offset;
5882
5883 /* Check for global one-time settings at the start of the pattern, and remember
5884 the offset for later. */
5885
5886 while (ptr[skipatstart] == '(' && ptr[skipatstart+1] == '*')
5887 {
5888 int newnl = 0;
5889 int newbsr = 0;
5890
5891 if (strncmp((char *)(ptr+skipatstart+2), "CR)", 3) == 0)
5892 { skipatstart += 5; newnl = PCRE_NEWLINE_CR; }
5893 else if (strncmp((char *)(ptr+skipatstart+2), "LF)", 3) == 0)
5894 { skipatstart += 5; newnl = PCRE_NEWLINE_LF; }
5895 else if (strncmp((char *)(ptr+skipatstart+2), "CRLF)", 5) == 0)
5896 { skipatstart += 7; newnl = PCRE_NEWLINE_CR + PCRE_NEWLINE_LF; }
5897 else if (strncmp((char *)(ptr+skipatstart+2), "ANY)", 4) == 0)
5898 { skipatstart += 6; newnl = PCRE_NEWLINE_ANY; }
5899 else if (strncmp((char *)(ptr+skipatstart+2), "ANYCRLF)", 8) == 0)
5900 { skipatstart += 10; newnl = PCRE_NEWLINE_ANYCRLF; }
5901
5902 else if (strncmp((char *)(ptr+skipatstart+2), "BSR_ANYCRLF)", 12) == 0)
5903 { skipatstart += 14; newbsr = PCRE_BSR_ANYCRLF; }
5904 else if (strncmp((char *)(ptr+skipatstart+2), "BSR_UNICODE)", 12) == 0)
5905 { skipatstart += 14; newbsr = PCRE_BSR_UNICODE; }
5906
5907 if (newnl != 0)
5908 options = (options & ~PCRE_NEWLINE_BITS) | newnl;
5909 else if (newbsr != 0)
5910 options = (options & ~(PCRE_BSR_ANYCRLF|PCRE_BSR_UNICODE)) | newbsr;
5911 else break;
5912 }
5913
5914 /* Check validity of \R options. */
5915
5916 switch (options & (PCRE_BSR_ANYCRLF|PCRE_BSR_UNICODE))
5917 {
5918 case 0:
5919 case PCRE_BSR_ANYCRLF:
5920 case PCRE_BSR_UNICODE:
5921 break;
5922 default: errorcode = ERR56; goto PCRE_EARLY_ERROR_RETURN;
5923 }
5924
5925 /* Handle different types of newline. The three bits give seven cases. The
5926 current code allows for fixed one- or two-byte sequences, plus "any" and
5927 "anycrlf". */
5928
5929 switch (options & PCRE_NEWLINE_BITS)
5930 {
5931 case 0: newline = NEWLINE; break; /* Build-time default */
5932 case PCRE_NEWLINE_CR: newline = '\r'; break;
5933 case PCRE_NEWLINE_LF: newline = '\n'; break;
5934 case PCRE_NEWLINE_CR+
5935 PCRE_NEWLINE_LF: newline = ('\r' << 8) | '\n'; break;
5936 case PCRE_NEWLINE_ANY: newline = -1; break;
5937 case PCRE_NEWLINE_ANYCRLF: newline = -2; break;
5938 default: errorcode = ERR56; goto PCRE_EARLY_ERROR_RETURN;
5939 }
5940
5941 if (newline == -2)
5942 {
5943 cd->nltype = NLTYPE_ANYCRLF;
5944 }
5945 else if (newline < 0)
5946 {
5947 cd->nltype = NLTYPE_ANY;
5948 }
5949 else
5950 {
5951 cd->nltype = NLTYPE_FIXED;
5952 if (newline > 255)
5953 {
5954 cd->nllen = 2;
5955 cd->nl[0] = (newline >> 8) & 255;
5956 cd->nl[1] = newline & 255;
5957 }
5958 else
5959 {
5960 cd->nllen = 1;
5961 cd->nl[0] = newline;
5962 }
5963 }
5964
5965 /* Maximum back reference and backref bitmap. The bitmap records up to 31 back
5966 references to help in deciding whether (.*) can be treated as anchored or not.
5967 */
5968
5969 cd->top_backref = 0;
5970 cd->backref_map = 0;
5971
5972 /* Reflect pattern for debugging output */
5973
5974 DPRINTF(("------------------------------------------------------------------\n"));
5975 DPRINTF(("%s\n", pattern));
5976
5977 /* Pretend to compile the pattern while actually just accumulating the length
5978 of memory required. This behaviour is triggered by passing a non-NULL final
5979 argument to compile_regex(). We pass a block of workspace (cworkspace) for it
5980 to compile parts of the pattern into; the compiled code is discarded when it is
5981 no longer needed, so hopefully this workspace will never overflow, though there
5982 is a test for its doing so. */
5983
5984 cd->bracount = cd->final_bracount = 0;
5985 cd->names_found = 0;
5986 cd->name_entry_size = 0;
5987 cd->name_table = NULL;
5988 cd->start_workspace = cworkspace;
5989 cd->start_code = cworkspace;
5990 cd->hwm = cworkspace;
5991 cd->start_pattern = (const uschar *)pattern;
5992 cd->end_pattern = (const uschar *)(pattern + strlen(pattern));
5993 cd->req_varyopt = 0;
5994 cd->external_options = options;
5995 cd->external_flags = 0;
5996
5997 /* Now do the pre-compile. On error, errorcode will be set non-zero, so we
5998 don't need to look at the result of the function here. The initial options have
5999 been put into the cd block so that they can be changed if an option setting is
6000 found within the regex right at the beginning. Bringing initial option settings
6001 outside can help speed up starting point checks. */
6002
6003 ptr += skipatstart;
6004 code = cworkspace;
6005 *code = OP_BRA;
6006 (void)compile_regex(cd->external_options, cd->external_options & PCRE_IMS,
6007 &code, &ptr, &errorcode, FALSE, FALSE, 0, &firstbyte, &reqbyte, NULL, cd,
6008 &length);
6009 if (errorcode != 0) goto PCRE_EARLY_ERROR_RETURN;
6010
6011 DPRINTF(("end pre-compile: length=%d workspace=%d\n", length,
6012 cd->hwm - cworkspace));
6013
6014 if (length > MAX_PATTERN_SIZE)
6015 {
6016 errorcode = ERR20;
6017 goto PCRE_EARLY_ERROR_RETURN;
6018 }
6019
6020 /* Compute the size of data block needed and get it, either from malloc or
6021 externally provided function. Integer overflow should no longer be possible
6022 because nowadays we limit the maximum value of cd->names_found and
6023 cd->name_entry_size. */
6024
6025 size = length + sizeof(real_pcre) + cd->names_found * (cd->name_entry_size + 3);
6026 re = (real_pcre *)(pcre_malloc)(size);
6027
6028 if (re == NULL)
6029 {
6030 errorcode = ERR21;
6031 goto PCRE_EARLY_ERROR_RETURN;
6032 }
6033
6034 /* Put in the magic number, and save the sizes, initial options, internal
6035 flags, and character table pointer. NULL is used for the default character
6036 tables. The nullpad field is at the end; it's there to help in the case when a
6037 regex compiled on a system with 4-byte pointers is run on another with 8-byte
6038 pointers. */
6039
6040 re->magic_number = MAGIC_NUMBER;
6041 re->size = size;
6042 re->options = cd->external_options;
6043 re->flags = cd->external_flags;
6044 re->dummy1 = 0;
6045 re->first_byte = 0;
6046 re->req_byte = 0;
6047 re->name_table_offset = sizeof(real_pcre);
6048 re->name_entry_size = cd->name_entry_size;
6049 re->name_count = cd->names_found;
6050 re->ref_count = 0;
6051 re->tables = (tables == _pcre_default_tables)? NULL : tables;
6052 re->nullpad = NULL;
6053
6054 /* The starting points of the name/number translation table and of the code are
6055 passed around in the compile data block. The start/end pattern and initial
6056 options are already set from the pre-compile phase, as is the name_entry_size
6057 field. Reset the bracket count and the names_found field. Also reset the hwm
6058 field; this time it's used for remembering forward references to subpatterns.
6059 */
6060
6061 cd->final_bracount = cd->bracount; /* Save for checking forward references */
6062 cd->bracount = 0;
6063 cd->names_found = 0;
6064 cd->name_table = (uschar *)re + re->name_table_offset;
6065 codestart = cd->name_table + re->name_entry_size * re->name_count;
6066 cd->start_code = codestart;
6067 cd->hwm = cworkspace;
6068 cd->req_varyopt = 0;
6069 cd->had_accept = FALSE;
6070
6071 /* Set up a starting, non-extracting bracket, then compile the expression. On
6072 error, errorcode will be set non-zero, so we don't need to look at the result
6073 of the function here. */
6074
6075 ptr = (const uschar *)pattern + skipatstart;
6076 code = (uschar *)codestart;
6077 *code = OP_BRA;
6078 (void)compile_regex(re->options, re->options & PCRE_IMS, &code, &ptr,
6079 &errorcode, FALSE, FALSE, 0, &firstbyte, &reqbyte, NULL, cd, NULL);
6080 re->top_bracket = cd->bracount;
6081 re->top_backref = cd->top_backref;
6082 re->flags = cd->external_flags;
6083
6084 if (cd->had_accept) reqbyte = -1; /* Must disable after (*ACCEPT) */
6085
6086 /* If not reached end of pattern on success, there's an excess bracket. */
6087
6088 if (errorcode == 0 && *ptr != 0) errorcode = ERR22;
6089
6090 /* Fill in the terminating state and check for disastrous overflow, but
6091 if debugging, leave the test till after things are printed out. */
6092
6093 *code++ = OP_END;
6094
6095 #ifndef DEBUG
6096 if (code - codestart > length) errorcode = ERR23;
6097 #endif
6098
6099 /* Fill in any forward references that are required. */
6100
6101 while (errorcode == 0 && cd->hwm > cworkspace)
6102 {
6103 int offset, recno;
6104 const uschar *groupptr;
6105 cd->hwm -= LINK_SIZE;
6106 offset = GET(cd->hwm, 0);
6107 recno = GET(codestart, offset);
6108 groupptr = find_bracket(codestart, (re->options & PCRE_UTF8) != 0, recno);
6109 if (groupptr == NULL) errorcode = ERR53;
6110 else PUT(((uschar *)codestart), offset, groupptr - codestart);
6111 }
6112
6113 /* Give an error if there's back reference to a non-existent capturing
6114 subpattern. */
6115
6116 if (errorcode == 0 && re->top_backref > re->top_bracket) errorcode = ERR15;
6117
6118 /* Failed to compile, or error while post-processing */
6119
6120 if (errorcode != 0)
6121 {
6122 (pcre_free)(re);
6123 PCRE_EARLY_ERROR_RETURN:
6124 *erroroffset = ptr - (const uschar *)pattern;
6125 PCRE_EARLY_ERROR_RETURN2:
6126 *errorptr = find_error_text(errorcode);
6127 if (errorcodeptr != NULL) *errorcodeptr = errorcode;
6128 return NULL;
6129 }
6130
6131 /* If the anchored option was not passed, set the flag if we can determine that
6132 the pattern is anchored by virtue of ^ characters or \A or anything else (such
6133 as starting with .* when DOTALL is set).
6134
6135 Otherwise, if we know what the first byte has to be, save it, because that
6136 speeds up unanchored matches no end. If not, see if we can set the
6137 PCRE_STARTLINE flag. This is helpful for multiline matches when all branches
6138 start with ^. and also when all branches start with .* for non-DOTALL matches.
6139 */
6140
6141 if ((re->options & PCRE_ANCHORED) == 0)
6142 {
6143 int temp_options = re->options; /* May get changed during these scans */
6144 if (is_anchored(codestart, &temp_options, 0, cd->backref_map))
6145 re->options |= PCRE_ANCHORED;
6146 else
6147 {
6148 if (firstbyte < 0)
6149 firstbyte = find_firstassertedchar(codestart, &temp_options, FALSE);
6150 if (firstbyte >= 0) /* Remove caseless flag for non-caseable chars */
6151 {
6152 int ch = firstbyte & 255;
6153 re->first_byte = ((firstbyte & REQ_CASELESS) != 0 &&
6154 cd->fcc[ch] == ch)? ch : firstbyte;
6155 re->flags |= PCRE_FIRSTSET;
6156 }
6157 else if (is_startline(codestart, 0, cd->backref_map))
6158 re->flags |= PCRE_STARTLINE;
6159 }
6160 }
6161
6162 /* For an anchored pattern, we use the "required byte" only if it follows a
6163 variable length item in the regex. Remove the caseless flag for non-caseable
6164 bytes. */
6165
6166 if (reqbyte >= 0 &&
6167 ((re->options & PCRE_ANCHORED) == 0 || (reqbyte & REQ_VARY) != 0))
6168 {
6169 int ch = reqbyte & 255;
6170 re->req_byte = ((reqbyte & REQ_CASELESS) != 0 &&
6171 cd->fcc[ch] == ch)? (reqbyte & ~REQ_CASELESS) : reqbyte;
6172 re->flags |= PCRE_REQCHSET;
6173 }
6174
6175 /* Print out the compiled data if debugging is enabled. This is never the
6176 case when building a production library. */
6177
6178 #ifdef DEBUG
6179
6180 printf("Length = %d top_bracket = %d top_backref = %d\n",
6181 length, re->top_bracket, re->top_backref);
6182
6183 printf("Options=%08x\n", re->options);
6184
6185 if ((re->flags & PCRE_FIRSTSET) != 0)
6186 {
6187 int ch = re->first_byte & 255;
6188 const char *caseless = ((re->first_byte & REQ_CASELESS) == 0)?
6189 "" : " (caseless)";
6190 if (isprint(ch)) printf("First char = %c%s\n", ch, caseless);
6191 else printf("First char = \\x%02x%s\n", ch, caseless);
6192 }
6193
6194 if ((re->flags & PCRE_REQCHSET) != 0)
6195 {
6196 int ch = re->req_byte & 255;
6197 const char *caseless = ((re->req_byte & REQ_CASELESS) == 0)?
6198 "" : " (caseless)";
6199 if (isprint(ch)) printf("Req char = %c%s\n", ch, caseless);
6200 else printf("Req char = \\x%02x%s\n", ch, caseless);
6201 }
6202
6203 pcre_printint(re, stdout, TRUE);
6204
6205 /* This check is done here in the debugging case so that the code that
6206 was compiled can be seen. */
6207
6208 if (code - codestart > length)
6209 {
6210 (pcre_free)(re);
6211 *errorptr = find_error_text(ERR23);
6212 *erroroffset = ptr - (uschar *)pattern;
6213 if (errorcodeptr != NULL) *errorcodeptr = ERR23;
6214 return NULL;
6215 }
6216 #endif /* DEBUG */
6217
6218 return (pcre *)re;
6219 }
6220
6221 /* End of pcre_compile.c */

Properties

Name Value
svn:eol-style native
svn:keywords "Author Date Id Revision Url"

webmaster@exim.org
ViewVC Help
Powered by ViewVC 1.1.12