/[pcre]/code/trunk/pcre_compile.c
ViewVC logotype

Contents of /code/trunk/pcre_compile.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 295 - (show annotations) (download)
Mon Dec 31 17:00:24 2007 UTC (6 years, 3 months ago) by ph10
File MIME type: text/plain
File size: 196656 byte(s)
Make POSIX character class parsing more like Perl.

1 /*************************************************
2 * Perl-Compatible Regular Expressions *
3 *************************************************/
4
5 /* PCRE is a library of functions to support regular expressions whose syntax
6 and semantics are as close as possible to those of the Perl 5 language.
7
8 Written by Philip Hazel
9 Copyright (c) 1997-2007 University of Cambridge
10
11 -----------------------------------------------------------------------------
12 Redistribution and use in source and binary forms, with or without
13 modification, are permitted provided that the following conditions are met:
14
15 * Redistributions of source code must retain the above copyright notice,
16 this list of conditions and the following disclaimer.
17
18 * Redistributions in binary form must reproduce the above copyright
19 notice, this list of conditions and the following disclaimer in the
20 documentation and/or other materials provided with the distribution.
21
22 * Neither the name of the University of Cambridge nor the names of its
23 contributors may be used to endorse or promote products derived from
24 this software without specific prior written permission.
25
26 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
27 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
30 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 POSSIBILITY OF SUCH DAMAGE.
37 -----------------------------------------------------------------------------
38 */
39
40
41 /* This module contains the external function pcre_compile(), along with
42 supporting internal functions that are not used by other modules. */
43
44
45 #ifdef HAVE_CONFIG_H
46 #include "config.h"
47 #endif
48
49 #define NLBLOCK cd /* Block containing newline information */
50 #define PSSTART start_pattern /* Field containing processed string start */
51 #define PSEND end_pattern /* Field containing processed string end */
52
53 #include "pcre_internal.h"
54
55
56 /* When DEBUG is defined, we need the pcre_printint() function, which is also
57 used by pcretest. DEBUG is not defined when building a production library. */
58
59 #ifdef DEBUG
60 #include "pcre_printint.src"
61 #endif
62
63
64 /* Macro for setting individual bits in class bitmaps. */
65
66 #define SETBIT(a,b) a[b/8] |= (1 << (b%8))
67
68 /* Maximum length value to check against when making sure that the integer that
69 holds the compiled pattern length does not overflow. We make it a bit less than
70 INT_MAX to allow for adding in group terminating bytes, so that we don't have
71 to check them every time. */
72
73 #define OFLOW_MAX (INT_MAX - 20)
74
75
76 /*************************************************
77 * Code parameters and static tables *
78 *************************************************/
79
80 /* This value specifies the size of stack workspace that is used during the
81 first pre-compile phase that determines how much memory is required. The regex
82 is partly compiled into this space, but the compiled parts are discarded as
83 soon as they can be, so that hopefully there will never be an overrun. The code
84 does, however, check for an overrun. The largest amount I've seen used is 218,
85 so this number is very generous.
86
87 The same workspace is used during the second, actual compile phase for
88 remembering forward references to groups so that they can be filled in at the
89 end. Each entry in this list occupies LINK_SIZE bytes, so even when LINK_SIZE
90 is 4 there is plenty of room. */
91
92 #define COMPILE_WORK_SIZE (4096)
93
94
95 /* Table for handling escaped characters in the range '0'-'z'. Positive returns
96 are simple data values; negative values are for special things like \d and so
97 on. Zero means further processing is needed (for things like \x), or the escape
98 is invalid. */
99
100 #ifndef EBCDIC /* This is the "normal" table for ASCII systems */
101 static const short int escapes[] = {
102 0, 0, 0, 0, 0, 0, 0, 0, /* 0 - 7 */
103 0, 0, ':', ';', '<', '=', '>', '?', /* 8 - ? */
104 '@', -ESC_A, -ESC_B, -ESC_C, -ESC_D, -ESC_E, 0, -ESC_G, /* @ - G */
105 -ESC_H, 0, 0, -ESC_K, 0, 0, 0, 0, /* H - O */
106 -ESC_P, -ESC_Q, -ESC_R, -ESC_S, 0, 0, -ESC_V, -ESC_W, /* P - W */
107 -ESC_X, 0, -ESC_Z, '[', '\\', ']', '^', '_', /* X - _ */
108 '`', 7, -ESC_b, 0, -ESC_d, ESC_e, ESC_f, 0, /* ` - g */
109 -ESC_h, 0, 0, -ESC_k, 0, 0, ESC_n, 0, /* h - o */
110 -ESC_p, 0, ESC_r, -ESC_s, ESC_tee, 0, -ESC_v, -ESC_w, /* p - w */
111 0, 0, -ESC_z /* x - z */
112 };
113
114 #else /* This is the "abnormal" table for EBCDIC systems */
115 static const short int escapes[] = {
116 /* 48 */ 0, 0, 0, '.', '<', '(', '+', '|',
117 /* 50 */ '&', 0, 0, 0, 0, 0, 0, 0,
118 /* 58 */ 0, 0, '!', '$', '*', ')', ';', '~',
119 /* 60 */ '-', '/', 0, 0, 0, 0, 0, 0,
120 /* 68 */ 0, 0, '|', ',', '%', '_', '>', '?',
121 /* 70 */ 0, 0, 0, 0, 0, 0, 0, 0,
122 /* 78 */ 0, '`', ':', '#', '@', '\'', '=', '"',
123 /* 80 */ 0, 7, -ESC_b, 0, -ESC_d, ESC_e, ESC_f, 0,
124 /* 88 */-ESC_h, 0, 0, '{', 0, 0, 0, 0,
125 /* 90 */ 0, 0, -ESC_k, 'l', 0, ESC_n, 0, -ESC_p,
126 /* 98 */ 0, ESC_r, 0, '}', 0, 0, 0, 0,
127 /* A0 */ 0, '~', -ESC_s, ESC_tee, 0,-ESC_v, -ESC_w, 0,
128 /* A8 */ 0,-ESC_z, 0, 0, 0, '[', 0, 0,
129 /* B0 */ 0, 0, 0, 0, 0, 0, 0, 0,
130 /* B8 */ 0, 0, 0, 0, 0, ']', '=', '-',
131 /* C0 */ '{',-ESC_A, -ESC_B, -ESC_C, -ESC_D,-ESC_E, 0, -ESC_G,
132 /* C8 */-ESC_H, 0, 0, 0, 0, 0, 0, 0,
133 /* D0 */ '}', 0, -ESC_K, 0, 0, 0, 0, -ESC_P,
134 /* D8 */-ESC_Q,-ESC_R, 0, 0, 0, 0, 0, 0,
135 /* E0 */ '\\', 0, -ESC_S, 0, 0,-ESC_V, -ESC_W, -ESC_X,
136 /* E8 */ 0,-ESC_Z, 0, 0, 0, 0, 0, 0,
137 /* F0 */ 0, 0, 0, 0, 0, 0, 0, 0,
138 /* F8 */ 0, 0, 0, 0, 0, 0, 0, 0
139 };
140 #endif
141
142
143 /* Table of special "verbs" like (*PRUNE). This is a short table, so it is
144 searched linearly. Put all the names into a single string, in order to reduce
145 the number of relocations when a shared library is dynamically linked. */
146
147 typedef struct verbitem {
148 int len;
149 int op;
150 } verbitem;
151
152 static const char verbnames[] =
153 "ACCEPT\0"
154 "COMMIT\0"
155 "F\0"
156 "FAIL\0"
157 "PRUNE\0"
158 "SKIP\0"
159 "THEN";
160
161 static verbitem verbs[] = {
162 { 6, OP_ACCEPT },
163 { 6, OP_COMMIT },
164 { 1, OP_FAIL },
165 { 4, OP_FAIL },
166 { 5, OP_PRUNE },
167 { 4, OP_SKIP },
168 { 4, OP_THEN }
169 };
170
171 static int verbcount = sizeof(verbs)/sizeof(verbitem);
172
173
174 /* Tables of names of POSIX character classes and their lengths. The names are
175 now all in a single string, to reduce the number of relocations when a shared
176 library is dynamically loaded. The list of lengths is terminated by a zero
177 length entry. The first three must be alpha, lower, upper, as this is assumed
178 for handling case independence. */
179
180 static const char posix_names[] =
181 "alpha\0" "lower\0" "upper\0" "alnum\0" "ascii\0" "blank\0"
182 "cntrl\0" "digit\0" "graph\0" "print\0" "punct\0" "space\0"
183 "word\0" "xdigit";
184
185 static const uschar posix_name_lengths[] = {
186 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 6, 0 };
187
188 /* Table of class bit maps for each POSIX class. Each class is formed from a
189 base map, with an optional addition or removal of another map. Then, for some
190 classes, there is some additional tweaking: for [:blank:] the vertical space
191 characters are removed, and for [:alpha:] and [:alnum:] the underscore
192 character is removed. The triples in the table consist of the base map offset,
193 second map offset or -1 if no second map, and a non-negative value for map
194 addition or a negative value for map subtraction (if there are two maps). The
195 absolute value of the third field has these meanings: 0 => no tweaking, 1 =>
196 remove vertical space characters, 2 => remove underscore. */
197
198 static const int posix_class_maps[] = {
199 cbit_word, cbit_digit, -2, /* alpha */
200 cbit_lower, -1, 0, /* lower */
201 cbit_upper, -1, 0, /* upper */
202 cbit_word, -1, 2, /* alnum - word without underscore */
203 cbit_print, cbit_cntrl, 0, /* ascii */
204 cbit_space, -1, 1, /* blank - a GNU extension */
205 cbit_cntrl, -1, 0, /* cntrl */
206 cbit_digit, -1, 0, /* digit */
207 cbit_graph, -1, 0, /* graph */
208 cbit_print, -1, 0, /* print */
209 cbit_punct, -1, 0, /* punct */
210 cbit_space, -1, 0, /* space */
211 cbit_word, -1, 0, /* word - a Perl extension */
212 cbit_xdigit,-1, 0 /* xdigit */
213 };
214
215
216 #define STRING(a) # a
217 #define XSTRING(s) STRING(s)
218
219 /* The texts of compile-time error messages. These are "char *" because they
220 are passed to the outside world. Do not ever re-use any error number, because
221 they are documented. Always add a new error instead. Messages marked DEAD below
222 are no longer used. This used to be a table of strings, but in order to reduce
223 the number of relocations needed when a shared library is loaded dynamically,
224 it is now one long string. We cannot use a table of offsets, because the
225 lengths of inserts such as XSTRING(MAX_NAME_SIZE) are not known. Instead, we
226 simply count through to the one we want - this isn't a performance issue
227 because these strings are used only when there is a compilation error. */
228
229 static const char error_texts[] =
230 "no error\0"
231 "\\ at end of pattern\0"
232 "\\c at end of pattern\0"
233 "unrecognized character follows \\\0"
234 "numbers out of order in {} quantifier\0"
235 /* 5 */
236 "number too big in {} quantifier\0"
237 "missing terminating ] for character class\0"
238 "invalid escape sequence in character class\0"
239 "range out of order in character class\0"
240 "nothing to repeat\0"
241 /* 10 */
242 "operand of unlimited repeat could match the empty string\0" /** DEAD **/
243 "internal error: unexpected repeat\0"
244 "unrecognized character after (? or (?-\0"
245 "POSIX named classes are supported only within a class\0"
246 "missing )\0"
247 /* 15 */
248 "reference to non-existent subpattern\0"
249 "erroffset passed as NULL\0"
250 "unknown option bit(s) set\0"
251 "missing ) after comment\0"
252 "parentheses nested too deeply\0" /** DEAD **/
253 /* 20 */
254 "regular expression is too large\0"
255 "failed to get memory\0"
256 "unmatched parentheses\0"
257 "internal error: code overflow\0"
258 "unrecognized character after (?<\0"
259 /* 25 */
260 "lookbehind assertion is not fixed length\0"
261 "malformed number or name after (?(\0"
262 "conditional group contains more than two branches\0"
263 "assertion expected after (?(\0"
264 "(?R or (?[+-]digits must be followed by )\0"
265 /* 30 */
266 "unknown POSIX class name\0"
267 "POSIX collating elements are not supported\0"
268 "this version of PCRE is not compiled with PCRE_UTF8 support\0"
269 "spare error\0" /** DEAD **/
270 "character value in \\x{...} sequence is too large\0"
271 /* 35 */
272 "invalid condition (?(0)\0"
273 "\\C not allowed in lookbehind assertion\0"
274 "PCRE does not support \\L, \\l, \\N, \\U, or \\u\0"
275 "number after (?C is > 255\0"
276 "closing ) for (?C expected\0"
277 /* 40 */
278 "recursive call could loop indefinitely\0"
279 "unrecognized character after (?P\0"
280 "syntax error in subpattern name (missing terminator)\0"
281 "two named subpatterns have the same name\0"
282 "invalid UTF-8 string\0"
283 /* 45 */
284 "support for \\P, \\p, and \\X has not been compiled\0"
285 "malformed \\P or \\p sequence\0"
286 "unknown property name after \\P or \\p\0"
287 "subpattern name is too long (maximum " XSTRING(MAX_NAME_SIZE) " characters)\0"
288 "too many named subpatterns (maximum " XSTRING(MAX_NAME_COUNT) ")\0"
289 /* 50 */
290 "repeated subpattern is too long\0" /** DEAD **/
291 "octal value is greater than \\377 (not in UTF-8 mode)\0"
292 "internal error: overran compiling workspace\0"
293 "internal error: previously-checked referenced subpattern not found\0"
294 "DEFINE group contains more than one branch\0"
295 /* 55 */
296 "repeating a DEFINE group is not allowed\0"
297 "inconsistent NEWLINE options\0"
298 "\\g is not followed by a braced name or an optionally braced non-zero number\0"
299 "(?+ or (?- or (?(+ or (?(- must be followed by a non-zero number\0"
300 "(*VERB) with an argument is not supported\0"
301 /* 60 */
302 "(*VERB) not recognized\0"
303 "number is too big\0"
304 "subpattern name expected\0"
305 "digit expected after (?+";
306
307
308 /* Table to identify digits and hex digits. This is used when compiling
309 patterns. Note that the tables in chartables are dependent on the locale, and
310 may mark arbitrary characters as digits - but the PCRE compiling code expects
311 to handle only 0-9, a-z, and A-Z as digits when compiling. That is why we have
312 a private table here. It costs 256 bytes, but it is a lot faster than doing
313 character value tests (at least in some simple cases I timed), and in some
314 applications one wants PCRE to compile efficiently as well as match
315 efficiently.
316
317 For convenience, we use the same bit definitions as in chartables:
318
319 0x04 decimal digit
320 0x08 hexadecimal digit
321
322 Then we can use ctype_digit and ctype_xdigit in the code. */
323
324 #ifndef EBCDIC /* This is the "normal" case, for ASCII systems */
325 static const unsigned char digitab[] =
326 {
327 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 0- 7 */
328 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 8- 15 */
329 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 16- 23 */
330 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */
331 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - ' */
332 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ( - / */
333 0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c, /* 0 - 7 */
334 0x0c,0x0c,0x00,0x00,0x00,0x00,0x00,0x00, /* 8 - ? */
335 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* @ - G */
336 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* H - O */
337 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* P - W */
338 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* X - _ */
339 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* ` - g */
340 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* h - o */
341 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* p - w */
342 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* x -127 */
343 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 128-135 */
344 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 136-143 */
345 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 144-151 */
346 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 152-159 */
347 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 160-167 */
348 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 168-175 */
349 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 176-183 */
350 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 184-191 */
351 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 192-199 */
352 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 200-207 */
353 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 208-215 */
354 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 216-223 */
355 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 224-231 */
356 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 232-239 */
357 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 240-247 */
358 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};/* 248-255 */
359
360 #else /* This is the "abnormal" case, for EBCDIC systems */
361 static const unsigned char digitab[] =
362 {
363 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 0- 7 0 */
364 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 8- 15 */
365 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 16- 23 10 */
366 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */
367 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 32- 39 20 */
368 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 40- 47 */
369 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 48- 55 30 */
370 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 56- 63 */
371 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - 71 40 */
372 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 72- | */
373 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* & - 87 50 */
374 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 88- 95 */
375 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - -103 60 */
376 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 104- ? */
377 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 112-119 70 */
378 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 120- " */
379 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* 128- g 80 */
380 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* h -143 */
381 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 144- p 90 */
382 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* q -159 */
383 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 160- x A0 */
384 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* y -175 */
385 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ^ -183 B0 */
386 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 184-191 */
387 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* { - G C0 */
388 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* H -207 */
389 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* } - P D0 */
390 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* Q -223 */
391 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* \ - X E0 */
392 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* Y -239 */
393 0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c, /* 0 - 7 F0 */
394 0x0c,0x0c,0x00,0x00,0x00,0x00,0x00,0x00};/* 8 -255 */
395
396 static const unsigned char ebcdic_chartab[] = { /* chartable partial dup */
397 0x80,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 0- 7 */
398 0x00,0x00,0x00,0x00,0x01,0x01,0x00,0x00, /* 8- 15 */
399 0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 16- 23 */
400 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */
401 0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 32- 39 */
402 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 40- 47 */
403 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 48- 55 */
404 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 56- 63 */
405 0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - 71 */
406 0x00,0x00,0x00,0x80,0x00,0x80,0x80,0x80, /* 72- | */
407 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* & - 87 */
408 0x00,0x00,0x00,0x80,0x80,0x80,0x00,0x00, /* 88- 95 */
409 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - -103 */
410 0x00,0x00,0x00,0x00,0x00,0x10,0x00,0x80, /* 104- ? */
411 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 112-119 */
412 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 120- " */
413 0x00,0x1a,0x1a,0x1a,0x1a,0x1a,0x1a,0x12, /* 128- g */
414 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* h -143 */
415 0x00,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* 144- p */
416 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* q -159 */
417 0x00,0x00,0x12,0x12,0x12,0x12,0x12,0x12, /* 160- x */
418 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* y -175 */
419 0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ^ -183 */
420 0x00,0x00,0x80,0x00,0x00,0x00,0x00,0x00, /* 184-191 */
421 0x80,0x1a,0x1a,0x1a,0x1a,0x1a,0x1a,0x12, /* { - G */
422 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* H -207 */
423 0x00,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* } - P */
424 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* Q -223 */
425 0x00,0x00,0x12,0x12,0x12,0x12,0x12,0x12, /* \ - X */
426 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* Y -239 */
427 0x1c,0x1c,0x1c,0x1c,0x1c,0x1c,0x1c,0x1c, /* 0 - 7 */
428 0x1c,0x1c,0x00,0x00,0x00,0x00,0x00,0x00};/* 8 -255 */
429 #endif
430
431
432 /* Definition to allow mutual recursion */
433
434 static BOOL
435 compile_regex(int, int, uschar **, const uschar **, int *, BOOL, BOOL, int,
436 int *, int *, branch_chain *, compile_data *, int *);
437
438
439
440 /*************************************************
441 * Find an error text *
442 *************************************************/
443
444 /* The error texts are now all in one long string, to save on relocations. As
445 some of the text is of unknown length, we can't use a table of offsets.
446 Instead, just count through the strings. This is not a performance issue
447 because it happens only when there has been a compilation error.
448
449 Argument: the error number
450 Returns: pointer to the error string
451 */
452
453 static const char *
454 find_error_text(int n)
455 {
456 const char *s = error_texts;
457 for (; n > 0; n--) while (*s++ != 0);
458 return s;
459 }
460
461
462 /*************************************************
463 * Handle escapes *
464 *************************************************/
465
466 /* This function is called when a \ has been encountered. It either returns a
467 positive value for a simple escape such as \n, or a negative value which
468 encodes one of the more complicated things such as \d. A backreference to group
469 n is returned as -(ESC_REF + n); ESC_REF is the highest ESC_xxx macro. When
470 UTF-8 is enabled, a positive value greater than 255 may be returned. On entry,
471 ptr is pointing at the \. On exit, it is on the final character of the escape
472 sequence.
473
474 Arguments:
475 ptrptr points to the pattern position pointer
476 errorcodeptr points to the errorcode variable
477 bracount number of previous extracting brackets
478 options the options bits
479 isclass TRUE if inside a character class
480
481 Returns: zero or positive => a data character
482 negative => a special escape sequence
483 on error, errorcodeptr is set
484 */
485
486 static int
487 check_escape(const uschar **ptrptr, int *errorcodeptr, int bracount,
488 int options, BOOL isclass)
489 {
490 BOOL utf8 = (options & PCRE_UTF8) != 0;
491 const uschar *ptr = *ptrptr + 1;
492 int c, i;
493
494 GETCHARINCTEST(c, ptr); /* Get character value, increment pointer */
495 ptr--; /* Set pointer back to the last byte */
496
497 /* If backslash is at the end of the pattern, it's an error. */
498
499 if (c == 0) *errorcodeptr = ERR1;
500
501 /* Non-alphanumerics are literals. For digits or letters, do an initial lookup
502 in a table. A non-zero result is something that can be returned immediately.
503 Otherwise further processing may be required. */
504
505 #ifndef EBCDIC /* ASCII coding */
506 else if (c < '0' || c > 'z') {} /* Not alphanumeric */
507 else if ((i = escapes[c - '0']) != 0) c = i;
508
509 #else /* EBCDIC coding */
510 else if (c < 'a' || (ebcdic_chartab[c] & 0x0E) == 0) {} /* Not alphanumeric */
511 else if ((i = escapes[c - 0x48]) != 0) c = i;
512 #endif
513
514 /* Escapes that need further processing, or are illegal. */
515
516 else
517 {
518 const uschar *oldptr;
519 BOOL braced, negated;
520
521 switch (c)
522 {
523 /* A number of Perl escapes are not handled by PCRE. We give an explicit
524 error. */
525
526 case 'l':
527 case 'L':
528 case 'N':
529 case 'u':
530 case 'U':
531 *errorcodeptr = ERR37;
532 break;
533
534 /* \g must be followed by a number, either plain or braced. If positive, it
535 is an absolute backreference. If negative, it is a relative backreference.
536 This is a Perl 5.10 feature. Perl 5.10 also supports \g{name} as a
537 reference to a named group. This is part of Perl's movement towards a
538 unified syntax for back references. As this is synonymous with \k{name}, we
539 fudge it up by pretending it really was \k. */
540
541 case 'g':
542 if (ptr[1] == '{')
543 {
544 const uschar *p;
545 for (p = ptr+2; *p != 0 && *p != '}'; p++)
546 if (*p != '-' && (digitab[*p] & ctype_digit) == 0) break;
547 if (*p != 0 && *p != '}')
548 {
549 c = -ESC_k;
550 break;
551 }
552 braced = TRUE;
553 ptr++;
554 }
555 else braced = FALSE;
556
557 if (ptr[1] == '-')
558 {
559 negated = TRUE;
560 ptr++;
561 }
562 else negated = FALSE;
563
564 c = 0;
565 while ((digitab[ptr[1]] & ctype_digit) != 0)
566 c = c * 10 + *(++ptr) - '0';
567
568 if (c < 0)
569 {
570 *errorcodeptr = ERR61;
571 break;
572 }
573
574 if (c == 0 || (braced && *(++ptr) != '}'))
575 {
576 *errorcodeptr = ERR57;
577 break;
578 }
579
580 if (negated)
581 {
582 if (c > bracount)
583 {
584 *errorcodeptr = ERR15;
585 break;
586 }
587 c = bracount - (c - 1);
588 }
589
590 c = -(ESC_REF + c);
591 break;
592
593 /* The handling of escape sequences consisting of a string of digits
594 starting with one that is not zero is not straightforward. By experiment,
595 the way Perl works seems to be as follows:
596
597 Outside a character class, the digits are read as a decimal number. If the
598 number is less than 10, or if there are that many previous extracting
599 left brackets, then it is a back reference. Otherwise, up to three octal
600 digits are read to form an escaped byte. Thus \123 is likely to be octal
601 123 (cf \0123, which is octal 012 followed by the literal 3). If the octal
602 value is greater than 377, the least significant 8 bits are taken. Inside a
603 character class, \ followed by a digit is always an octal number. */
604
605 case '1': case '2': case '3': case '4': case '5':
606 case '6': case '7': case '8': case '9':
607
608 if (!isclass)
609 {
610 oldptr = ptr;
611 c -= '0';
612 while ((digitab[ptr[1]] & ctype_digit) != 0)
613 c = c * 10 + *(++ptr) - '0';
614 if (c < 0)
615 {
616 *errorcodeptr = ERR61;
617 break;
618 }
619 if (c < 10 || c <= bracount)
620 {
621 c = -(ESC_REF + c);
622 break;
623 }
624 ptr = oldptr; /* Put the pointer back and fall through */
625 }
626
627 /* Handle an octal number following \. If the first digit is 8 or 9, Perl
628 generates a binary zero byte and treats the digit as a following literal.
629 Thus we have to pull back the pointer by one. */
630
631 if ((c = *ptr) >= '8')
632 {
633 ptr--;
634 c = 0;
635 break;
636 }
637
638 /* \0 always starts an octal number, but we may drop through to here with a
639 larger first octal digit. The original code used just to take the least
640 significant 8 bits of octal numbers (I think this is what early Perls used
641 to do). Nowadays we allow for larger numbers in UTF-8 mode, but no more
642 than 3 octal digits. */
643
644 case '0':
645 c -= '0';
646 while(i++ < 2 && ptr[1] >= '0' && ptr[1] <= '7')
647 c = c * 8 + *(++ptr) - '0';
648 if (!utf8 && c > 255) *errorcodeptr = ERR51;
649 break;
650
651 /* \x is complicated. \x{ddd} is a character number which can be greater
652 than 0xff in utf8 mode, but only if the ddd are hex digits. If not, { is
653 treated as a data character. */
654
655 case 'x':
656 if (ptr[1] == '{')
657 {
658 const uschar *pt = ptr + 2;
659 int count = 0;
660
661 c = 0;
662 while ((digitab[*pt] & ctype_xdigit) != 0)
663 {
664 register int cc = *pt++;
665 if (c == 0 && cc == '0') continue; /* Leading zeroes */
666 count++;
667
668 #ifndef EBCDIC /* ASCII coding */
669 if (cc >= 'a') cc -= 32; /* Convert to upper case */
670 c = (c << 4) + cc - ((cc < 'A')? '0' : ('A' - 10));
671 #else /* EBCDIC coding */
672 if (cc >= 'a' && cc <= 'z') cc += 64; /* Convert to upper case */
673 c = (c << 4) + cc - ((cc >= '0')? '0' : ('A' - 10));
674 #endif
675 }
676
677 if (*pt == '}')
678 {
679 if (c < 0 || count > (utf8? 8 : 2)) *errorcodeptr = ERR34;
680 ptr = pt;
681 break;
682 }
683
684 /* If the sequence of hex digits does not end with '}', then we don't
685 recognize this construct; fall through to the normal \x handling. */
686 }
687
688 /* Read just a single-byte hex-defined char */
689
690 c = 0;
691 while (i++ < 2 && (digitab[ptr[1]] & ctype_xdigit) != 0)
692 {
693 int cc; /* Some compilers don't like ++ */
694 cc = *(++ptr); /* in initializers */
695 #ifndef EBCDIC /* ASCII coding */
696 if (cc >= 'a') cc -= 32; /* Convert to upper case */
697 c = c * 16 + cc - ((cc < 'A')? '0' : ('A' - 10));
698 #else /* EBCDIC coding */
699 if (cc <= 'z') cc += 64; /* Convert to upper case */
700 c = c * 16 + cc - ((cc >= '0')? '0' : ('A' - 10));
701 #endif
702 }
703 break;
704
705 /* For \c, a following letter is upper-cased; then the 0x40 bit is flipped.
706 This coding is ASCII-specific, but then the whole concept of \cx is
707 ASCII-specific. (However, an EBCDIC equivalent has now been added.) */
708
709 case 'c':
710 c = *(++ptr);
711 if (c == 0)
712 {
713 *errorcodeptr = ERR2;
714 break;
715 }
716
717 #ifndef EBCDIC /* ASCII coding */
718 if (c >= 'a' && c <= 'z') c -= 32;
719 c ^= 0x40;
720 #else /* EBCDIC coding */
721 if (c >= 'a' && c <= 'z') c += 64;
722 c ^= 0xC0;
723 #endif
724 break;
725
726 /* PCRE_EXTRA enables extensions to Perl in the matter of escapes. Any
727 other alphanumeric following \ is an error if PCRE_EXTRA was set;
728 otherwise, for Perl compatibility, it is a literal. This code looks a bit
729 odd, but there used to be some cases other than the default, and there may
730 be again in future, so I haven't "optimized" it. */
731
732 default:
733 if ((options & PCRE_EXTRA) != 0) switch(c)
734 {
735 default:
736 *errorcodeptr = ERR3;
737 break;
738 }
739 break;
740 }
741 }
742
743 *ptrptr = ptr;
744 return c;
745 }
746
747
748
749 #ifdef SUPPORT_UCP
750 /*************************************************
751 * Handle \P and \p *
752 *************************************************/
753
754 /* This function is called after \P or \p has been encountered, provided that
755 PCRE is compiled with support for Unicode properties. On entry, ptrptr is
756 pointing at the P or p. On exit, it is pointing at the final character of the
757 escape sequence.
758
759 Argument:
760 ptrptr points to the pattern position pointer
761 negptr points to a boolean that is set TRUE for negation else FALSE
762 dptr points to an int that is set to the detailed property value
763 errorcodeptr points to the error code variable
764
765 Returns: type value from ucp_type_table, or -1 for an invalid type
766 */
767
768 static int
769 get_ucp(const uschar **ptrptr, BOOL *negptr, int *dptr, int *errorcodeptr)
770 {
771 int c, i, bot, top;
772 const uschar *ptr = *ptrptr;
773 char name[32];
774
775 c = *(++ptr);
776 if (c == 0) goto ERROR_RETURN;
777
778 *negptr = FALSE;
779
780 /* \P or \p can be followed by a name in {}, optionally preceded by ^ for
781 negation. */
782
783 if (c == '{')
784 {
785 if (ptr[1] == '^')
786 {
787 *negptr = TRUE;
788 ptr++;
789 }
790 for (i = 0; i < (int)sizeof(name) - 1; i++)
791 {
792 c = *(++ptr);
793 if (c == 0) goto ERROR_RETURN;
794 if (c == '}') break;
795 name[i] = c;
796 }
797 if (c !='}') goto ERROR_RETURN;
798 name[i] = 0;
799 }
800
801 /* Otherwise there is just one following character */
802
803 else
804 {
805 name[0] = c;
806 name[1] = 0;
807 }
808
809 *ptrptr = ptr;
810
811 /* Search for a recognized property name using binary chop */
812
813 bot = 0;
814 top = _pcre_utt_size;
815
816 while (bot < top)
817 {
818 i = (bot + top) >> 1;
819 c = strcmp(name, _pcre_utt_names + _pcre_utt[i].name_offset);
820 if (c == 0)
821 {
822 *dptr = _pcre_utt[i].value;
823 return _pcre_utt[i].type;
824 }
825 if (c > 0) bot = i + 1; else top = i;
826 }
827
828 *errorcodeptr = ERR47;
829 *ptrptr = ptr;
830 return -1;
831
832 ERROR_RETURN:
833 *errorcodeptr = ERR46;
834 *ptrptr = ptr;
835 return -1;
836 }
837 #endif
838
839
840
841
842 /*************************************************
843 * Check for counted repeat *
844 *************************************************/
845
846 /* This function is called when a '{' is encountered in a place where it might
847 start a quantifier. It looks ahead to see if it really is a quantifier or not.
848 It is only a quantifier if it is one of the forms {ddd} {ddd,} or {ddd,ddd}
849 where the ddds are digits.
850
851 Arguments:
852 p pointer to the first char after '{'
853
854 Returns: TRUE or FALSE
855 */
856
857 static BOOL
858 is_counted_repeat(const uschar *p)
859 {
860 if ((digitab[*p++] & ctype_digit) == 0) return FALSE;
861 while ((digitab[*p] & ctype_digit) != 0) p++;
862 if (*p == '}') return TRUE;
863
864 if (*p++ != ',') return FALSE;
865 if (*p == '}') return TRUE;
866
867 if ((digitab[*p++] & ctype_digit) == 0) return FALSE;
868 while ((digitab[*p] & ctype_digit) != 0) p++;
869
870 return (*p == '}');
871 }
872
873
874
875 /*************************************************
876 * Read repeat counts *
877 *************************************************/
878
879 /* Read an item of the form {n,m} and return the values. This is called only
880 after is_counted_repeat() has confirmed that a repeat-count quantifier exists,
881 so the syntax is guaranteed to be correct, but we need to check the values.
882
883 Arguments:
884 p pointer to first char after '{'
885 minp pointer to int for min
886 maxp pointer to int for max
887 returned as -1 if no max
888 errorcodeptr points to error code variable
889
890 Returns: pointer to '}' on success;
891 current ptr on error, with errorcodeptr set non-zero
892 */
893
894 static const uschar *
895 read_repeat_counts(const uschar *p, int *minp, int *maxp, int *errorcodeptr)
896 {
897 int min = 0;
898 int max = -1;
899
900 /* Read the minimum value and do a paranoid check: a negative value indicates
901 an integer overflow. */
902
903 while ((digitab[*p] & ctype_digit) != 0) min = min * 10 + *p++ - '0';
904 if (min < 0 || min > 65535)
905 {
906 *errorcodeptr = ERR5;
907 return p;
908 }
909
910 /* Read the maximum value if there is one, and again do a paranoid on its size.
911 Also, max must not be less than min. */
912
913 if (*p == '}') max = min; else
914 {
915 if (*(++p) != '}')
916 {
917 max = 0;
918 while((digitab[*p] & ctype_digit) != 0) max = max * 10 + *p++ - '0';
919 if (max < 0 || max > 65535)
920 {
921 *errorcodeptr = ERR5;
922 return p;
923 }
924 if (max < min)
925 {
926 *errorcodeptr = ERR4;
927 return p;
928 }
929 }
930 }
931
932 /* Fill in the required variables, and pass back the pointer to the terminating
933 '}'. */
934
935 *minp = min;
936 *maxp = max;
937 return p;
938 }
939
940
941
942 /*************************************************
943 * Find forward referenced subpattern *
944 *************************************************/
945
946 /* This function scans along a pattern's text looking for capturing
947 subpatterns, and counting them. If it finds a named pattern that matches the
948 name it is given, it returns its number. Alternatively, if the name is NULL, it
949 returns when it reaches a given numbered subpattern. This is used for forward
950 references to subpatterns. We know that if (?P< is encountered, the name will
951 be terminated by '>' because that is checked in the first pass.
952
953 Arguments:
954 ptr current position in the pattern
955 count current count of capturing parens so far encountered
956 name name to seek, or NULL if seeking a numbered subpattern
957 lorn name length, or subpattern number if name is NULL
958 xmode TRUE if we are in /x mode
959
960 Returns: the number of the named subpattern, or -1 if not found
961 */
962
963 static int
964 find_parens(const uschar *ptr, int count, const uschar *name, int lorn,
965 BOOL xmode)
966 {
967 const uschar *thisname;
968
969 for (; *ptr != 0; ptr++)
970 {
971 int term;
972
973 /* Skip over backslashed characters and also entire \Q...\E */
974
975 if (*ptr == '\\')
976 {
977 if (*(++ptr) == 0) return -1;
978 if (*ptr == 'Q') for (;;)
979 {
980 while (*(++ptr) != 0 && *ptr != '\\');
981 if (*ptr == 0) return -1;
982 if (*(++ptr) == 'E') break;
983 }
984 continue;
985 }
986
987 /* Skip over character classes */
988
989 if (*ptr == '[')
990 {
991 while (*(++ptr) != ']')
992 {
993 if (*ptr == 0) return -1;
994 if (*ptr == '\\')
995 {
996 if (*(++ptr) == 0) return -1;
997 if (*ptr == 'Q') for (;;)
998 {
999 while (*(++ptr) != 0 && *ptr != '\\');
1000 if (*ptr == 0) return -1;
1001 if (*(++ptr) == 'E') break;
1002 }
1003 continue;
1004 }
1005 }
1006 continue;
1007 }
1008
1009 /* Skip comments in /x mode */
1010
1011 if (xmode && *ptr == '#')
1012 {
1013 while (*(++ptr) != 0 && *ptr != '\n');
1014 if (*ptr == 0) return -1;
1015 continue;
1016 }
1017
1018 /* An opening parens must now be a real metacharacter */
1019
1020 if (*ptr != '(') continue;
1021 if (ptr[1] != '?' && ptr[1] != '*')
1022 {
1023 count++;
1024 if (name == NULL && count == lorn) return count;
1025 continue;
1026 }
1027
1028 ptr += 2;
1029 if (*ptr == 'P') ptr++; /* Allow optional P */
1030
1031 /* We have to disambiguate (?<! and (?<= from (?<name> */
1032
1033 if ((*ptr != '<' || ptr[1] == '!' || ptr[1] == '=') &&
1034 *ptr != '\'')
1035 continue;
1036
1037 count++;
1038
1039 if (name == NULL && count == lorn) return count;
1040 term = *ptr++;
1041 if (term == '<') term = '>';
1042 thisname = ptr;
1043 while (*ptr != term) ptr++;
1044 if (name != NULL && lorn == ptr - thisname &&
1045 strncmp((const char *)name, (const char *)thisname, lorn) == 0)
1046 return count;
1047 }
1048
1049 return -1;
1050 }
1051
1052
1053
1054 /*************************************************
1055 * Find first significant op code *
1056 *************************************************/
1057
1058 /* This is called by several functions that scan a compiled expression looking
1059 for a fixed first character, or an anchoring op code etc. It skips over things
1060 that do not influence this. For some calls, a change of option is important.
1061 For some calls, it makes sense to skip negative forward and all backward
1062 assertions, and also the \b assertion; for others it does not.
1063
1064 Arguments:
1065 code pointer to the start of the group
1066 options pointer to external options
1067 optbit the option bit whose changing is significant, or
1068 zero if none are
1069 skipassert TRUE if certain assertions are to be skipped
1070
1071 Returns: pointer to the first significant opcode
1072 */
1073
1074 static const uschar*
1075 first_significant_code(const uschar *code, int *options, int optbit,
1076 BOOL skipassert)
1077 {
1078 for (;;)
1079 {
1080 switch ((int)*code)
1081 {
1082 case OP_OPT:
1083 if (optbit > 0 && ((int)code[1] & optbit) != (*options & optbit))
1084 *options = (int)code[1];
1085 code += 2;
1086 break;
1087
1088 case OP_ASSERT_NOT:
1089 case OP_ASSERTBACK:
1090 case OP_ASSERTBACK_NOT:
1091 if (!skipassert) return code;
1092 do code += GET(code, 1); while (*code == OP_ALT);
1093 code += _pcre_OP_lengths[*code];
1094 break;
1095
1096 case OP_WORD_BOUNDARY:
1097 case OP_NOT_WORD_BOUNDARY:
1098 if (!skipassert) return code;
1099 /* Fall through */
1100
1101 case OP_CALLOUT:
1102 case OP_CREF:
1103 case OP_RREF:
1104 case OP_DEF:
1105 code += _pcre_OP_lengths[*code];
1106 break;
1107
1108 default:
1109 return code;
1110 }
1111 }
1112 /* Control never reaches here */
1113 }
1114
1115
1116
1117
1118 /*************************************************
1119 * Find the fixed length of a pattern *
1120 *************************************************/
1121
1122 /* Scan a pattern and compute the fixed length of subject that will match it,
1123 if the length is fixed. This is needed for dealing with backward assertions.
1124 In UTF8 mode, the result is in characters rather than bytes.
1125
1126 Arguments:
1127 code points to the start of the pattern (the bracket)
1128 options the compiling options
1129
1130 Returns: the fixed length, or -1 if there is no fixed length,
1131 or -2 if \C was encountered
1132 */
1133
1134 static int
1135 find_fixedlength(uschar *code, int options)
1136 {
1137 int length = -1;
1138
1139 register int branchlength = 0;
1140 register uschar *cc = code + 1 + LINK_SIZE;
1141
1142 /* Scan along the opcodes for this branch. If we get to the end of the
1143 branch, check the length against that of the other branches. */
1144
1145 for (;;)
1146 {
1147 int d;
1148 register int op = *cc;
1149 switch (op)
1150 {
1151 case OP_CBRA:
1152 case OP_BRA:
1153 case OP_ONCE:
1154 case OP_COND:
1155 d = find_fixedlength(cc + ((op == OP_CBRA)? 2:0), options);
1156 if (d < 0) return d;
1157 branchlength += d;
1158 do cc += GET(cc, 1); while (*cc == OP_ALT);
1159 cc += 1 + LINK_SIZE;
1160 break;
1161
1162 /* Reached end of a branch; if it's a ket it is the end of a nested
1163 call. If it's ALT it is an alternation in a nested call. If it is
1164 END it's the end of the outer call. All can be handled by the same code. */
1165
1166 case OP_ALT:
1167 case OP_KET:
1168 case OP_KETRMAX:
1169 case OP_KETRMIN:
1170 case OP_END:
1171 if (length < 0) length = branchlength;
1172 else if (length != branchlength) return -1;
1173 if (*cc != OP_ALT) return length;
1174 cc += 1 + LINK_SIZE;
1175 branchlength = 0;
1176 break;
1177
1178 /* Skip over assertive subpatterns */
1179
1180 case OP_ASSERT:
1181 case OP_ASSERT_NOT:
1182 case OP_ASSERTBACK:
1183 case OP_ASSERTBACK_NOT:
1184 do cc += GET(cc, 1); while (*cc == OP_ALT);
1185 /* Fall through */
1186
1187 /* Skip over things that don't match chars */
1188
1189 case OP_REVERSE:
1190 case OP_CREF:
1191 case OP_RREF:
1192 case OP_DEF:
1193 case OP_OPT:
1194 case OP_CALLOUT:
1195 case OP_SOD:
1196 case OP_SOM:
1197 case OP_EOD:
1198 case OP_EODN:
1199 case OP_CIRC:
1200 case OP_DOLL:
1201 case OP_NOT_WORD_BOUNDARY:
1202 case OP_WORD_BOUNDARY:
1203 cc += _pcre_OP_lengths[*cc];
1204 break;
1205
1206 /* Handle literal characters */
1207
1208 case OP_CHAR:
1209 case OP_CHARNC:
1210 case OP_NOT:
1211 branchlength++;
1212 cc += 2;
1213 #ifdef SUPPORT_UTF8
1214 if ((options & PCRE_UTF8) != 0)
1215 {
1216 while ((*cc & 0xc0) == 0x80) cc++;
1217 }
1218 #endif
1219 break;
1220
1221 /* Handle exact repetitions. The count is already in characters, but we
1222 need to skip over a multibyte character in UTF8 mode. */
1223
1224 case OP_EXACT:
1225 branchlength += GET2(cc,1);
1226 cc += 4;
1227 #ifdef SUPPORT_UTF8
1228 if ((options & PCRE_UTF8) != 0)
1229 {
1230 while((*cc & 0x80) == 0x80) cc++;
1231 }
1232 #endif
1233 break;
1234
1235 case OP_TYPEEXACT:
1236 branchlength += GET2(cc,1);
1237 if (cc[3] == OP_PROP || cc[3] == OP_NOTPROP) cc += 2;
1238 cc += 4;
1239 break;
1240
1241 /* Handle single-char matchers */
1242
1243 case OP_PROP:
1244 case OP_NOTPROP:
1245 cc += 2;
1246 /* Fall through */
1247
1248 case OP_NOT_DIGIT:
1249 case OP_DIGIT:
1250 case OP_NOT_WHITESPACE:
1251 case OP_WHITESPACE:
1252 case OP_NOT_WORDCHAR:
1253 case OP_WORDCHAR:
1254 case OP_ANY:
1255 branchlength++;
1256 cc++;
1257 break;
1258
1259 /* The single-byte matcher isn't allowed */
1260
1261 case OP_ANYBYTE:
1262 return -2;
1263
1264 /* Check a class for variable quantification */
1265
1266 #ifdef SUPPORT_UTF8
1267 case OP_XCLASS:
1268 cc += GET(cc, 1) - 33;
1269 /* Fall through */
1270 #endif
1271
1272 case OP_CLASS:
1273 case OP_NCLASS:
1274 cc += 33;
1275
1276 switch (*cc)
1277 {
1278 case OP_CRSTAR:
1279 case OP_CRMINSTAR:
1280 case OP_CRQUERY:
1281 case OP_CRMINQUERY:
1282 return -1;
1283
1284 case OP_CRRANGE:
1285 case OP_CRMINRANGE:
1286 if (GET2(cc,1) != GET2(cc,3)) return -1;
1287 branchlength += GET2(cc,1);
1288 cc += 5;
1289 break;
1290
1291 default:
1292 branchlength++;
1293 }
1294 break;
1295
1296 /* Anything else is variable length */
1297
1298 default:
1299 return -1;
1300 }
1301 }
1302 /* Control never gets here */
1303 }
1304
1305
1306
1307
1308 /*************************************************
1309 * Scan compiled regex for numbered bracket *
1310 *************************************************/
1311
1312 /* This little function scans through a compiled pattern until it finds a
1313 capturing bracket with the given number.
1314
1315 Arguments:
1316 code points to start of expression
1317 utf8 TRUE in UTF-8 mode
1318 number the required bracket number
1319
1320 Returns: pointer to the opcode for the bracket, or NULL if not found
1321 */
1322
1323 static const uschar *
1324 find_bracket(const uschar *code, BOOL utf8, int number)
1325 {
1326 for (;;)
1327 {
1328 register int c = *code;
1329 if (c == OP_END) return NULL;
1330
1331 /* XCLASS is used for classes that cannot be represented just by a bit
1332 map. This includes negated single high-valued characters. The length in
1333 the table is zero; the actual length is stored in the compiled code. */
1334
1335 if (c == OP_XCLASS) code += GET(code, 1);
1336
1337 /* Handle capturing bracket */
1338
1339 else if (c == OP_CBRA)
1340 {
1341 int n = GET2(code, 1+LINK_SIZE);
1342 if (n == number) return (uschar *)code;
1343 code += _pcre_OP_lengths[c];
1344 }
1345
1346 /* Otherwise, we can get the item's length from the table, except that for
1347 repeated character types, we have to test for \p and \P, which have an extra
1348 two bytes of parameters. */
1349
1350 else
1351 {
1352 switch(c)
1353 {
1354 case OP_TYPESTAR:
1355 case OP_TYPEMINSTAR:
1356 case OP_TYPEPLUS:
1357 case OP_TYPEMINPLUS:
1358 case OP_TYPEQUERY:
1359 case OP_TYPEMINQUERY:
1360 case OP_TYPEPOSSTAR:
1361 case OP_TYPEPOSPLUS:
1362 case OP_TYPEPOSQUERY:
1363 if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2;
1364 break;
1365
1366 case OP_TYPEUPTO:
1367 case OP_TYPEMINUPTO:
1368 case OP_TYPEEXACT:
1369 case OP_TYPEPOSUPTO:
1370 if (code[3] == OP_PROP || code[3] == OP_NOTPROP) code += 2;
1371 break;
1372 }
1373
1374 /* Add in the fixed length from the table */
1375
1376 code += _pcre_OP_lengths[c];
1377
1378 /* In UTF-8 mode, opcodes that are followed by a character may be followed by
1379 a multi-byte character. The length in the table is a minimum, so we have to
1380 arrange to skip the extra bytes. */
1381
1382 #ifdef SUPPORT_UTF8
1383 if (utf8) switch(c)
1384 {
1385 case OP_CHAR:
1386 case OP_CHARNC:
1387 case OP_EXACT:
1388 case OP_UPTO:
1389 case OP_MINUPTO:
1390 case OP_POSUPTO:
1391 case OP_STAR:
1392 case OP_MINSTAR:
1393 case OP_POSSTAR:
1394 case OP_PLUS:
1395 case OP_MINPLUS:
1396 case OP_POSPLUS:
1397 case OP_QUERY:
1398 case OP_MINQUERY:
1399 case OP_POSQUERY:
1400 if (code[-1] >= 0xc0) code += _pcre_utf8_table4[code[-1] & 0x3f];
1401 break;
1402 }
1403 #endif
1404 }
1405 }
1406 }
1407
1408
1409
1410 /*************************************************
1411 * Scan compiled regex for recursion reference *
1412 *************************************************/
1413
1414 /* This little function scans through a compiled pattern until it finds an
1415 instance of OP_RECURSE.
1416
1417 Arguments:
1418 code points to start of expression
1419 utf8 TRUE in UTF-8 mode
1420
1421 Returns: pointer to the opcode for OP_RECURSE, or NULL if not found
1422 */
1423
1424 static const uschar *
1425 find_recurse(const uschar *code, BOOL utf8)
1426 {
1427 for (;;)
1428 {
1429 register int c = *code;
1430 if (c == OP_END) return NULL;
1431 if (c == OP_RECURSE) return code;
1432
1433 /* XCLASS is used for classes that cannot be represented just by a bit
1434 map. This includes negated single high-valued characters. The length in
1435 the table is zero; the actual length is stored in the compiled code. */
1436
1437 if (c == OP_XCLASS) code += GET(code, 1);
1438
1439 /* Otherwise, we can get the item's length from the table, except that for
1440 repeated character types, we have to test for \p and \P, which have an extra
1441 two bytes of parameters. */
1442
1443 else
1444 {
1445 switch(c)
1446 {
1447 case OP_TYPESTAR:
1448 case OP_TYPEMINSTAR:
1449 case OP_TYPEPLUS:
1450 case OP_TYPEMINPLUS:
1451 case OP_TYPEQUERY:
1452 case OP_TYPEMINQUERY:
1453 case OP_TYPEPOSSTAR:
1454 case OP_TYPEPOSPLUS:
1455 case OP_TYPEPOSQUERY:
1456 if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2;
1457 break;
1458
1459 case OP_TYPEPOSUPTO:
1460 case OP_TYPEUPTO:
1461 case OP_TYPEMINUPTO:
1462 case OP_TYPEEXACT:
1463 if (code[3] == OP_PROP || code[3] == OP_NOTPROP) code += 2;
1464 break;
1465 }
1466
1467 /* Add in the fixed length from the table */
1468
1469 code += _pcre_OP_lengths[c];
1470
1471 /* In UTF-8 mode, opcodes that are followed by a character may be followed
1472 by a multi-byte character. The length in the table is a minimum, so we have
1473 to arrange to skip the extra bytes. */
1474
1475 #ifdef SUPPORT_UTF8
1476 if (utf8) switch(c)
1477 {
1478 case OP_CHAR:
1479 case OP_CHARNC:
1480 case OP_EXACT:
1481 case OP_UPTO:
1482 case OP_MINUPTO:
1483 case OP_POSUPTO:
1484 case OP_STAR:
1485 case OP_MINSTAR:
1486 case OP_POSSTAR:
1487 case OP_PLUS:
1488 case OP_MINPLUS:
1489 case OP_POSPLUS:
1490 case OP_QUERY:
1491 case OP_MINQUERY:
1492 case OP_POSQUERY:
1493 if (code[-1] >= 0xc0) code += _pcre_utf8_table4[code[-1] & 0x3f];
1494 break;
1495 }
1496 #endif
1497 }
1498 }
1499 }
1500
1501
1502
1503 /*************************************************
1504 * Scan compiled branch for non-emptiness *
1505 *************************************************/
1506
1507 /* This function scans through a branch of a compiled pattern to see whether it
1508 can match the empty string or not. It is called from could_be_empty()
1509 below and from compile_branch() when checking for an unlimited repeat of a
1510 group that can match nothing. Note that first_significant_code() skips over
1511 backward and negative forward assertions when its final argument is TRUE. If we
1512 hit an unclosed bracket, we return "empty" - this means we've struck an inner
1513 bracket whose current branch will already have been scanned.
1514
1515 Arguments:
1516 code points to start of search
1517 endcode points to where to stop
1518 utf8 TRUE if in UTF8 mode
1519
1520 Returns: TRUE if what is matched could be empty
1521 */
1522
1523 static BOOL
1524 could_be_empty_branch(const uschar *code, const uschar *endcode, BOOL utf8)
1525 {
1526 register int c;
1527 for (code = first_significant_code(code + _pcre_OP_lengths[*code], NULL, 0, TRUE);
1528 code < endcode;
1529 code = first_significant_code(code + _pcre_OP_lengths[c], NULL, 0, TRUE))
1530 {
1531 const uschar *ccode;
1532
1533 c = *code;
1534
1535 /* Skip over forward assertions; the other assertions are skipped by
1536 first_significant_code() with a TRUE final argument. */
1537
1538 if (c == OP_ASSERT)
1539 {
1540 do code += GET(code, 1); while (*code == OP_ALT);
1541 c = *code;
1542 continue;
1543 }
1544
1545 /* Groups with zero repeats can of course be empty; skip them. */
1546
1547 if (c == OP_BRAZERO || c == OP_BRAMINZERO)
1548 {
1549 code += _pcre_OP_lengths[c];
1550 do code += GET(code, 1); while (*code == OP_ALT);
1551 c = *code;
1552 continue;
1553 }
1554
1555 /* For other groups, scan the branches. */
1556
1557 if (c == OP_BRA || c == OP_CBRA || c == OP_ONCE || c == OP_COND)
1558 {
1559 BOOL empty_branch;
1560 if (GET(code, 1) == 0) return TRUE; /* Hit unclosed bracket */
1561
1562 /* Scan a closed bracket */
1563
1564 empty_branch = FALSE;
1565 do
1566 {
1567 if (!empty_branch && could_be_empty_branch(code, endcode, utf8))
1568 empty_branch = TRUE;
1569 code += GET(code, 1);
1570 }
1571 while (*code == OP_ALT);
1572 if (!empty_branch) return FALSE; /* All branches are non-empty */
1573 c = *code;
1574 continue;
1575 }
1576
1577 /* Handle the other opcodes */
1578
1579 switch (c)
1580 {
1581 /* Check for quantifiers after a class. XCLASS is used for classes that
1582 cannot be represented just by a bit map. This includes negated single
1583 high-valued characters. The length in _pcre_OP_lengths[] is zero; the
1584 actual length is stored in the compiled code, so we must update "code"
1585 here. */
1586
1587 #ifdef SUPPORT_UTF8
1588 case OP_XCLASS:
1589 ccode = code += GET(code, 1);
1590 goto CHECK_CLASS_REPEAT;
1591 #endif
1592
1593 case OP_CLASS:
1594 case OP_NCLASS:
1595 ccode = code + 33;
1596
1597 #ifdef SUPPORT_UTF8
1598 CHECK_CLASS_REPEAT:
1599 #endif
1600
1601 switch (*ccode)
1602 {
1603 case OP_CRSTAR: /* These could be empty; continue */
1604 case OP_CRMINSTAR:
1605 case OP_CRQUERY:
1606 case OP_CRMINQUERY:
1607 break;
1608
1609 default: /* Non-repeat => class must match */
1610 case OP_CRPLUS: /* These repeats aren't empty */
1611 case OP_CRMINPLUS:
1612 return FALSE;
1613
1614 case OP_CRRANGE:
1615 case OP_CRMINRANGE:
1616 if (GET2(ccode, 1) > 0) return FALSE; /* Minimum > 0 */
1617 break;
1618 }
1619 break;
1620
1621 /* Opcodes that must match a character */
1622
1623 case OP_PROP:
1624 case OP_NOTPROP:
1625 case OP_EXTUNI:
1626 case OP_NOT_DIGIT:
1627 case OP_DIGIT:
1628 case OP_NOT_WHITESPACE:
1629 case OP_WHITESPACE:
1630 case OP_NOT_WORDCHAR:
1631 case OP_WORDCHAR:
1632 case OP_ANY:
1633 case OP_ANYBYTE:
1634 case OP_CHAR:
1635 case OP_CHARNC:
1636 case OP_NOT:
1637 case OP_PLUS:
1638 case OP_MINPLUS:
1639 case OP_POSPLUS:
1640 case OP_EXACT:
1641 case OP_NOTPLUS:
1642 case OP_NOTMINPLUS:
1643 case OP_NOTPOSPLUS:
1644 case OP_NOTEXACT:
1645 case OP_TYPEPLUS:
1646 case OP_TYPEMINPLUS:
1647 case OP_TYPEPOSPLUS:
1648 case OP_TYPEEXACT:
1649 return FALSE;
1650
1651 /* These are going to continue, as they may be empty, but we have to
1652 fudge the length for the \p and \P cases. */
1653
1654 case OP_TYPESTAR:
1655 case OP_TYPEMINSTAR:
1656 case OP_TYPEPOSSTAR:
1657 case OP_TYPEQUERY:
1658 case OP_TYPEMINQUERY:
1659 case OP_TYPEPOSQUERY:
1660 if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2;
1661 break;
1662
1663 /* Same for these */
1664
1665 case OP_TYPEUPTO:
1666 case OP_TYPEMINUPTO:
1667 case OP_TYPEPOSUPTO:
1668 if (code[3] == OP_PROP || code[3] == OP_NOTPROP) code += 2;
1669 break;
1670
1671 /* End of branch */
1672
1673 case OP_KET:
1674 case OP_KETRMAX:
1675 case OP_KETRMIN:
1676 case OP_ALT:
1677 return TRUE;
1678
1679 /* In UTF-8 mode, STAR, MINSTAR, POSSTAR, QUERY, MINQUERY, POSQUERY, UPTO,
1680 MINUPTO, and POSUPTO may be followed by a multibyte character */
1681
1682 #ifdef SUPPORT_UTF8
1683 case OP_STAR:
1684 case OP_MINSTAR:
1685 case OP_POSSTAR:
1686 case OP_QUERY:
1687 case OP_MINQUERY:
1688 case OP_POSQUERY:
1689 case OP_UPTO:
1690 case OP_MINUPTO:
1691 case OP_POSUPTO:
1692 if (utf8) while ((code[2] & 0xc0) == 0x80) code++;
1693 break;
1694 #endif
1695 }
1696 }
1697
1698 return TRUE;
1699 }
1700
1701
1702
1703 /*************************************************
1704 * Scan compiled regex for non-emptiness *
1705 *************************************************/
1706
1707 /* This function is called to check for left recursive calls. We want to check
1708 the current branch of the current pattern to see if it could match the empty
1709 string. If it could, we must look outwards for branches at other levels,
1710 stopping when we pass beyond the bracket which is the subject of the recursion.
1711
1712 Arguments:
1713 code points to start of the recursion
1714 endcode points to where to stop (current RECURSE item)
1715 bcptr points to the chain of current (unclosed) branch starts
1716 utf8 TRUE if in UTF-8 mode
1717
1718 Returns: TRUE if what is matched could be empty
1719 */
1720
1721 static BOOL
1722 could_be_empty(const uschar *code, const uschar *endcode, branch_chain *bcptr,
1723 BOOL utf8)
1724 {
1725 while (bcptr != NULL && bcptr->current >= code)
1726 {
1727 if (!could_be_empty_branch(bcptr->current, endcode, utf8)) return FALSE;
1728 bcptr = bcptr->outer;
1729 }
1730 return TRUE;
1731 }
1732
1733
1734
1735 /*************************************************
1736 * Check for POSIX class syntax *
1737 *************************************************/
1738
1739 /* This function is called when the sequence "[:" or "[." or "[=" is
1740 encountered in a character class. It checks whether this is followed by a
1741 sequence of characters terminated by a matching ":]" or ".]" or "=]". If we
1742 reach an unescaped ']' without the special preceding character, return FALSE.
1743
1744 Originally, this function only recognized a sequence of letters between the
1745 terminators, but it seems that Perl recognizes any sequence of characters,
1746 though of course unknown POSIX names are subsequently rejected. Perl gives an
1747 "Unknown POSIX class" error for [:f\oo:] for example, where previously PCRE
1748 didn't consider this to be a POSIX class. Likewise for [:1234:].
1749
1750 The problem in trying to be exactly like Perl is in the handling of escapes. We
1751 have to be sure that [abc[:x\]pqr] is *not* treated as containing a POSIX
1752 class, but [abc[:x\]pqr:]] is (so that an error can be generated). The code
1753 below handles the special case of \], but does not try to do any other escape
1754 processing. This makes it different from Perl for cases such as [:l\ower:]
1755 where Perl recognizes it as the POSIX class "lower" but PCRE does not recognize
1756 "l\ower". This is a lesser evil that not diagnosing bad classes when Perl does,
1757 I think.
1758
1759 Arguments:
1760 ptr pointer to the initial [
1761 endptr where to return the end pointer
1762
1763 Returns: TRUE or FALSE
1764 */
1765
1766 static BOOL
1767 check_posix_syntax(const uschar *ptr, const uschar **endptr)
1768 {
1769 int terminator; /* Don't combine these lines; the Solaris cc */
1770 terminator = *(++ptr); /* compiler warns about "non-constant" initializer. */
1771 for (++ptr; *ptr != 0; ptr++)
1772 {
1773 if (*ptr == '\\' && ptr[1] == ']') ptr++; else
1774 {
1775 if (*ptr == ']') return FALSE;
1776 if (*ptr == terminator && ptr[1] == ']')
1777 {
1778 *endptr = ptr;
1779 return TRUE;
1780 }
1781 }
1782 }
1783 return FALSE;
1784 }
1785
1786
1787
1788
1789 /*************************************************
1790 * Check POSIX class name *
1791 *************************************************/
1792
1793 /* This function is called to check the name given in a POSIX-style class entry
1794 such as [:alnum:].
1795
1796 Arguments:
1797 ptr points to the first letter
1798 len the length of the name
1799
1800 Returns: a value representing the name, or -1 if unknown
1801 */
1802
1803 static int
1804 check_posix_name(const uschar *ptr, int len)
1805 {
1806 const char *pn = posix_names;
1807 register int yield = 0;
1808 while (posix_name_lengths[yield] != 0)
1809 {
1810 if (len == posix_name_lengths[yield] &&
1811 strncmp((const char *)ptr, pn, len) == 0) return yield;
1812 pn += posix_name_lengths[yield] + 1;
1813 yield++;
1814 }
1815 return -1;
1816 }
1817
1818
1819 /*************************************************
1820 * Adjust OP_RECURSE items in repeated group *
1821 *************************************************/
1822
1823 /* OP_RECURSE items contain an offset from the start of the regex to the group
1824 that is referenced. This means that groups can be replicated for fixed
1825 repetition simply by copying (because the recursion is allowed to refer to
1826 earlier groups that are outside the current group). However, when a group is
1827 optional (i.e. the minimum quantifier is zero), OP_BRAZERO is inserted before
1828 it, after it has been compiled. This means that any OP_RECURSE items within it
1829 that refer to the group itself or any contained groups have to have their
1830 offsets adjusted. That one of the jobs of this function. Before it is called,
1831 the partially compiled regex must be temporarily terminated with OP_END.
1832
1833 This function has been extended with the possibility of forward references for
1834 recursions and subroutine calls. It must also check the list of such references
1835 for the group we are dealing with. If it finds that one of the recursions in
1836 the current group is on this list, it adjusts the offset in the list, not the
1837 value in the reference (which is a group number).
1838
1839 Arguments:
1840 group points to the start of the group
1841 adjust the amount by which the group is to be moved
1842 utf8 TRUE in UTF-8 mode
1843 cd contains pointers to tables etc.
1844 save_hwm the hwm forward reference pointer at the start of the group
1845
1846 Returns: nothing
1847 */
1848
1849 static void
1850 adjust_recurse(uschar *group, int adjust, BOOL utf8, compile_data *cd,
1851 uschar *save_hwm)
1852 {
1853 uschar *ptr = group;
1854
1855 while ((ptr = (uschar *)find_recurse(ptr, utf8)) != NULL)
1856 {
1857 int offset;
1858 uschar *hc;
1859
1860 /* See if this recursion is on the forward reference list. If so, adjust the
1861 reference. */
1862
1863 for (hc = save_hwm; hc < cd->hwm; hc += LINK_SIZE)
1864 {
1865 offset = GET(hc, 0);
1866 if (cd->start_code + offset == ptr + 1)
1867 {
1868 PUT(hc, 0, offset + adjust);
1869 break;
1870 }
1871 }
1872
1873 /* Otherwise, adjust the recursion offset if it's after the start of this
1874 group. */
1875
1876 if (hc >= cd->hwm)
1877 {
1878 offset = GET(ptr, 1);
1879 if (cd->start_code + offset >= group) PUT(ptr, 1, offset + adjust);
1880 }
1881
1882 ptr += 1 + LINK_SIZE;
1883 }
1884 }
1885
1886
1887
1888 /*************************************************
1889 * Insert an automatic callout point *
1890 *************************************************/
1891
1892 /* This function is called when the PCRE_AUTO_CALLOUT option is set, to insert
1893 callout points before each pattern item.
1894
1895 Arguments:
1896 code current code pointer
1897 ptr current pattern pointer
1898 cd pointers to tables etc
1899
1900 Returns: new code pointer
1901 */
1902
1903 static uschar *
1904 auto_callout(uschar *code, const uschar *ptr, compile_data *cd)
1905 {
1906 *code++ = OP_CALLOUT;
1907 *code++ = 255;
1908 PUT(code, 0, ptr - cd->start_pattern); /* Pattern offset */
1909 PUT(code, LINK_SIZE, 0); /* Default length */
1910 return code + 2*LINK_SIZE;
1911 }
1912
1913
1914
1915 /*************************************************
1916 * Complete a callout item *
1917 *************************************************/
1918
1919 /* A callout item contains the length of the next item in the pattern, which
1920 we can't fill in till after we have reached the relevant point. This is used
1921 for both automatic and manual callouts.
1922
1923 Arguments:
1924 previous_callout points to previous callout item
1925 ptr current pattern pointer
1926 cd pointers to tables etc
1927
1928 Returns: nothing
1929 */
1930
1931 static void
1932 complete_callout(uschar *previous_callout, const uschar *ptr, compile_data *cd)
1933 {
1934 int length = ptr - cd->start_pattern - GET(previous_callout, 2);
1935 PUT(previous_callout, 2 + LINK_SIZE, length);
1936 }
1937
1938
1939
1940 #ifdef SUPPORT_UCP
1941 /*************************************************
1942 * Get othercase range *
1943 *************************************************/
1944
1945 /* This function is passed the start and end of a class range, in UTF-8 mode
1946 with UCP support. It searches up the characters, looking for internal ranges of
1947 characters in the "other" case. Each call returns the next one, updating the
1948 start address.
1949
1950 Arguments:
1951 cptr points to starting character value; updated
1952 d end value
1953 ocptr where to put start of othercase range
1954 odptr where to put end of othercase range
1955
1956 Yield: TRUE when range returned; FALSE when no more
1957 */
1958
1959 static BOOL
1960 get_othercase_range(unsigned int *cptr, unsigned int d, unsigned int *ocptr,
1961 unsigned int *odptr)
1962 {
1963 unsigned int c, othercase, next;
1964
1965 for (c = *cptr; c <= d; c++)
1966 { if ((othercase = _pcre_ucp_othercase(c)) != NOTACHAR) break; }
1967
1968 if (c > d) return FALSE;
1969
1970 *ocptr = othercase;
1971 next = othercase + 1;
1972
1973 for (++c; c <= d; c++)
1974 {
1975 if (_pcre_ucp_othercase(c) != next) break;
1976 next++;
1977 }
1978
1979 *odptr = next - 1;
1980 *cptr = c;
1981
1982 return TRUE;
1983 }
1984 #endif /* SUPPORT_UCP */
1985
1986
1987
1988 /*************************************************
1989 * Check if auto-possessifying is possible *
1990 *************************************************/
1991
1992 /* This function is called for unlimited repeats of certain items, to see
1993 whether the next thing could possibly match the repeated item. If not, it makes
1994 sense to automatically possessify the repeated item.
1995
1996 Arguments:
1997 op_code the repeated op code
1998 this data for this item, depends on the opcode
1999 utf8 TRUE in UTF-8 mode
2000 utf8_char used for utf8 character bytes, NULL if not relevant
2001 ptr next character in pattern
2002 options options bits
2003 cd contains pointers to tables etc.
2004
2005 Returns: TRUE if possessifying is wanted
2006 */
2007
2008 static BOOL
2009 check_auto_possessive(int op_code, int item, BOOL utf8, uschar *utf8_char,
2010 const uschar *ptr, int options, compile_data *cd)
2011 {
2012 int next;
2013
2014 /* Skip whitespace and comments in extended mode */
2015
2016 if ((options & PCRE_EXTENDED) != 0)
2017 {
2018 for (;;)
2019 {
2020 while ((cd->ctypes[*ptr] & ctype_space) != 0) ptr++;
2021 if (*ptr == '#')
2022 {
2023 while (*(++ptr) != 0)
2024 if (IS_NEWLINE(ptr)) { ptr += cd->nllen; break; }
2025 }
2026 else break;
2027 }
2028 }
2029
2030 /* If the next item is one that we can handle, get its value. A non-negative
2031 value is a character, a negative value is an escape value. */
2032
2033 if (*ptr == '\\')
2034 {
2035 int temperrorcode = 0;
2036 next = check_escape(&ptr, &temperrorcode, cd->bracount, options, FALSE);
2037 if (temperrorcode != 0) return FALSE;
2038 ptr++; /* Point after the escape sequence */
2039 }
2040
2041 else if ((cd->ctypes[*ptr] & ctype_meta) == 0)
2042 {
2043 #ifdef SUPPORT_UTF8
2044 if (utf8) { GETCHARINC(next, ptr); } else
2045 #endif
2046 next = *ptr++;
2047 }
2048
2049 else return FALSE;
2050
2051 /* Skip whitespace and comments in extended mode */
2052
2053 if ((options & PCRE_EXTENDED) != 0)
2054 {
2055 for (;;)
2056 {
2057 while ((cd->ctypes[*ptr] & ctype_space) != 0) ptr++;
2058 if (*ptr == '#')
2059 {
2060 while (*(++ptr) != 0)
2061 if (IS_NEWLINE(ptr)) { ptr += cd->nllen; break; }
2062 }
2063 else break;
2064 }
2065 }
2066
2067 /* If the next thing is itself optional, we have to give up. */
2068
2069 if (*ptr == '*' || *ptr == '?' || strncmp((char *)ptr, "{0,", 3) == 0)
2070 return FALSE;
2071
2072 /* Now compare the next item with the previous opcode. If the previous is a
2073 positive single character match, "item" either contains the character or, if
2074 "item" is greater than 127 in utf8 mode, the character's bytes are in
2075 utf8_char. */
2076
2077
2078 /* Handle cases when the next item is a character. */
2079
2080 if (next >= 0) switch(op_code)
2081 {
2082 case OP_CHAR:
2083 #ifdef SUPPORT_UTF8
2084 if (utf8 && item > 127) { GETCHAR(item, utf8_char); }
2085 #endif
2086 return item != next;
2087
2088 /* For CHARNC (caseless character) we must check the other case. If we have
2089 Unicode property support, we can use it to test the other case of
2090 high-valued characters. */
2091
2092 case OP_CHARNC:
2093 #ifdef SUPPORT_UTF8
2094 if (utf8 && item > 127) { GETCHAR(item, utf8_char); }
2095 #endif
2096 if (item == next) return FALSE;
2097 #ifdef SUPPORT_UTF8
2098 if (utf8)
2099 {
2100 unsigned int othercase;
2101 if (next < 128) othercase = cd->fcc[next]; else
2102 #ifdef SUPPORT_UCP
2103 othercase = _pcre_ucp_othercase((unsigned int)next);
2104 #else
2105 othercase = NOTACHAR;
2106 #endif
2107 return (unsigned int)item != othercase;
2108 }
2109 else
2110 #endif /* SUPPORT_UTF8 */
2111 return (item != cd->fcc[next]); /* Non-UTF-8 mode */
2112
2113 /* For OP_NOT, "item" must be a single-byte character. */
2114
2115 case OP_NOT:
2116 if (next < 0) return FALSE; /* Not a character */
2117 if (item == next) return TRUE;
2118 if ((options & PCRE_CASELESS) == 0) return FALSE;
2119 #ifdef SUPPORT_UTF8
2120 if (utf8)
2121 {
2122 unsigned int othercase;
2123 if (next < 128) othercase = cd->fcc[next]; else
2124 #ifdef SUPPORT_UCP
2125 othercase = _pcre_ucp_othercase(next);
2126 #else
2127 othercase = NOTACHAR;
2128 #endif
2129 return (unsigned int)item == othercase;
2130 }
2131 else
2132 #endif /* SUPPORT_UTF8 */
2133 return (item == cd->fcc[next]); /* Non-UTF-8 mode */
2134
2135 case OP_DIGIT:
2136 return next > 127 || (cd->ctypes[next] & ctype_digit) == 0;
2137
2138 case OP_NOT_DIGIT:
2139 return next <= 127 && (cd->ctypes[next] & ctype_digit) != 0;
2140
2141 case OP_WHITESPACE:
2142 return next > 127 || (cd->ctypes[next] & ctype_space) == 0;
2143
2144 case OP_NOT_WHITESPACE:
2145 return next <= 127 && (cd->ctypes[next] & ctype_space) != 0;
2146
2147 case OP_WORDCHAR:
2148 return next > 127 || (cd->ctypes[next] & ctype_word) == 0;
2149
2150 case OP_NOT_WORDCHAR:
2151 return next <= 127 && (cd->ctypes[next] & ctype_word) != 0;
2152
2153 case OP_HSPACE:
2154 case OP_NOT_HSPACE:
2155 switch(next)
2156 {
2157 case 0x09:
2158 case 0x20:
2159 case 0xa0:
2160 case 0x1680:
2161 case 0x180e:
2162 case 0x2000:
2163 case 0x2001:
2164 case 0x2002:
2165 case 0x2003:
2166 case 0x2004:
2167 case 0x2005:
2168 case 0x2006:
2169 case 0x2007:
2170 case 0x2008:
2171 case 0x2009:
2172 case 0x200A:
2173 case 0x202f:
2174 case 0x205f:
2175 case 0x3000:
2176 return op_code != OP_HSPACE;
2177 default:
2178 return op_code == OP_HSPACE;
2179 }
2180
2181 case OP_VSPACE:
2182 case OP_NOT_VSPACE:
2183 switch(next)
2184 {
2185 case 0x0a:
2186 case 0x0b:
2187 case 0x0c:
2188 case 0x0d:
2189 case 0x85:
2190 case 0x2028:
2191 case 0x2029:
2192 return op_code != OP_VSPACE;
2193 default:
2194 return op_code == OP_VSPACE;
2195 }
2196
2197 default:
2198 return FALSE;
2199 }
2200
2201
2202 /* Handle the case when the next item is \d, \s, etc. */
2203
2204 switch(op_code)
2205 {
2206 case OP_CHAR:
2207 case OP_CHARNC:
2208 #ifdef SUPPORT_UTF8
2209 if (utf8 && item > 127) { GETCHAR(item, utf8_char); }
2210 #endif
2211 switch(-next)
2212 {
2213 case ESC_d:
2214 return item > 127 || (cd->ctypes[item] & ctype_digit) == 0;
2215
2216 case ESC_D:
2217 return item <= 127 && (cd->ctypes[item] & ctype_digit) != 0;
2218
2219 case ESC_s:
2220 return item > 127 || (cd->ctypes[item] & ctype_space) == 0;
2221
2222 case ESC_S:
2223 return item <= 127 && (cd->ctypes[item] & ctype_space) != 0;
2224
2225 case ESC_w:
2226 return item > 127 || (cd->ctypes[item] & ctype_word) == 0;
2227
2228 case ESC_W:
2229 return item <= 127 && (cd->ctypes[item] & ctype_word) != 0;
2230
2231 case ESC_h:
2232 case ESC_H:
2233 switch(item)
2234 {
2235 case 0x09:
2236 case 0x20:
2237 case 0xa0:
2238 case 0x1680:
2239 case 0x180e:
2240 case 0x2000:
2241 case 0x2001:
2242 case 0x2002:
2243 case 0x2003:
2244 case 0x2004:
2245 case 0x2005:
2246 case 0x2006:
2247 case 0x2007:
2248 case 0x2008:
2249 case 0x2009:
2250 case 0x200A:
2251 case 0x202f:
2252 case 0x205f:
2253 case 0x3000:
2254 return -next != ESC_h;
2255 default:
2256 return -next == ESC_h;
2257 }
2258
2259 case ESC_v:
2260 case ESC_V:
2261 switch(item)
2262 {
2263 case 0x0a:
2264 case 0x0b:
2265 case 0x0c:
2266 case 0x0d:
2267 case 0x85:
2268 case 0x2028:
2269 case 0x2029:
2270 return -next != ESC_v;
2271 default:
2272 return -next == ESC_v;
2273 }
2274
2275 default:
2276 return FALSE;
2277 }
2278
2279 case OP_DIGIT:
2280 return next == -ESC_D || next == -ESC_s || next == -ESC_W ||
2281 next == -ESC_h || next == -ESC_v;
2282
2283 case OP_NOT_DIGIT:
2284 return next == -ESC_d;
2285
2286 case OP_WHITESPACE:
2287 return next == -ESC_S || next == -ESC_d || next == -ESC_w;
2288
2289 case OP_NOT_WHITESPACE:
2290 return next == -ESC_s || next == -ESC_h || next == -ESC_v;
2291
2292 case OP_HSPACE:
2293 return next == -ESC_S || next == -ESC_H || next == -ESC_d || next == -ESC_w;
2294
2295 case OP_NOT_HSPACE:
2296 return next == -ESC_h;
2297
2298 /* Can't have \S in here because VT matches \S (Perl anomaly) */
2299 case OP_VSPACE:
2300 return next == -ESC_V || next == -ESC_d || next == -ESC_w;
2301
2302 case OP_NOT_VSPACE:
2303 return next == -ESC_v;
2304
2305 case OP_WORDCHAR:
2306 return next == -ESC_W || next == -ESC_s || next == -ESC_h || next == -ESC_v;
2307
2308 case OP_NOT_WORDCHAR:
2309 return next == -ESC_w || next == -ESC_d;
2310
2311 default:
2312 return FALSE;
2313 }
2314
2315 /* Control does not reach here */
2316 }
2317
2318
2319
2320 /*************************************************
2321 * Compile one branch *
2322 *************************************************/
2323
2324 /* Scan the pattern, compiling it into the a vector. If the options are
2325 changed during the branch, the pointer is used to change the external options
2326 bits. This function is used during the pre-compile phase when we are trying
2327 to find out the amount of memory needed, as well as during the real compile
2328 phase. The value of lengthptr distinguishes the two phases.
2329
2330 Arguments:
2331 optionsptr pointer to the option bits
2332 codeptr points to the pointer to the current code point
2333 ptrptr points to the current pattern pointer
2334 errorcodeptr points to error code variable
2335 firstbyteptr set to initial literal character, or < 0 (REQ_UNSET, REQ_NONE)
2336 reqbyteptr set to the last literal character required, else < 0
2337 bcptr points to current branch chain
2338 cd contains pointers to tables etc.
2339 lengthptr NULL during the real compile phase
2340 points to length accumulator during pre-compile phase
2341
2342 Returns: TRUE on success
2343 FALSE, with *errorcodeptr set non-zero on error
2344 */
2345
2346 static BOOL
2347 compile_branch(int *optionsptr, uschar **codeptr, const uschar **ptrptr,
2348 int *errorcodeptr, int *firstbyteptr, int *reqbyteptr, branch_chain *bcptr,
2349 compile_data *cd, int *lengthptr)
2350 {
2351 int repeat_type, op_type;
2352 int repeat_min = 0, repeat_max = 0; /* To please picky compilers */
2353 int bravalue = 0;
2354 int greedy_default, greedy_non_default;
2355 int firstbyte, reqbyte;
2356 int zeroreqbyte, zerofirstbyte;
2357 int req_caseopt, reqvary, tempreqvary;
2358 int options = *optionsptr;
2359 int after_manual_callout = 0;
2360 int length_prevgroup = 0;
2361 register int c;
2362 register uschar *code = *codeptr;
2363 uschar *last_code = code;
2364 uschar *orig_code = code;
2365 uschar *tempcode;
2366 BOOL inescq = FALSE;
2367 BOOL groupsetfirstbyte = FALSE;
2368 const uschar *ptr = *ptrptr;
2369 const uschar *tempptr;
2370 uschar *previous = NULL;
2371 uschar *previous_callout = NULL;
2372 uschar *save_hwm = NULL;
2373 uschar classbits[32];
2374
2375 #ifdef SUPPORT_UTF8
2376 BOOL class_utf8;
2377 BOOL utf8 = (options & PCRE_UTF8) != 0;
2378 uschar *class_utf8data;
2379 uschar utf8_char[6];
2380 #else
2381 BOOL utf8 = FALSE;
2382 uschar *utf8_char = NULL;
2383 #endif
2384
2385 #ifdef DEBUG
2386 if (lengthptr != NULL) DPRINTF((">> start branch\n"));
2387 #endif
2388
2389 /* Set up the default and non-default settings for greediness */
2390
2391 greedy_default = ((options & PCRE_UNGREEDY) != 0);
2392 greedy_non_default = greedy_default ^ 1;
2393
2394 /* Initialize no first byte, no required byte. REQ_UNSET means "no char
2395 matching encountered yet". It gets changed to REQ_NONE if we hit something that
2396 matches a non-fixed char first char; reqbyte just remains unset if we never
2397 find one.
2398
2399 When we hit a repeat whose minimum is zero, we may have to adjust these values
2400 to take the zero repeat into account. This is implemented by setting them to
2401 zerofirstbyte and zeroreqbyte when such a repeat is encountered. The individual
2402 item types that can be repeated set these backoff variables appropriately. */
2403
2404 firstbyte = reqbyte = zerofirstbyte = zeroreqbyte = REQ_UNSET;
2405
2406 /* The variable req_caseopt contains either the REQ_CASELESS value or zero,
2407 according to the current setting of the caseless flag. REQ_CASELESS is a bit
2408 value > 255. It is added into the firstbyte or reqbyte variables to record the
2409 case status of the value. This is used only for ASCII characters. */
2410
2411 req_caseopt = ((options & PCRE_CASELESS) != 0)? REQ_CASELESS : 0;
2412
2413 /* Switch on next character until the end of the branch */
2414
2415 for (;; ptr++)
2416 {
2417 BOOL negate_class;
2418 BOOL should_flip_negation;
2419 BOOL possessive_quantifier;
2420 BOOL is_quantifier;
2421 BOOL is_recurse;
2422 BOOL reset_bracount;
2423 int class_charcount;
2424 int class_lastchar;
2425 int newoptions;
2426 int recno;
2427 int refsign;
2428 int skipbytes;
2429 int subreqbyte;
2430 int subfirstbyte;
2431 int terminator;
2432 int mclength;
2433 uschar mcbuffer[8];
2434
2435 /* Get next byte in the pattern */
2436
2437 c = *ptr;
2438
2439 /* If we are in the pre-compile phase, accumulate the length used for the
2440 previous cycle of this loop. */
2441
2442 if (lengthptr != NULL)
2443 {
2444 #ifdef DEBUG
2445 if (code > cd->hwm) cd->hwm = code; /* High water info */
2446 #endif
2447 if (code > cd->start_workspace + COMPILE_WORK_SIZE) /* Check for overrun */
2448 {
2449 *errorcodeptr = ERR52;
2450 goto FAILED;
2451 }
2452
2453 /* There is at least one situation where code goes backwards: this is the
2454 case of a zero quantifier after a class (e.g. [ab]{0}). At compile time,
2455 the class is simply eliminated. However, it is created first, so we have to
2456 allow memory for it. Therefore, don't ever reduce the length at this point.
2457 */
2458
2459 if (code < last_code) code = last_code;
2460
2461 /* Paranoid check for integer overflow */
2462
2463 if (OFLOW_MAX - *lengthptr < code - last_code)
2464 {
2465 *errorcodeptr = ERR20;
2466 goto FAILED;
2467 }
2468
2469 *lengthptr += code - last_code;
2470 DPRINTF(("length=%d added %d c=%c\n", *lengthptr, code - last_code, c));
2471
2472 /* If "previous" is set and it is not at the start of the work space, move
2473 it back to there, in order to avoid filling up the work space. Otherwise,
2474 if "previous" is NULL, reset the current code pointer to the start. */
2475
2476 if (previous != NULL)
2477 {
2478 if (previous > orig_code)
2479 {
2480 memmove(orig_code, previous, code - previous);
2481 code -= previous - orig_code;
2482 previous = orig_code;
2483 }
2484 }
2485 else code = orig_code;
2486
2487 /* Remember where this code item starts so we can pick up the length
2488 next time round. */
2489
2490 last_code = code;
2491 }
2492
2493 /* In the real compile phase, just check the workspace used by the forward
2494 reference list. */
2495
2496 else if (cd->hwm > cd->start_workspace + COMPILE_WORK_SIZE)
2497 {
2498 *errorcodeptr = ERR52;
2499 goto FAILED;
2500 }
2501
2502 /* If in \Q...\E, check for the end; if not, we have a literal */
2503
2504 if (inescq && c != 0)
2505 {
2506 if (c == '\\' && ptr[1] == 'E')
2507 {
2508 inescq = FALSE;
2509 ptr++;
2510 continue;
2511 }
2512 else
2513 {
2514 if (previous_callout != NULL)
2515 {
2516 if (lengthptr == NULL) /* Don't attempt in pre-compile phase */
2517 complete_callout(previous_callout, ptr, cd);
2518 previous_callout = NULL;
2519 }
2520 if ((options & PCRE_AUTO_CALLOUT) != 0)
2521 {
2522 previous_callout = code;
2523 code = auto_callout(code, ptr, cd);
2524 }
2525 goto NORMAL_CHAR;
2526 }
2527 }
2528
2529 /* Fill in length of a previous callout, except when the next thing is
2530 a quantifier. */
2531
2532 is_quantifier = c == '*' || c == '+' || c == '?' ||
2533 (c == '{' && is_counted_repeat(ptr+1));
2534
2535 if (!is_quantifier && previous_callout != NULL &&
2536 after_manual_callout-- <= 0)
2537 {
2538 if (lengthptr == NULL) /* Don't attempt in pre-compile phase */
2539 complete_callout(previous_callout, ptr, cd);
2540 previous_callout = NULL;
2541 }
2542
2543 /* In extended mode, skip white space and comments */
2544
2545 if ((options & PCRE_EXTENDED) != 0)
2546 {
2547 if ((cd->ctypes[c] & ctype_space) != 0) continue;
2548 if (c == '#')
2549 {
2550 while (*(++ptr) != 0)
2551 {
2552 if (IS_NEWLINE(ptr)) { ptr += cd->nllen - 1; break; }
2553 }
2554 if (*ptr != 0) continue;
2555
2556 /* Else fall through to handle end of string */
2557 c = 0;
2558 }
2559 }
2560
2561 /* No auto callout for quantifiers. */
2562
2563 if ((options & PCRE_AUTO_CALLOUT) != 0 && !is_quantifier)
2564 {
2565 previous_callout = code;
2566 code = auto_callout(code, ptr, cd);
2567 }
2568
2569 switch(c)
2570 {
2571 /* ===================================================================*/
2572 case 0: /* The branch terminates at string end */
2573 case '|': /* or | or ) */
2574 case ')':
2575 *firstbyteptr = firstbyte;
2576 *reqbyteptr = reqbyte;
2577 *codeptr = code;
2578 *ptrptr = ptr;
2579 if (lengthptr != NULL)
2580 {
2581 if (OFLOW_MAX - *lengthptr < code - last_code)
2582 {
2583 *errorcodeptr = ERR20;
2584 goto FAILED;
2585 }
2586 *lengthptr += code - last_code; /* To include callout length */
2587 DPRINTF((">> end branch\n"));
2588 }
2589 return TRUE;
2590
2591
2592 /* ===================================================================*/
2593 /* Handle single-character metacharacters. In multiline mode, ^ disables
2594 the setting of any following char as a first character. */
2595
2596 case '^':
2597 if ((options & PCRE_MULTILINE) != 0)
2598 {
2599 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
2600 }
2601 previous = NULL;
2602 *code++ = OP_CIRC;
2603 break;
2604
2605 case '$':
2606 previous = NULL;
2607 *code++ = OP_DOLL;
2608 break;
2609
2610 /* There can never be a first char if '.' is first, whatever happens about
2611 repeats. The value of reqbyte doesn't change either. */
2612
2613 case '.':
2614 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
2615 zerofirstbyte = firstbyte;
2616 zeroreqbyte = reqbyte;
2617 previous = code;
2618 *code++ = OP_ANY;
2619 break;
2620
2621
2622 /* ===================================================================*/
2623 /* Character classes. If the included characters are all < 256, we build a
2624 32-byte bitmap of the permitted characters, except in the special case
2625 where there is only one such character. For negated classes, we build the
2626 map as usual, then invert it at the end. However, we use a different opcode
2627 so that data characters > 255 can be handled correctly.
2628
2629 If the class contains characters outside the 0-255 range, a different
2630 opcode is compiled. It may optionally have a bit map for characters < 256,
2631 but those above are are explicitly listed afterwards. A flag byte tells
2632 whether the bitmap is present, and whether this is a negated class or not.
2633 */
2634
2635 case '[':
2636 previous = code;
2637
2638 /* PCRE supports POSIX class stuff inside a class. Perl gives an error if
2639 they are encountered at the top level, so we'll do that too. */
2640
2641 if ((ptr[1] == ':' || ptr[1] == '.' || ptr[1] == '=') &&
2642 check_posix_syntax(ptr, &tempptr))
2643 {
2644 *errorcodeptr = (ptr[1] == ':')? ERR13 : ERR31;
2645 goto FAILED;
2646 }
2647
2648 /* If the first character is '^', set the negation flag and skip it. Also,
2649 if the first few characters (either before or after ^) are \Q\E or \E we
2650 skip them too. This makes for compatibility with Perl. */
2651
2652 negate_class = FALSE;
2653 for (;;)
2654 {
2655 c = *(++ptr);
2656 if (c == '\\')
2657 {
2658 if (ptr[1] == 'E') ptr++;
2659 else if (strncmp((const char *)ptr+1, "Q\\E", 3) == 0) ptr += 3;
2660 else break;
2661 }
2662 else if (!negate_class && c == '^')
2663 negate_class = TRUE;
2664 else break;
2665 }
2666
2667 /* If a class contains a negative special such as \S, we need to flip the
2668 negation flag at the end, so that support for characters > 255 works
2669 correctly (they are all included in the class). */
2670
2671 should_flip_negation = FALSE;
2672
2673 /* Keep a count of chars with values < 256 so that we can optimize the case
2674 of just a single character (as long as it's < 256). However, For higher
2675 valued UTF-8 characters, we don't yet do any optimization. */
2676
2677 class_charcount = 0;
2678 class_lastchar = -1;
2679
2680 /* Initialize the 32-char bit map to all zeros. We build the map in a
2681 temporary bit of memory, in case the class contains only 1 character (less
2682 than 256), because in that case the compiled code doesn't use the bit map.
2683 */
2684
2685 memset(classbits, 0, 32 * sizeof(uschar));
2686
2687 #ifdef SUPPORT_UTF8
2688 class_utf8 = FALSE; /* No chars >= 256 */
2689 class_utf8data = code + LINK_SIZE + 2; /* For UTF-8 items */
2690 #endif
2691
2692 /* Process characters until ] is reached. By writing this as a "do" it
2693 means that an initial ] is taken as a data character. At the start of the
2694 loop, c contains the first byte of the character. */
2695
2696 if (c != 0) do
2697 {
2698 const uschar *oldptr;
2699
2700 #ifdef SUPPORT_UTF8
2701 if (utf8 && c > 127)
2702 { /* Braces are required because the */
2703 GETCHARLEN(c, ptr, ptr); /* macro generates multiple statements */
2704 }
2705 #endif
2706
2707 /* Inside \Q...\E everything is literal except \E */
2708
2709 if (inescq)
2710 {
2711 if (c == '\\' && ptr[1] == 'E') /* If we are at \E */
2712 {
2713 inescq = FALSE; /* Reset literal state */
2714 ptr++; /* Skip the 'E' */
2715 continue; /* Carry on with next */
2716 }
2717 goto CHECK_RANGE; /* Could be range if \E follows */
2718 }
2719
2720 /* Handle POSIX class names. Perl allows a negation extension of the
2721 form [:^name:]. A square bracket that doesn't match the syntax is
2722 treated as a literal. We also recognize the POSIX constructions
2723 [.ch.] and [=ch=] ("collating elements") and fault them, as Perl
2724 5.6 and 5.8 do. */
2725
2726 if (c == '[' &&
2727 (ptr[1] == ':' || ptr[1] == '.' || ptr[1] == '=') &&
2728 check_posix_syntax(ptr, &tempptr))
2729 {
2730 BOOL local_negate = FALSE;
2731 int posix_class, taboffset, tabopt;
2732 register const uschar *cbits = cd->cbits;
2733 uschar pbits[32];
2734
2735 if (ptr[1] != ':')
2736 {
2737 *errorcodeptr = ERR31;
2738 goto FAILED;
2739 }
2740
2741 ptr += 2;
2742 if (*ptr == '^')
2743 {
2744 local_negate = TRUE;
2745 should_flip_negation = TRUE; /* Note negative special */
2746 ptr++;
2747 }
2748
2749 posix_class = check_posix_name(ptr, tempptr - ptr);
2750 if (posix_class < 0)
2751 {
2752 *errorcodeptr = ERR30;
2753 goto FAILED;
2754 }
2755
2756 /* If matching is caseless, upper and lower are converted to
2757 alpha. This relies on the fact that the class table starts with
2758 alpha, lower, upper as the first 3 entries. */
2759
2760 if ((options & PCRE_CASELESS) != 0 && posix_class <= 2)
2761 posix_class = 0;
2762
2763 /* We build the bit map for the POSIX class in a chunk of local store
2764 because we may be adding and subtracting from it, and we don't want to
2765 subtract bits that may be in the main map already. At the end we or the
2766 result into the bit map that is being built. */
2767
2768 posix_class *= 3;
2769
2770 /* Copy in the first table (always present) */
2771
2772 memcpy(pbits, cbits + posix_class_maps[posix_class],
2773 32 * sizeof(uschar));
2774
2775 /* If there is a second table, add or remove it as required. */
2776
2777 taboffset = posix_class_maps[posix_class + 1];
2778 tabopt = posix_class_maps[posix_class + 2];
2779
2780 if (taboffset >= 0)
2781 {
2782 if (tabopt >= 0)
2783 for (c = 0; c < 32; c++) pbits[c] |= cbits[c + taboffset];
2784 else
2785 for (c = 0; c < 32; c++) pbits[c] &= ~cbits[c + taboffset];
2786 }
2787
2788 /* Not see if we need to remove any special characters. An option
2789 value of 1 removes vertical space and 2 removes underscore. */
2790
2791 if (tabopt < 0) tabopt = -tabopt;
2792 if (tabopt == 1) pbits[1] &= ~0x3c;
2793 else if (tabopt == 2) pbits[11] &= 0x7f;
2794
2795 /* Add the POSIX table or its complement into the main table that is
2796 being built and we are done. */
2797
2798 if (local_negate)
2799 for (c = 0; c < 32; c++) classbits[c] |= ~pbits[c];
2800 else
2801 for (c = 0; c < 32; c++) classbits[c] |= pbits[c];
2802
2803 ptr = tempptr + 1;
2804 class_charcount = 10; /* Set > 1; assumes more than 1 per class */
2805 continue; /* End of POSIX syntax handling */
2806 }
2807
2808 /* Backslash may introduce a single character, or it may introduce one
2809 of the specials, which just set a flag. The sequence \b is a special
2810 case. Inside a class (and only there) it is treated as backspace.
2811 Elsewhere it marks a word boundary. Other escapes have preset maps ready
2812 to 'or' into the one we are building. We assume they have more than one
2813 character in them, so set class_charcount bigger than one. */
2814
2815 if (c == '\\')
2816 {
2817 c = check_escape(&ptr, errorcodeptr, cd->bracount, options, TRUE);
2818 if (*errorcodeptr != 0) goto FAILED;
2819
2820 if (-c == ESC_b) c = '\b'; /* \b is backspace in a class */
2821 else if (-c == ESC_X) c = 'X'; /* \X is literal X in a class */
2822 else if (-c == ESC_R) c = 'R'; /* \R is literal R in a class */
2823 else if (-c == ESC_Q) /* Handle start of quoted string */
2824 {
2825 if (ptr[1] == '\\' && ptr[2] == 'E')
2826 {
2827 ptr += 2; /* avoid empty string */
2828 }
2829 else inescq = TRUE;
2830 continue;
2831 }
2832 else if (-c == ESC_E) continue; /* Ignore orphan \E */
2833
2834 if (c < 0)
2835 {
2836 register const uschar *cbits = cd->cbits;
2837 class_charcount += 2; /* Greater than 1 is what matters */
2838
2839 /* Save time by not doing this in the pre-compile phase. */
2840
2841 if (lengthptr == NULL) switch (-c)
2842 {
2843 case ESC_d:
2844 for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_digit];
2845 continue;
2846
2847 case ESC_D:
2848 should_flip_negation = TRUE;
2849 for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_digit];
2850 continue;
2851
2852 case ESC_w:
2853 for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_word];
2854 continue;
2855
2856 case ESC_W:
2857 should_flip_negation = TRUE;
2858 for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_word];
2859 continue;
2860
2861 case ESC_s:
2862 for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_space];
2863 classbits[1] &= ~0x08; /* Perl 5.004 onwards omits VT from \s */
2864 continue;
2865
2866 case ESC_S:
2867 should_flip_negation = TRUE;
2868 for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_space];
2869 classbits[1] |= 0x08; /* Perl 5.004 onwards omits VT from \s */
2870 continue;
2871
2872 default: /* Not recognized; fall through */
2873 break; /* Need "default" setting to stop compiler warning. */
2874 }
2875
2876 /* In the pre-compile phase, just do the recognition. */
2877
2878 else if (c == -ESC_d || c == -ESC_D || c == -ESC_w ||
2879 c == -ESC_W || c == -ESC_s || c == -ESC_S) continue;
2880
2881 /* We need to deal with \H, \h, \V, and \v in both phases because
2882 they use extra memory. */
2883
2884 if (-c == ESC_h)
2885 {
2886 SETBIT(classbits, 0x09); /* VT */
2887 SETBIT(classbits, 0x20); /* SPACE */
2888 SETBIT(classbits, 0xa0); /* NSBP */
2889 #ifdef SUPPORT_UTF8
2890 if (utf8)
2891 {
2892 class_utf8 = TRUE;
2893 *class_utf8data++ = XCL_SINGLE;
2894 class_utf8data += _pcre_ord2utf8(0x1680, class_utf8data);
2895 *class_utf8data++ = XCL_SINGLE;
2896 class_utf8data += _pcre_ord2utf8(0x180e, class_utf8data);
2897 *class_utf8data++ = XCL_RANGE;
2898 class_utf8data += _pcre_ord2utf8(0x2000, class_utf8data);
2899 class_utf8data += _pcre_ord2utf8(0x200A, class_utf8data);
2900 *class_utf8data++ = XCL_SINGLE;
2901 class_utf8data += _pcre_ord2utf8(0x202f, class_utf8data);
2902 *class_utf8data++ = XCL_SINGLE;
2903 class_utf8data += _pcre_ord2utf8(0x205f, class_utf8data);
2904 *class_utf8data++ = XCL_SINGLE;
2905 class_utf8data += _pcre_ord2utf8(0x3000, class_utf8data);
2906 }
2907 #endif
2908 continue;
2909 }
2910
2911 if (-c == ESC_H)
2912 {
2913 for (c = 0; c < 32; c++)
2914 {
2915 int x = 0xff;
2916 switch (c)
2917 {
2918 case 0x09/8: x ^= 1 << (0x09%8); break;
2919 case 0x20/8: x ^= 1 << (0x20%8); break;
2920 case 0xa0/8: x ^= 1 << (0xa0%8); break;
2921 default: break;
2922 }
2923 classbits[c] |= x;
2924 }
2925
2926 #ifdef SUPPORT_UTF8
2927 if (utf8)
2928 {
2929 class_utf8 = TRUE;
2930 *class_utf8data++ = XCL_RANGE;
2931 class_utf8data += _pcre_ord2utf8(0x0100, class_utf8data);
2932 class_utf8data += _pcre_ord2utf8(0x167f, class_utf8data);
2933 *class_utf8data++ = XCL_RANGE;
2934 class_utf8data += _pcre_ord2utf8(0x1681, class_utf8data);
2935 class_utf8data += _pcre_ord2utf8(0x180d, class_utf8data);
2936 *class_utf8data++ = XCL_RANGE;
2937 class_utf8data += _pcre_ord2utf8(0x180f, class_utf8data);
2938 class_utf8data += _pcre_ord2utf8(0x1fff, class_utf8data);
2939 *class_utf8data++ = XCL_RANGE;
2940 class_utf8data += _pcre_ord2utf8(0x200B, class_utf8data);
2941 class_utf8data += _pcre_ord2utf8(0x202e, class_utf8data);
2942 *class_utf8data++ = XCL_RANGE;
2943 class_utf8data += _pcre_ord2utf8(0x2030, class_utf8data);
2944 class_utf8data += _pcre_ord2utf8(0x205e, class_utf8data);
2945 *class_utf8data++ = XCL_RANGE;
2946 class_utf8data += _pcre_ord2utf8(0x2060, class_utf8data);
2947 class_utf8data += _pcre_ord2utf8(0x2fff, class_utf8data);
2948 *class_utf8data++ = XCL_RANGE;
2949 class_utf8data += _pcre_ord2utf8(0x3001, class_utf8data);
2950 class_utf8data += _pcre_ord2utf8(0x7fffffff, class_utf8data);
2951 }
2952 #endif
2953 continue;
2954 }
2955
2956 if (-c == ESC_v)
2957 {
2958 SETBIT(classbits, 0x0a); /* LF */
2959 SETBIT(classbits, 0x0b); /* VT */
2960 SETBIT(classbits, 0x0c); /* FF */
2961 SETBIT(classbits, 0x0d); /* CR */
2962 SETBIT(classbits, 0x85); /* NEL */
2963 #ifdef SUPPORT_UTF8
2964 if (utf8)
2965 {
2966 class_utf8 = TRUE;
2967 *class_utf8data++ = XCL_RANGE;
2968 class_utf8data += _pcre_ord2utf8(0x2028, class_utf8data);
2969 class_utf8data += _pcre_ord2utf8(0x2029, class_utf8data);
2970 }
2971 #endif
2972 continue;
2973 }
2974
2975 if (-c == ESC_V)
2976 {
2977 for (c = 0; c < 32; c++)
2978 {
2979 int x = 0xff;
2980 switch (c)
2981 {
2982 case 0x0a/8: x ^= 1 << (0x0a%8);
2983 x ^= 1 << (0x0b%8);
2984 x ^= 1 << (0x0c%8);
2985 x ^= 1 << (0x0d%8);
2986 break;
2987 case 0x85/8: x ^= 1 << (0x85%8); break;
2988 default: break;
2989 }
2990 classbits[c] |= x;
2991 }
2992
2993 #ifdef SUPPORT_UTF8
2994 if (utf8)
2995 {
2996 class_utf8 = TRUE;
2997 *class_utf8data++ = XCL_RANGE;
2998 class_utf8data += _pcre_ord2utf8(0x0100, class_utf8data);
2999 class_utf8data += _pcre_ord2utf8(0x2027, class_utf8data);
3000 *class_utf8data++ = XCL_RANGE;
3001 class_utf8data += _pcre_ord2utf8(0x2029, class_utf8data);
3002 class_utf8data += _pcre_ord2utf8(0x7fffffff, class_utf8data);
3003 }
3004 #endif
3005 continue;
3006 }
3007
3008 /* We need to deal with \P and \p in both phases. */
3009
3010 #ifdef SUPPORT_UCP
3011 if (-c == ESC_p || -c == ESC_P)
3012 {
3013 BOOL negated;
3014 int pdata;
3015 int ptype = get_ucp(&ptr, &negated, &pdata, errorcodeptr);
3016 if (ptype < 0) goto FAILED;
3017 class_utf8 = TRUE;
3018 *class_utf8data++ = ((-c == ESC_p) != negated)?
3019 XCL_PROP : XCL_NOTPROP;
3020 *class_utf8data++ = ptype;
3021 *class_utf8data++ = pdata;
3022 class_charcount -= 2; /* Not a < 256 character */
3023 continue;
3024 }
3025 #endif
3026 /* Unrecognized escapes are faulted if PCRE is running in its
3027 strict mode. By default, for compatibility with Perl, they are
3028 treated as literals. */
3029
3030 if ((options & PCRE_EXTRA) != 0)
3031 {
3032 *errorcodeptr = ERR7;
3033 goto FAILED;
3034 }
3035
3036 class_charcount -= 2; /* Undo the default count from above */
3037 c = *ptr; /* Get the final character and fall through */
3038 }
3039
3040 /* Fall through if we have a single character (c >= 0). This may be
3041 greater than 256 in UTF-8 mode. */
3042
3043 } /* End of backslash handling */
3044
3045 /* A single character may be followed by '-' to form a range. However,
3046 Perl does not permit ']' to be the end of the range. A '-' character
3047 at the end is treated as a literal. Perl ignores orphaned \E sequences
3048 entirely. The code for handling \Q and \E is messy. */
3049
3050 CHECK_RANGE:
3051 while (ptr[1] == '\\' && ptr[2] == 'E')
3052 {
3053 inescq = FALSE;
3054 ptr += 2;
3055 }
3056
3057 oldptr = ptr;
3058
3059 /* Remember \r or \n */
3060
3061 if (c == '\r' || c == '\n') cd->external_flags |= PCRE_HASCRORLF;
3062
3063 /* Check for range */
3064
3065 if (!inescq && ptr[1] == '-')
3066 {
3067 int d;
3068 ptr += 2;
3069 while (*ptr == '\\' && ptr[1] == 'E') ptr += 2;
3070
3071 /* If we hit \Q (not followed by \E) at this point, go into escaped
3072 mode. */
3073
3074 while (*ptr == '\\' && ptr[1] == 'Q')
3075 {
3076 ptr += 2;
3077 if (*ptr == '\\' && ptr[1] == 'E') { ptr += 2; continue; }
3078 inescq = TRUE;
3079 break;
3080 }
3081
3082 if (*ptr == 0 || (!inescq && *ptr == ']'))
3083 {
3084 ptr = oldptr;
3085 goto LONE_SINGLE_CHARACTER;
3086 }
3087
3088 #ifdef SUPPORT_UTF8
3089 if (utf8)
3090 { /* Braces are required because the */
3091 GETCHARLEN(d, ptr, ptr); /* macro generates multiple statements */
3092 }
3093 else
3094 #endif
3095 d = *ptr; /* Not UTF-8 mode */
3096
3097 /* The second part of a range can be a single-character escape, but
3098 not any of the other escapes. Perl 5.6 treats a hyphen as a literal
3099 in such circumstances. */
3100
3101 if (!inescq && d == '\\')
3102 {
3103 d = check_escape(&ptr, errorcodeptr, cd->bracount, options, TRUE);
3104 if (*errorcodeptr != 0) goto FAILED;
3105
3106 /* \b is backspace; \X is literal X; \R is literal R; any other
3107 special means the '-' was literal */
3108
3109 if (d < 0)
3110 {
3111 if (d == -ESC_b) d = '\b';
3112 else if (d == -ESC_X) d = 'X';
3113 else if (d == -ESC_R) d = 'R'; else
3114 {
3115 ptr = oldptr;
3116 goto LONE_SINGLE_CHARACTER; /* A few lines below */
3117 }
3118 }
3119 }
3120
3121 /* Check that the two values are in the correct order. Optimize
3122 one-character ranges */
3123
3124 if (d < c)
3125 {
3126 *errorcodeptr = ERR8;
3127 goto FAILED;
3128 }
3129
3130 if (d == c) goto LONE_SINGLE_CHARACTER; /* A few lines below */
3131
3132 /* Remember \r or \n */
3133
3134 if (d == '\r' || d == '\n') cd->external_flags |= PCRE_HASCRORLF;
3135
3136 /* In UTF-8 mode, if the upper limit is > 255, or > 127 for caseless
3137 matching, we have to use an XCLASS with extra data items. Caseless
3138 matching for characters > 127 is available only if UCP support is
3139 available. */
3140
3141 #ifdef SUPPORT_UTF8
3142 if (utf8 && (d > 255 || ((options & PCRE_CASELESS) != 0 && d > 127)))
3143 {
3144 class_utf8 = TRUE;
3145
3146 /* With UCP support, we can find the other case equivalents of
3147 the relevant characters. There may be several ranges. Optimize how
3148 they fit with the basic range. */
3149
3150 #ifdef SUPPORT_UCP
3151 if ((options & PCRE_CASELESS) != 0)
3152 {
3153 unsigned int occ, ocd;
3154 unsigned int cc = c;
3155 unsigned int origd = d;
3156 while (get_othercase_range(&cc, origd, &occ, &ocd))
3157 {
3158 if (occ >= (unsigned int)c &&
3159 ocd <= (unsigned int)d)
3160 continue; /* Skip embedded ranges */
3161
3162 if (occ < (unsigned int)c &&
3163 ocd >= (unsigned int)c - 1) /* Extend the basic range */
3164 { /* if there is overlap, */
3165 c = occ; /* noting that if occ < c */
3166 continue; /* we can't have ocd > d */
3167 } /* because a subrange is */
3168 if (ocd > (unsigned int)d &&
3169 occ <= (unsigned int)d + 1) /* always shorter than */
3170 { /* the basic range. */
3171 d = ocd;
3172 continue;
3173 }
3174
3175 if (occ == ocd)
3176 {
3177 *class_utf8data++ = XCL_SINGLE;
3178 }
3179 else
3180 {
3181 *class_utf8data++ = XCL_RANGE;
3182 class_utf8data += _pcre_ord2utf8(occ, class_utf8data);
3183 }
3184 class_utf8data += _pcre_ord2utf8(ocd, class_utf8data);
3185 }
3186 }
3187 #endif /* SUPPORT_UCP */
3188
3189 /* Now record the original range, possibly modified for UCP caseless
3190 overlapping ranges. */
3191
3192 *class_utf8data++ = XCL_RANGE;
3193 class_utf8data += _pcre_ord2utf8(c, class_utf8data);
3194 class_utf8data += _pcre_ord2utf8(d, class_utf8data);
3195
3196 /* With UCP support, we are done. Without UCP support, there is no
3197 caseless matching for UTF-8 characters > 127; we can use the bit map
3198 for the smaller ones. */
3199
3200 #ifdef SUPPORT_UCP
3201 continue; /* With next character in the class */
3202 #else
3203 if ((options & PCRE_CASELESS) == 0 || c > 127) continue;
3204
3205 /* Adjust upper limit and fall through to set up the map */
3206
3207 d = 127;
3208
3209 #endif /* SUPPORT_UCP */
3210 }
3211 #endif /* SUPPORT_UTF8 */
3212
3213 /* We use the bit map for all cases when not in UTF-8 mode; else
3214 ranges that lie entirely within 0-127 when there is UCP support; else
3215 for partial ranges without UCP support. */
3216
3217 class_charcount += d - c + 1;
3218 class_lastchar = d;
3219
3220 /* We can save a bit of time by skipping this in the pre-compile. */
3221
3222 if (lengthptr == NULL) for (; c <= d; c++)
3223 {
3224 classbits[c/8] |= (1 << (c&7));
3225 if ((options & PCRE_CASELESS) != 0)
3226 {
3227 int uc = cd->fcc[c]; /* flip case */
3228 classbits[uc/8] |= (1 << (uc&7));
3229 }
3230 }
3231
3232 continue; /* Go get the next char in the class */
3233 }
3234
3235 /* Handle a lone single character - we can get here for a normal
3236 non-escape char, or after \ that introduces a single character or for an
3237 apparent range that isn't. */
3238
3239 LONE_SINGLE_CHARACTER:
3240
3241 /* Handle a character that cannot go in the bit map */
3242
3243 #ifdef SUPPORT_UTF8
3244 if (utf8 && (c > 255 || ((options & PCRE_CASELESS) != 0 && c > 127)))
3245 {
3246 class_utf8 = TRUE;
3247 *class_utf8data++ = XCL_SINGLE;
3248 class_utf8data += _pcre_ord2utf8(c, class_utf8data);
3249
3250 #ifdef SUPPORT_UCP
3251 if ((options & PCRE_CASELESS) != 0)
3252 {
3253 unsigned int othercase;
3254 if ((othercase = _pcre_ucp_othercase(c)) != NOTACHAR)
3255 {
3256 *class_utf8data++ = XCL_SINGLE;
3257 class_utf8data += _pcre_ord2utf8(othercase, class_utf8data);
3258 }
3259 }
3260 #endif /* SUPPORT_UCP */
3261
3262 }
3263 else
3264 #endif /* SUPPORT_UTF8 */
3265
3266 /* Handle a single-byte character */
3267 {
3268 classbits[c/8] |= (1 << (c&7));
3269 if ((options & PCRE_CASELESS) != 0)
3270 {
3271 c = cd->fcc[c]; /* flip case */
3272 classbits[c/8] |= (1 << (c&7));
3273 }
3274 class_charcount++;
3275 class_lastchar = c;
3276 }
3277 }
3278
3279 /* Loop until ']' reached. This "while" is the end of the "do" above. */
3280
3281 while ((c = *(++ptr)) != 0 && (c != ']' || inescq));
3282
3283 if (c == 0) /* Missing terminating ']' */
3284 {
3285 *errorcodeptr = ERR6;
3286 goto FAILED;
3287 }
3288
3289
3290 /* This code has been disabled because it would mean that \s counts as
3291 an explicit \r or \n reference, and that's not really what is wanted. Now
3292 we set the flag only if there is a literal "\r" or "\n" in the class. */
3293
3294 #if 0
3295 /* Remember whether \r or \n are in this class */
3296
3297 if (negate_class)
3298 {
3299 if ((classbits[1] & 0x24) != 0x24) cd->external_flags |= PCRE_HASCRORLF;
3300 }
3301 else
3302 {
3303 if ((classbits[1] & 0x24) != 0) cd->external_flags |= PCRE_HASCRORLF;
3304 }
3305 #endif
3306
3307
3308 /* If class_charcount is 1, we saw precisely one character whose value is
3309 less than 256. As long as there were no characters >= 128 and there was no
3310 use of \p or \P, in other words, no use of any XCLASS features, we can
3311 optimize.
3312
3313 In UTF-8 mode, we can optimize the negative case only if there were no
3314 characters >= 128 because OP_NOT and the related opcodes like OP_NOTSTAR
3315 operate on single-bytes only. This is an historical hangover. Maybe one day
3316 we can tidy these opcodes to handle multi-byte characters.
3317
3318 The optimization throws away the bit map. We turn the item into a
3319 1-character OP_CHAR[NC] if it's positive, or OP_NOT if it's negative. Note
3320 that OP_NOT does not support multibyte characters. In the positive case, it
3321 can cause firstbyte to be set. Otherwise, there can be no first char if
3322 this item is first, whatever repeat count may follow. In the case of
3323 reqbyte, save the previous value for reinstating. */
3324
3325 #ifdef SUPPORT_UTF8
3326 if (class_charcount == 1 && !class_utf8 &&
3327 (!utf8 || !negate_class || class_lastchar < 128))
3328 #else
3329 if (class_charcount == 1)
3330 #endif
3331 {
3332 zeroreqbyte = reqbyte;
3333
3334 /* The OP_NOT opcode works on one-byte characters only. */
3335
3336 if (negate_class)
3337 {
3338 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
3339 zerofirstbyte = firstbyte;
3340 *code++ = OP_NOT;
3341 *code++ = class_lastchar;
3342 break;
3343 }
3344
3345 /* For a single, positive character, get the value into mcbuffer, and
3346 then we can handle this with the normal one-character code. */
3347
3348 #ifdef SUPPORT_UTF8
3349 if (utf8 && class_lastchar > 127)
3350 mclength = _pcre_ord2utf8(class_lastchar, mcbuffer);
3351 else
3352 #endif
3353 {
3354 mcbuffer[0] = class_lastchar;
3355 mclength = 1;
3356 }
3357 goto ONE_CHAR;
3358 } /* End of 1-char optimization */
3359
3360 /* The general case - not the one-char optimization. If this is the first
3361 thing in the branch, there can be no first char setting, whatever the
3362 repeat count. Any reqbyte setting must remain unchanged after any kind of
3363 repeat. */
3364
3365 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
3366 zerofirstbyte = firstbyte;
3367 zeroreqbyte = reqbyte;
3368
3369 /* If there are characters with values > 255, we have to compile an
3370 extended class, with its own opcode, unless there was a negated special
3371 such as \S in the class, because in that case all characters > 255 are in
3372 the class, so any that were explicitly given as well can be ignored. If
3373 (when there are explicit characters > 255 that must be listed) there are no
3374 characters < 256, we can omit the bitmap in the actual compiled code. */
3375
3376 #ifdef SUPPORT_UTF8
3377 if (class_utf8 && !should_flip_negation)
3378 {
3379 *class_utf8data++ = XCL_END; /* Marks the end of extra data */
3380 *code++ = OP_XCLASS;
3381 code += LINK_SIZE;
3382 *code = negate_class? XCL_NOT : 0;
3383
3384 /* If the map is required, move up the extra data to make room for it;
3385 otherwise just move the code pointer to the end of the extra data. */
3386
3387 if (class_charcount > 0)
3388 {
3389 *code++ |= XCL_MAP;
3390 memmove(code + 32, code, class_utf8data - code);
3391 memcpy(code, classbits, 32);
3392 code = class_utf8data + 32;
3393 }
3394 else code = class_utf8data;
3395
3396 /* Now fill in the complete length of the item */
3397
3398 PUT(previous, 1, code - previous);
3399 break; /* End of class handling */
3400 }
3401 #endif
3402
3403 /* If there are no characters > 255, set the opcode to OP_CLASS or
3404 OP_NCLASS, depending on whether the whole class was negated and whether
3405 there were negative specials such as \S in the class. Then copy the 32-byte
3406 map into the code vector, negating it if necessary. */
3407
3408 *code++ = (negate_class == should_flip_negation) ? OP_CLASS : OP_NCLASS;
3409 if (negate_class)
3410 {
3411 if (lengthptr == NULL) /* Save time in the pre-compile phase */
3412 for (c = 0; c < 32; c++) code[c] = ~classbits[c];
3413 }
3414 else
3415 {
3416 memcpy(code, classbits, 32);
3417 }
3418 code += 32;
3419 break;
3420
3421
3422 /* ===================================================================*/
3423 /* Various kinds of repeat; '{' is not necessarily a quantifier, but this
3424 has been tested above. */
3425
3426 case '{':
3427 if (!is_quantifier) goto NORMAL_CHAR;
3428 ptr = read_repeat_counts(ptr+1, &repeat_min, &repeat_max, errorcodeptr);
3429 if (*errorcodeptr != 0) goto FAILED;
3430 goto REPEAT;
3431
3432 case '*':
3433 repeat_min = 0;
3434 repeat_max = -1;
3435 goto REPEAT;
3436
3437 case '+':
3438 repeat_min = 1;
3439 repeat_max = -1;
3440 goto REPEAT;
3441
3442 case '?':
3443 repeat_min = 0;
3444 repeat_max = 1;
3445
3446 REPEAT:
3447 if (previous == NULL)
3448 {
3449 *errorcodeptr = ERR9;
3450 goto FAILED;
3451 }
3452
3453 if (repeat_min == 0)
3454 {
3455 firstbyte = zerofirstbyte; /* Adjust for zero repeat */
3456 reqbyte = zeroreqbyte; /* Ditto */
3457 }
3458
3459 /* Remember whether this is a variable length repeat */
3460
3461 reqvary = (repeat_min == repeat_max)? 0 : REQ_VARY;
3462
3463 op_type = 0; /* Default single-char op codes */
3464 possessive_quantifier = FALSE; /* Default not possessive quantifier */
3465
3466 /* Save start of previous item, in case we have to move it up to make space
3467 for an inserted OP_ONCE for the additional '+' extension. */
3468
3469 tempcode = previous;
3470
3471 /* If the next character is '+', we have a possessive quantifier. This
3472 implies greediness, whatever the setting of the PCRE_UNGREEDY option.
3473 If the next character is '?' this is a minimizing repeat, by default,
3474 but if PCRE_UNGREEDY is set, it works the other way round. We change the
3475 repeat type to the non-default. */
3476
3477 if (ptr[1] == '+')
3478 {
3479 repeat_type = 0; /* Force greedy */
3480 possessive_quantifier = TRUE;
3481 ptr++;
3482 }
3483 else if (ptr[1] == '?')
3484 {
3485 repeat_type = greedy_non_default;
3486 ptr++;
3487 }
3488 else repeat_type = greedy_default;
3489
3490 /* If previous was a character match, abolish the item and generate a
3491 repeat item instead. If a char item has a minumum of more than one, ensure
3492 that it is set in reqbyte - it might not be if a sequence such as x{3} is
3493 the first thing in a branch because the x will have gone into firstbyte
3494 instead. */
3495
3496 if (*previous == OP_CHAR || *previous == OP_CHARNC)
3497 {
3498 /* Deal with UTF-8 characters that take up more than one byte. It's
3499 easier to write this out separately than try to macrify it. Use c to
3500 hold the length of the character in bytes, plus 0x80 to flag that it's a
3501 length rather than a small character. */
3502
3503 #ifdef SUPPORT_UTF8
3504 if (utf8 && (code[-1] & 0x80) != 0)
3505 {
3506 uschar *lastchar = code - 1;
3507 while((*lastchar & 0xc0) == 0x80) lastchar--;
3508 c = code - lastchar; /* Length of UTF-8 character */
3509 memcpy(utf8_char, lastchar, c); /* Save the char */
3510 c |= 0x80; /* Flag c as a length */
3511 }
3512 else
3513 #endif
3514
3515 /* Handle the case of a single byte - either with no UTF8 support, or
3516 with UTF-8 disabled, or for a UTF-8 character < 128. */
3517
3518 {
3519 c = code[-1];
3520 if (repeat_min > 1) reqbyte = c | req_caseopt | cd->req_varyopt;
3521 }
3522
3523 /* If the repetition is unlimited, it pays to see if the next thing on
3524 the line is something that cannot possibly match this character. If so,
3525 automatically possessifying this item gains some performance in the case
3526 where the match fails. */
3527
3528 if (!possessive_quantifier &&
3529 repeat_max < 0 &&
3530 check_auto_possessive(*previous, c, utf8, utf8_char, ptr + 1,
3531 options, cd))
3532 {
3533 repeat_type = 0; /* Force greedy */
3534 possessive_quantifier = TRUE;
3535 }
3536
3537 goto OUTPUT_SINGLE_REPEAT; /* Code shared with single character types */
3538 }
3539
3540 /* If previous was a single negated character ([^a] or similar), we use
3541 one of the special opcodes, replacing it. The code is shared with single-
3542 character repeats by setting opt_type to add a suitable offset into
3543 repeat_type. We can also test for auto-possessification. OP_NOT is
3544 currently used only for single-byte chars. */
3545
3546 else if (*previous == OP_NOT)
3547 {
3548 op_type = OP_NOTSTAR - OP_STAR; /* Use "not" opcodes */
3549 c = previous[1];
3550 if (!possessive_quantifier &&
3551 repeat_max < 0 &&
3552 check_auto_possessive(OP_NOT, c, utf8, NULL, ptr + 1, options, cd))
3553 {
3554 repeat_type = 0; /* Force greedy */
3555 possessive_quantifier = TRUE;
3556 }
3557 goto OUTPUT_SINGLE_REPEAT;
3558 }
3559
3560 /* If previous was a character type match (\d or similar), abolish it and
3561 create a suitable repeat item. The code is shared with single-character
3562 repeats by setting op_type to add a suitable offset into repeat_type. Note
3563 the the Unicode property types will be present only when SUPPORT_UCP is
3564 defined, but we don't wrap the little bits of code here because it just
3565 makes it horribly messy. */
3566
3567 else if (*previous < OP_EODN)
3568 {
3569 uschar *oldcode;
3570 int prop_type, prop_value;
3571 op_type = OP_TYPESTAR - OP_STAR; /* Use type opcodes */
3572 c = *previous;
3573
3574 if (!possessive_quantifier &&
3575 repeat_max < 0 &&
3576 check_auto_possessive(c, 0, utf8, NULL, ptr + 1, options, cd))
3577 {
3578 repeat_type = 0; /* Force greedy */
3579 possessive_quantifier = TRUE;
3580 }
3581
3582 OUTPUT_SINGLE_REPEAT:
3583 if (*previous == OP_PROP || *previous == OP_NOTPROP)
3584 {
3585 prop_type = previous[1];
3586 prop_value = previous[2];
3587 }
3588 else prop_type = prop_value = -1;
3589
3590 oldcode = code;
3591 code = previous; /* Usually overwrite previous item */
3592
3593 /* If the maximum is zero then the minimum must also be zero; Perl allows
3594 this case, so we do too - by simply omitting the item altogether. */
3595
3596 if (repeat_max == 0) goto END_REPEAT;
3597
3598 /* All real repeats make it impossible to handle partial matching (maybe
3599 one day we will be able to remove this restriction). */
3600
3601 if (repeat_max != 1) cd->external_flags |= PCRE_NOPARTIAL;
3602
3603 /* Combine the op_type with the repeat_type */
3604
3605 repeat_type += op_type;
3606
3607 /* A minimum of zero is handled either as the special case * or ?, or as
3608 an UPTO, with the maximum given. */
3609
3610 if (repeat_min == 0)
3611 {
3612 if (repeat_max == -1) *code++ = OP_STAR + repeat_type;
3613 else if (repeat_max == 1) *code++ = OP_QUERY + repeat_type;
3614 else
3615 {
3616 *code++ = OP_UPTO + repeat_type;
3617 PUT2INC(code, 0, repeat_max);
3618 }
3619 }
3620
3621 /* A repeat minimum of 1 is optimized into some special cases. If the
3622 maximum is unlimited, we use OP_PLUS. Otherwise, the original item is
3623 left in place and, if the maximum is greater than 1, we use OP_UPTO with
3624 one less than the maximum. */
3625
3626 else if (repeat_min == 1)
3627 {
3628 if (repeat_max == -1)
3629 *code++ = OP_PLUS + repeat_type;
3630 else
3631 {
3632 code = oldcode; /* leave previous item in place */
3633 if (repeat_max == 1) goto END_REPEAT;
3634 *code++ = OP_UPTO + repeat_type;
3635 PUT2INC(code, 0, repeat_max - 1);
3636 }
3637 }
3638
3639 /* The case {n,n} is just an EXACT, while the general case {n,m} is
3640 handled as an EXACT followed by an UPTO. */
3641
3642 else
3643 {
3644 *code++ = OP_EXACT + op_type; /* NB EXACT doesn't have repeat_type */
3645 PUT2INC(code, 0, repeat_min);
3646
3647 /* If the maximum is unlimited, insert an OP_STAR. Before doing so,
3648 we have to insert the character for the previous code. For a repeated
3649 Unicode property match, there are two extra bytes that define the
3650 required property. In UTF-8 mode, long characters have their length in
3651 c, with the 0x80 bit as a flag. */
3652
3653 if (repeat_max < 0)
3654 {
3655 #ifdef SUPPORT_UTF8
3656 if (utf8 && c >= 128)
3657 {
3658 memcpy(code, utf8_char, c & 7);
3659 code += c & 7;
3660 }
3661 else
3662 #endif
3663 {
3664 *code++ = c;
3665 if (prop_type >= 0)
3666 {
3667 *code++ = prop_type;
3668 *code++ = prop_value;
3669 }
3670 }
3671 *code++ = OP_STAR + repeat_type;
3672 }
3673
3674 /* Else insert an UPTO if the max is greater than the min, again
3675 preceded by the character, for the previously inserted code. If the
3676 UPTO is just for 1 instance, we can use QUERY instead. */
3677
3678 else if (repeat_max != repeat_min)
3679 {
3680 #ifdef SUPPORT_UTF8
3681 if (utf8 && c >= 128)
3682 {
3683 memcpy(code, utf8_char, c & 7);
3684 code += c & 7;
3685 }
3686 else
3687 #endif
3688 *code++ = c;
3689 if (prop_type >= 0)
3690 {
3691 *code++ = prop_type;
3692 *code++ = prop_value;
3693 }
3694 repeat_max -= repeat_min;
3695
3696 if (repeat_max == 1)
3697 {
3698 *code++ = OP_QUERY + repeat_type;
3699 }
3700 else
3701 {
3702 *code++ = OP_UPTO + repeat_type;
3703 PUT2INC(code, 0, repeat_max);
3704 }
3705 }
3706 }
3707
3708 /* The character or character type itself comes last in all cases. */
3709
3710 #ifdef SUPPORT_UTF8
3711 if (utf8 && c >= 128)
3712 {
3713 memcpy(code, utf8_char, c & 7);
3714 code += c & 7;
3715 }
3716 else
3717 #endif
3718 *code++ = c;
3719
3720 /* For a repeated Unicode property match, there are two extra bytes that
3721 define the required property. */
3722
3723 #ifdef SUPPORT_UCP
3724 if (prop_type >= 0)
3725 {
3726 *code++ = prop_type;
3727 *code++ = prop_value;
3728 }
3729 #endif
3730 }
3731
3732 /* If previous was a character class or a back reference, we put the repeat
3733 stuff after it, but just skip the item if the repeat was {0,0}. */
3734
3735 else if (*previous == OP_CLASS ||
3736 *previous == OP_NCLASS ||
3737 #ifdef SUPPORT_UTF8
3738 *previous == OP_XCLASS ||
3739 #endif
3740 *previous == OP_REF)
3741 {
3742 if (repeat_max == 0)
3743 {
3744 code = previous;
3745 goto END_REPEAT;
3746 }
3747
3748 /* All real repeats make it impossible to handle partial matching (maybe
3749 one day we will be able to remove this restriction). */
3750
3751 if (repeat_max != 1) cd->external_flags |= PCRE_NOPARTIAL;
3752
3753 if (repeat_min == 0 && repeat_max == -1)
3754 *code++ = OP_CRSTAR + repeat_type;
3755 else if (repeat_min == 1 && repeat_max == -1)
3756 *code++ = OP_CRPLUS + repeat_type;
3757 else if (repeat_min == 0 && repeat_max == 1)
3758 *code++ = OP_CRQUERY + repeat_type;
3759 else
3760 {
3761 *code++ = OP_CRRANGE + repeat_type;
3762 PUT2INC(code, 0, repeat_min);
3763 if (repeat_max == -1) repeat_max = 0; /* 2-byte encoding for max */
3764 PUT2INC(code, 0, repeat_max);
3765 }
3766 }
3767
3768 /* If previous was a bracket group, we may have to replicate it in certain
3769 cases. */
3770
3771 else if (*previous == OP_BRA || *previous == OP_CBRA ||
3772 *previous == OP_ONCE || *previous == OP_COND)
3773 {
3774 register int i;
3775 int ketoffset = 0;
3776 int len = code - previous;
3777 uschar *bralink = NULL;
3778
3779 /* Repeating a DEFINE group is pointless */
3780
3781 if (*previous == OP_COND && previous[LINK_SIZE+1] == OP_DEF)
3782 {
3783 *errorcodeptr = ERR55;
3784 goto FAILED;
3785 }
3786
3787 /* If the maximum repeat count is unlimited, find the end of the bracket
3788 by scanning through from the start, and compute the offset back to it
3789 from the current code pointer. There may be an OP_OPT setting following
3790 the final KET, so we can't find the end just by going back from the code
3791 pointer. */
3792
3793 if (repeat_max == -1)
3794 {
3795 register uschar *ket = previous;
3796 do ket += GET(ket, 1); while (*ket != OP_KET);
3797 ketoffset = code - ket;
3798 }
3799
3800 /* The case of a zero minimum is special because of the need to stick
3801 OP_BRAZERO in front of it, and because the group appears once in the
3802 data, whereas in other cases it appears the minimum number of times. For
3803 this reason, it is simplest to treat this case separately, as otherwise
3804 the code gets far too messy. There are several special subcases when the
3805 minimum is zero. */
3806
3807 if (repeat_min == 0)
3808 {
3809 /* If the maximum is also zero, we just omit the group from the output
3810 altogether. */
3811
3812 if (repeat_max == 0)
3813 {
3814 code = previous;
3815 goto END_REPEAT;
3816 }
3817
3818 /* If the maximum is 1 or unlimited, we just have to stick in the
3819 BRAZERO and do no more at this point. However, we do need to adjust
3820 any OP_RECURSE calls inside the group that refer to the group itself or
3821 any internal or forward referenced group, because the offset is from
3822 the start of the whole regex. Temporarily terminate the pattern while
3823 doing this. */
3824
3825 if (repeat_max <= 1)
3826 {
3827 *code = OP_END;
3828 adjust_recurse(previous, 1, utf8, cd, save_hwm);
3829 memmove(previous+1, previous, len);
3830 code++;
3831 *previous++ = OP_BRAZERO + repeat_type;
3832 }
3833
3834 /* If the maximum is greater than 1 and limited, we have to replicate
3835 in a nested fashion, sticking OP_BRAZERO before each set of brackets.
3836 The first one has to be handled carefully because it's the original
3837 copy, which has to be moved up. The remainder can be handled by code
3838 that is common with the non-zero minimum case below. We have to
3839 adjust the value or repeat_max, since one less copy is required. Once
3840 again, we may have to adjust any OP_RECURSE calls inside the group. */
3841
3842 else
3843 {
3844 int offset;
3845 *code = OP_END;
3846 adjust_recurse(previous, 2 + LINK_SIZE, utf8, cd, save_hwm);
3847 memmove(previous + 2 + LINK_SIZE, previous, len);
3848 code += 2 + LINK_SIZE;
3849 *previous++ = OP_BRAZERO + repeat_type;
3850 *previous++ = OP_BRA;
3851
3852 /* We chain together the bracket offset fields that have to be
3853 filled in later when the ends of the brackets are reached. */
3854
3855 offset = (bralink == NULL)? 0 : previous - bralink;
3856 bralink = previous;
3857 PUTINC(previous, 0, offset);
3858 }
3859
3860 repeat_max--;
3861 }
3862
3863 /* If the minimum is greater than zero, replicate the group as many
3864 times as necessary, and adjust the maximum to the number of subsequent
3865 copies that we need. If we set a first char from the group, and didn't
3866 set a required char, copy the latter from the former. If there are any
3867 forward reference subroutine calls in the group, there will be entries on
3868 the workspace list; replicate these with an appropriate increment. */
3869
3870 else
3871 {
3872 if (repeat_min > 1)
3873 {
3874 /* In the pre-compile phase, we don't actually do the replication. We
3875 just adjust the length as if we had. Do some paranoid checks for
3876 potential integer overflow. */
3877
3878 if (lengthptr != NULL)
3879 {
3880 int delta = (repeat_min - 1)*length_prevgroup;
3881 if ((double)(repeat_min - 1)*(double)length_prevgroup >
3882 (double)INT_MAX ||
3883 OFLOW_MAX - *lengthptr < delta)
3884 {
3885 *errorcodeptr = ERR20;
3886 goto FAILED;
3887 }
3888 *lengthptr += delta;
3889 }
3890
3891 /* This is compiling for real */
3892
3893 else
3894 {
3895 if (groupsetfirstbyte && reqbyte < 0) reqbyte = firstbyte;
3896 for (i = 1; i < repeat_min; i++)
3897 {
3898 uschar *hc;
3899 uschar *this_hwm = cd->hwm;
3900 memcpy(code, previous, len);
3901 for (hc = save_hwm; hc < this_hwm; hc += LINK_SIZE)
3902 {
3903 PUT(cd->hwm, 0, GET(hc, 0) + len);
3904 cd->hwm += LINK_SIZE;
3905 }
3906 save_hwm = this_hwm;
3907 code += len;
3908 }
3909 }
3910 }
3911
3912 if (repeat_max > 0) repeat_max -= repeat_min;
3913 }
3914
3915 /* This code is common to both the zero and non-zero minimum cases. If
3916 the maximum is limited, it replicates the group in a nested fashion,
3917 remembering the bracket starts on a stack. In the case of a zero minimum,
3918 the first one was set up above. In all cases the repeat_max now specifies
3919 the number of additional copies needed. Again, we must remember to
3920 replicate entries on the forward reference list. */
3921
3922 if (repeat_max >= 0)
3923 {
3924 /* In the pre-compile phase, we don't actually do the replication. We
3925 just adjust the length as if we had. For each repetition we must add 1
3926 to the length for BRAZERO and for all but the last repetition we must
3927 add 2 + 2*LINKSIZE to allow for the nesting that occurs. Do some
3928 paranoid checks to avoid integer overflow. */
3929
3930 if (lengthptr != NULL && repeat_max > 0)
3931 {
3932 int delta = repeat_max * (length_prevgroup + 1 + 2 + 2*LINK_SIZE) -
3933 2 - 2*LINK_SIZE; /* Last one doesn't nest */
3934 if ((double)repeat_max *
3935 (double)(length_prevgroup + 1 + 2 + 2*LINK_SIZE)
3936 > (double)INT_MAX ||
3937 OFLOW_MAX - *lengthptr < delta)
3938 {
3939 *errorcodeptr = ERR20;
3940 goto FAILED;
3941 }
3942 *lengthptr += delta;
3943 }
3944
3945 /* This is compiling for real */
3946
3947 else for (i = repeat_max - 1; i >= 0; i--)
3948 {
3949 uschar *hc;
3950 uschar *this_hwm = cd->hwm;
3951
3952 *code++ = OP_BRAZERO + repeat_type;
3953
3954 /* All but the final copy start a new nesting, maintaining the
3955 chain of brackets outstanding. */
3956
3957 if (i != 0)
3958 {
3959 int offset;
3960 *code++ = OP_BRA;
3961 offset = (bralink == NULL)? 0 : code - bralink;
3962 bralink = code;
3963 PUTINC(code, 0, offset);
3964 }
3965
3966 memcpy(code, previous, len);
3967 for (hc = save_hwm; hc < this_hwm; hc += LINK_SIZE)
3968 {
3969 PUT(cd->hwm, 0, GET(hc, 0) + len + ((i != 0)? 2+LINK_SIZE : 1));
3970 cd->hwm += LINK_SIZE;
3971 }
3972 save_hwm = this_hwm;
3973 code += len;
3974 }
3975
3976 /* Now chain through the pending brackets, and fill in their length
3977 fields (which are holding the chain links pro tem). */
3978
3979 while (bralink != NULL)
3980 {
3981 int oldlinkoffset;
3982 int offset = code - bralink + 1;
3983 uschar *bra = code - offset;
3984 oldlinkoffset = GET(bra, 1);
3985 bralink = (oldlinkoffset == 0)? NULL : bralink - oldlinkoffset;
3986 *code++ = OP_KET;
3987 PUTINC(code, 0, offset);
3988 PUT(bra, 1, offset);
3989 }
3990 }
3991
3992 /* If the maximum is unlimited, set a repeater in the final copy. We
3993 can't just offset backwards from the current code point, because we
3994 don't know if there's been an options resetting after the ket. The
3995 correct offset was computed above.
3996
3997 Then, when we are doing the actual compile phase, check to see whether
3998 this group is a non-atomic one that could match an empty string. If so,
3999 convert the initial operator to the S form (e.g. OP_BRA -> OP_SBRA) so
4000 that runtime checking can be done. [This check is also applied to
4001 atomic groups at runtime, but in a different way.] */
4002
4003 else
4004 {
4005 uschar *ketcode = code - ketoffset;
4006 uschar *bracode = ketcode - GET(ketcode, 1);
4007 *ketcode = OP_KETRMAX + repeat_type;
4008 if (lengthptr == NULL && *bracode != OP_ONCE)
4009 {
4010 uschar *scode = bracode;
4011 do
4012 {
4013 if (could_be_empty_branch(scode, ketcode, utf8))
4014 {
4015 *bracode += OP_SBRA - OP_BRA;
4016 break;
4017 }
4018 scode += GET(scode, 1);
4019 }
4020 while (*scode == OP_ALT);
4021 }
4022 }
4023 }
4024
4025 /* Else there's some kind of shambles */
4026
4027 else
4028 {
4029 *errorcodeptr = ERR11;
4030 goto FAILED;
4031 }
4032
4033 /* If the character following a repeat is '+', or if certain optimization
4034 tests above succeeded, possessive_quantifier is TRUE. For some of the
4035 simpler opcodes, there is an special alternative opcode for this. For
4036 anything else, we wrap the entire repeated item inside OP_ONCE brackets.
4037 The '+' notation is just syntactic sugar, taken from Sun's Java package,
4038 but the special opcodes can optimize it a bit. The repeated item starts at
4039 tempcode, not at previous, which might be the first part of a string whose
4040 (former) last char we repeated.
4041
4042 Possessifying an 'exact' quantifier has no effect, so we can ignore it. But
4043 an 'upto' may follow. We skip over an 'exact' item, and then test the
4044 length of what remains before proceeding. */
4045
4046 if (possessive_quantifier)
4047 {
4048 int len;
4049 if (*tempcode == OP_EXACT || *tempcode == OP_TYPEEXACT ||
4050 *tempcode == OP_NOTEXACT)
4051 tempcode += _pcre_OP_lengths[*tempcode] +
4052 ((*tempcode == OP_TYPEEXACT &&
4053 (tempcode[3] == OP_PROP || tempcode[3] == OP_NOTPROP))? 2:0);
4054 len = code - tempcode;
4055 if (len > 0) switch (*tempcode)
4056 {
4057 case OP_STAR: *tempcode = OP_POSSTAR; break;
4058 case OP_PLUS: *tempcode = OP_POSPLUS; break;
4059 case OP_QUERY: *tempcode = OP_POSQUERY; break;
4060 case OP_UPTO: *tempcode = OP_POSUPTO; break;
4061
4062 case OP_TYPESTAR: *tempcode = OP_TYPEPOSSTAR; break;
4063 case OP_TYPEPLUS: *tempcode = OP_TYPEPOSPLUS; break;
4064 case OP_TYPEQUERY: *tempcode = OP_TYPEPOSQUERY; break;
4065 case OP_TYPEUPTO: *tempcode = OP_TYPEPOSUPTO; break;
4066
4067 case OP_NOTSTAR: *tempcode = OP_NOTPOSSTAR; break;
4068 case OP_NOTPLUS: *tempcode = OP_NOTPOSPLUS; break;
4069 case OP_NOTQUERY: *tempcode = OP_NOTPOSQUERY; break;
4070 case OP_NOTUPTO: *tempcode = OP_NOTPOSUPTO; break;
4071
4072 default:
4073 memmove(tempcode + 1+LINK_SIZE, tempcode, len);
4074 code += 1 + LINK_SIZE;
4075 len += 1 + LINK_SIZE;
4076 tempcode[0] = OP_ONCE;
4077 *code++ = OP_KET;
4078 PUTINC(code, 0, len);
4079 PUT(tempcode, 1, len);
4080 break;
4081 }
4082 }
4083
4084 /* In all case we no longer have a previous item. We also set the
4085 "follows varying string" flag for subsequently encountered reqbytes if
4086 it isn't already set and we have just passed a varying length item. */
4087
4088 END_REPEAT:
4089 previous = NULL;
4090 cd->req_varyopt |= reqvary;
4091 break;
4092
4093
4094 /* ===================================================================*/
4095 /* Start of nested parenthesized sub-expression, or comment or lookahead or
4096 lookbehind or option setting or condition or all the other extended
4097 parenthesis forms. */
4098
4099 case '(':
4100 newoptions = options;
4101 skipbytes = 0;
4102 bravalue = OP_CBRA;
4103 save_hwm = cd->hwm;
4104 reset_bracount = FALSE;
4105
4106 /* First deal with various "verbs" that can be introduced by '*'. */
4107
4108 if (*(++ptr) == '*' && (cd->ctypes[ptr[1]] & ctype_letter) != 0)
4109 {
4110 int i, namelen;
4111 const char *vn = verbnames;
4112 const uschar *name = ++ptr;
4113 previous = NULL;
4114 while ((cd->ctypes[*++ptr] & ctype_letter) != 0);
4115 if (*ptr == ':')
4116 {
4117 *errorcodeptr = ERR59; /* Not supported */
4118 goto FAILED;
4119 }
4120 if (*ptr != ')')
4121 {
4122 *errorcodeptr = ERR60;
4123 goto FAILED;
4124 }
4125 namelen = ptr - name;
4126 for (i = 0; i < verbcount; i++)
4127 {
4128 if (namelen == verbs[i].len &&
4129 strncmp((char *)name, vn, namelen) == 0)
4130 {
4131 *code = verbs[i].op;
4132 if (*code++ == OP_ACCEPT) cd->had_accept = TRUE;
4133 break;
4134 }
4135 vn += verbs[i].len + 1;
4136 }
4137 if (i < verbcount) continue;
4138 *errorcodeptr = ERR60;
4139 goto FAILED;
4140 }
4141
4142 /* Deal with the extended parentheses; all are introduced by '?', and the
4143 appearance of any of them means that this is not a capturing group. */
4144
4145 else if (*ptr == '?')
4146 {
4147 int i, set, unset, namelen;
4148 int *optset;
4149 const uschar *name;
4150 uschar *slot;
4151
4152 switch (*(++ptr))
4153 {
4154 case '#': /* Comment; skip to ket */
4155 ptr++;
4156 while (*ptr != 0 && *ptr != ')') ptr++;
4157 if (*ptr == 0)
4158 {
4159 *errorcodeptr = ERR18;
4160 goto FAILED;
4161 }
4162 continue;
4163
4164
4165 /* ------------------------------------------------------------ */
4166 case '|': /* Reset capture count for each branch */
4167 reset_bracount = TRUE;
4168 /* Fall through */
4169
4170 /* ------------------------------------------------------------ */
4171 case ':': /* Non-capturing bracket */
4172 bravalue = OP_BRA;
4173 ptr++;
4174 break;
4175
4176
4177 /* ------------------------------------------------------------ */
4178 case '(':
4179 bravalue = OP_COND; /* Conditional group */
4180
4181 /* A condition can be an assertion, a number (referring to a numbered
4182 group), a name (referring to a named group), or 'R', referring to
4183 recursion. R<digits> and R&name are also permitted for recursion tests.
4184
4185 There are several syntaxes for testing a named group: (?(name)) is used
4186 by Python; Perl 5.10 onwards uses (?(<name>) or (?('name')).
4187
4188 There are two unfortunate ambiguities, caused by history. (a) 'R' can
4189 be the recursive thing or the name 'R' (and similarly for 'R' followed
4190 by digits), and (b) a number could be a name that consists of digits.
4191 In both cases, we look for a name first; if not found, we try the other
4192 cases. */
4193
4194 /* For conditions that are assertions, check the syntax, and then exit
4195 the switch. This will take control down to where bracketed groups,
4196 including assertions, are processed. */
4197
4198 if (ptr[1] == '?' && (ptr[2] == '=' || ptr[2] == '!' || ptr[2] == '<'))
4199 break;
4200
4201 /* Most other conditions use OP_CREF (a couple change to OP_RREF
4202 below), and all need to skip 3 bytes at the start of the group. */
4203
4204 code[1+LINK_SIZE] = OP_CREF;
4205 skipbytes = 3;
4206 refsign = -1;
4207
4208 /* Check for a test for recursion in a named group. */
4209
4210 if (ptr[1] == 'R' && ptr[2] == '&')
4211 {
4212 terminator = -1;
4213 ptr += 2;
4214 code[1+LINK_SIZE] = OP_RREF; /* Change the type of test */
4215 }
4216
4217 /* Check for a test for a named group's having been set, using the Perl
4218 syntax (?(<name>) or (?('name') */
4219
4220 else if (ptr[1] == '<')
4221 {
4222 terminator = '>';
4223 ptr++;
4224 }
4225 else if (ptr[1] == '\'')
4226 {
4227 terminator = '\'';
4228 ptr++;
4229 }
4230 else
4231 {
4232 terminator = 0;
4233 if (ptr[1] == '-' || ptr[1] == '+') refsign = *(++ptr);
4234 }
4235
4236 /* We now expect to read a name; any thing else is an error */
4237
4238 if ((cd->ctypes[ptr[1]] & ctype_word) == 0)
4239 {
4240 ptr += 1; /* To get the right offset */
4241 *errorcodeptr = ERR28;
4242 goto FAILED;
4243 }
4244
4245 /* Read the name, but also get it as a number if it's all digits */
4246
4247 recno = 0;
4248 name = ++ptr;
4249 while ((cd->ctypes[*ptr] & ctype_word) != 0)
4250 {
4251 if (recno >= 0)
4252 recno = ((digitab[*ptr] & ctype_digit) != 0)?
4253 recno * 10 + *ptr - '0' : -1;
4254 ptr++;
4255 }
4256 namelen = ptr - name;
4257
4258 if ((terminator > 0 && *ptr++ != terminator) || *ptr++ != ')')
4259 {
4260 ptr--; /* Error offset */
4261 *errorcodeptr = ERR26;
4262 goto FAILED;
4263 }
4264
4265 /* Do no further checking in the pre-compile phase. */
4266
4267 if (lengthptr != NULL) break;
4268
4269 /* In the real compile we do the work of looking for the actual
4270 reference. If the string started with "+" or "-" we require the rest to
4271 be digits, in which case recno will be set. */
4272
4273 if (refsign > 0)
4274 {
4275 if (recno <= 0)
4276 {
4277 *errorcodeptr = ERR58;
4278 goto FAILED;
4279 }
4280 recno = (refsign == '-')?
4281 cd->bracount - recno + 1 : recno +cd->bracount;
4282 if (recno <= 0 || recno > cd->final_bracount)
4283 {
4284 *errorcodeptr = ERR15;
4285 goto FAILED;
4286 }
4287 PUT2(code, 2+LINK_SIZE, recno);
4288 break;
4289 }
4290
4291 /* Otherwise (did not start with "+" or "-"), start by looking for the
4292 name. */
4293
4294 slot = cd->name_table;
4295 for (i = 0; i < cd->names_found; i++)
4296 {
4297 if (strncmp((char *)name, (char *)slot+2, namelen) == 0) break;
4298 slot += cd->name_entry_size;
4299 }
4300
4301 /* Found a previous named subpattern */
4302
4303 if (i < cd->names_found)
4304 {
4305 recno = GET2(slot, 0);
4306 PUT2(code, 2+LINK_SIZE, recno);
4307 }
4308
4309 /* Search the pattern for a forward reference */
4310
4311 else if ((i = find_parens(ptr, cd->bracount, name, namelen,
4312 (options & PCRE_EXTENDED) != 0)) > 0)
4313 {
4314 PUT2(code, 2+LINK_SIZE, i);
4315 }
4316
4317 /* If terminator == 0 it means that the name followed directly after
4318 the opening parenthesis [e.g. (?(abc)...] and in this case there are
4319 some further alternatives to try. For the cases where terminator != 0
4320 [things like (?(<name>... or (?('name')... or (?(R&name)... ] we have
4321 now checked all the possibilities, so give an error. */
4322
4323 else if (terminator != 0)
4324 {
4325 *errorcodeptr = ERR15;
4326 goto FAILED;
4327 }
4328
4329 /* Check for (?(R) for recursion. Allow digits after R to specify a
4330 specific group number. */
4331
4332 else if (*name == 'R')
4333 {
4334 recno = 0;
4335 for (i = 1; i < namelen; i++)
4336 {
4337 if ((digitab[name[i]] & ctype_digit) == 0)
4338 {
4339 *errorcodeptr = ERR15;
4340 goto FAILED;
4341 }
4342 recno = recno * 10 + name[i] - '0';
4343 }
4344 if (recno == 0) recno = RREF_ANY;
4345 code[1+LINK_SIZE] = OP_RREF; /* Change test type */
4346 PUT2(code, 2+LINK_SIZE, recno);
4347 }
4348
4349 /* Similarly, check for the (?(DEFINE) "condition", which is always
4350 false. */
4351
4352 else if (namelen == 6 && strncmp((char *)name, "DEFINE", 6) == 0)
4353 {
4354 code[1+LINK_SIZE] = OP_DEF;
4355 skipbytes = 1;
4356 }
4357
4358 /* Check for the "name" actually being a subpattern number. We are
4359 in the second pass here, so final_bracount is set. */
4360
4361 else if (recno > 0 && recno <= cd->final_bracount)
4362 {
4363 PUT2(code, 2+LINK_SIZE, recno);
4364 }
4365
4366 /* Either an unidentified subpattern, or a reference to (?(0) */
4367
4368 else
4369 {
4370 *errorcodeptr = (recno == 0)? ERR35: ERR15;
4371 goto FAILED;
4372 }
4373 break;
4374
4375
4376 /* ------------------------------------------------------------ */
4377 case '=': /* Positive lookahead */
4378 bravalue = OP_ASSERT;
4379 ptr++;
4380 break;
4381
4382
4383 /* ------------------------------------------------------------ */
4384 case '!': /* Negative lookahead */
4385 ptr++;
4386 if (*ptr == ')') /* Optimize (?!) */
4387 {
4388 *code++ = OP_FAIL;
4389 previous = NULL;
4390 continue;
4391 }
4392 bravalue = OP_ASSERT_NOT;
4393 break;
4394
4395
4396 /* ------------------------------------------------------------ */
4397 case '<': /* Lookbehind or named define */
4398 switch (ptr[1])
4399 {
4400 case '=': /* Positive lookbehind */
4401 bravalue = OP_ASSERTBACK;
4402 ptr += 2;
4403 break;
4404
4405 case '!': /* Negative lookbehind */
4406 bravalue = OP_ASSERTBACK_NOT;
4407 ptr += 2;
4408 break;
4409
4410 default: /* Could be name define, else bad */
4411 if ((cd->ctypes[ptr[1]] & ctype_word) != 0) goto DEFINE_NAME;
4412 ptr++; /* Correct offset for error */
4413 *errorcodeptr = ERR24;
4414 goto FAILED;
4415 }
4416 break;
4417
4418
4419 /* ------------------------------------------------------------ */
4420 case '>': /* One-time brackets */
4421 bravalue = OP_ONCE;
4422 ptr++;
4423 break;
4424
4425
4426 /* ------------------------------------------------------------ */
4427 case 'C': /* Callout - may be followed by digits; */
4428 previous_callout = code; /* Save for later completion */
4429 after_manual_callout = 1; /* Skip one item before completing */
4430 *code++ = OP_CALLOUT;
4431 {
4432 int n = 0;
4433 while ((digitab[*(++ptr)] & ctype_digit) != 0)
4434 n = n * 10 + *ptr - '0';
4435 if (*ptr != ')')
4436 {
4437 *errorcodeptr = ERR39;
4438 goto FAILED;
4439 }
4440 if (n > 255)
4441 {
4442 *errorcodeptr = ERR38;
4443 goto FAILED;
4444 }
4445 *code++ = n;
4446 PUT(code, 0, ptr - cd->start_pattern + 1); /* Pattern offset */
4447 PUT(code, LINK_SIZE, 0); /* Default length */
4448 code += 2 * LINK_SIZE;
4449 }
4450 previous = NULL;
4451 continue;
4452
4453
4454 /* ------------------------------------------------------------ */
4455 case 'P': /* Python-style named subpattern handling */
4456 if (*(++ptr) == '=' || *ptr == '>') /* Reference or recursion */
4457 {
4458 is_recurse = *ptr == '>';
4459 terminator = ')';
4460 goto NAMED_REF_OR_RECURSE;
4461 }
4462 else if (*ptr != '<') /* Test for Python-style definition */
4463 {
4464 *errorcodeptr = ERR41;
4465 goto FAILED;
4466 }
4467 /* Fall through to handle (?P< as (?< is handled */
4468
4469
4470 /* ------------------------------------------------------------ */
4471 DEFINE_NAME: /* Come here from (?< handling */
4472 case '\'':
4473 {
4474 terminator = (*ptr == '<')? '>' : '\'';
4475 name = ++ptr;
4476
4477 while ((cd->ctypes[*ptr] & ctype_word) != 0) ptr++;
4478 namelen = ptr - name;
4479
4480 /* In the pre-compile phase, just do a syntax check. */
4481
4482 if (lengthptr != NULL)
4483 {
4484 if (*ptr != terminator)
4485 {
4486 *errorcodeptr = ERR42;
4487 goto FAILED;
4488 }
4489 if (cd->names_found >= MAX_NAME_COUNT)
4490 {
4491 *errorcodeptr = ERR49;
4492 goto FAILED;
4493 }
4494 if (namelen + 3 > cd->name_entry_size)
4495 {
4496 cd->name_entry_size = namelen + 3;
4497 if (namelen > MAX_NAME_SIZE)
4498 {
4499 *errorcodeptr = ERR48;
4500 goto FAILED;
4501 }
4502 }
4503 }
4504
4505 /* In the real compile, create the entry in the table */
4506
4507 else
4508 {
4509 slot = cd->name_table;
4510 for (i = 0; i < cd->names_found; i++)
4511 {
4512 int crc = memcmp(name, slot+2, namelen);
4513 if (crc == 0)
4514 {
4515 if (slot[2+namelen] == 0)
4516 {
4517 if ((options & PCRE_DUPNAMES) == 0)
4518 {
4519 *errorcodeptr = ERR43;
4520 goto FAILED;
4521 }
4522 }
4523 else crc = -1; /* Current name is substring */
4524 }
4525 if (crc < 0)
4526 {
4527 memmove(slot + cd->name_entry_size, slot,
4528 (cd->names_found - i) * cd->name_entry_size);
4529 break;
4530 }
4531 slot += cd->name_entry_size;
4532 }
4533
4534 PUT2(slot, 0, cd->bracount + 1);
4535 memcpy(slot + 2, name, namelen);
4536 slot[2+namelen] = 0;
4537 }
4538 }
4539
4540 /* In both cases, count the number of names we've encountered. */
4541
4542 ptr++; /* Move past > or ' */
4543 cd->names_found++;
4544 goto NUMBERED_GROUP;
4545
4546
4547 /* ------------------------------------------------------------ */
4548 case '&': /* Perl recursion/subroutine syntax */
4549 terminator = ')';
4550 is_recurse = TRUE;
4551 /* Fall through */
4552
4553 /* We come here from the Python syntax above that handles both
4554 references (?P=name) and recursion (?P>name), as well as falling
4555 through from the Perl recursion syntax (?&name). We also come here from
4556 the Perl \k<name> or \k'name' back reference syntax and the \k{name}
4557 .NET syntax. */
4558
4559 NAMED_REF_OR_RECURSE:
4560 name = ++ptr;
4561 while ((cd->ctypes[*ptr] & ctype_word) != 0) ptr++;
4562 namelen = ptr - name;
4563
4564 /* In the pre-compile phase, do a syntax check and set a dummy
4565 reference number. */
4566
4567 if (lengthptr != NULL)
4568 {
4569 if (namelen == 0)
4570 {
4571 *errorcodeptr = ERR62;
4572 goto FAILED;
4573 }
4574 if (*ptr != terminator)
4575 {
4576 *errorcodeptr = ERR42;
4577 goto FAILED;
4578 }
4579 if (namelen > MAX_NAME_SIZE)
4580 {
4581 *errorcodeptr = ERR48;
4582 goto FAILED;
4583 }
4584 recno = 0;
4585 }
4586
4587 /* In the real compile, seek the name in the table. We check the name
4588 first, and then check that we have reached the end of the name in the
4589 table. That way, if the name that is longer than any in the table,
4590 the comparison will fail without reading beyond the table entry. */
4591
4592 else
4593 {
4594 slot = cd->name_table;
4595 for (i = 0; i < cd->names_found; i++)
4596 {
4597 if (strncmp((char *)name, (char *)slot+2, namelen) == 0 &&
4598 slot[2+namelen] == 0)
4599 break;
4600 slot += cd->name_entry_size;
4601 }
4602
4603 if (i < cd->names_found) /* Back reference */
4604 {
4605 recno = GET2(slot, 0);
4606 }
4607 else if ((recno = /* Forward back reference */
4608 find_parens(ptr, cd->bracount, name, namelen,
4609 (options & PCRE_EXTENDED) != 0)) <= 0)
4610 {
4611 *errorcodeptr = ERR15;
4612 goto FAILED;
4613 }
4614 }
4615
4616 /* In both phases, we can now go to the code than handles numerical
4617 recursion or backreferences. */
4618
4619 if (is_recurse) goto HANDLE_RECURSION;
4620 else goto HANDLE_REFERENCE;
4621
4622
4623 /* ------------------------------------------------------------ */
4624 case 'R': /* Recursion */
4625 ptr++; /* Same as (?0) */
4626 /* Fall through */
4627
4628
4629 /* ------------------------------------------------------------ */
4630 case '-': case '+':
4631 case '0': case '1': case '2': case '3': case '4': /* Recursion or */
4632 case '5': case '6': case '7': case '8': case '9': /* subroutine */
4633 {
4634 const uschar *called;
4635
4636 if ((refsign = *ptr) == '+')
4637 {
4638 ptr++;
4639 if ((digitab[*ptr] & ctype_digit) == 0)
4640 {
4641 *errorcodeptr = ERR63;
4642 goto FAILED;
4643 }
4644 }
4645 else if (refsign == '-')
4646 {
4647 if ((digitab[ptr[1]] & ctype_digit) == 0)
4648 goto OTHER_CHAR_AFTER_QUERY;
4649 ptr++;
4650 }
4651
4652 recno = 0;
4653 while((digitab[*ptr] & ctype_digit) != 0)
4654 recno = recno * 10 + *ptr++ - '0';
4655
4656 if (*ptr != ')')
4657 {
4658 *errorcodeptr = ERR29;
4659 goto FAILED;
4660 }
4661
4662 if (refsign == '-')
4663 {
4664 if (recno == 0)
4665 {
4666 *errorcodeptr = ERR58;
4667 goto FAILED;
4668 }
4669 recno = cd->bracount - recno + 1;
4670 if (recno <= 0)
4671 {
4672 *errorcodeptr = ERR15;
4673 goto FAILED;
4674 }
4675 }
4676 else if (refsign == '+')
4677 {
4678 if (recno == 0)
4679 {
4680 *errorcodeptr = ERR58;
4681 goto FAILED;
4682 }
4683 recno += cd->bracount;
4684 }
4685
4686 /* Come here from code above that handles a named recursion */
4687
4688 HANDLE_RECURSION:
4689
4690 previous = code;
4691 called = cd->start_code;
4692
4693 /* When we are actually compiling, find the bracket that is being
4694 referenced. Temporarily end the regex in case it doesn't exist before
4695 this point. If we end up with a forward reference, first check that
4696 the bracket does occur later so we can give the error (and position)
4697 now. Then remember this forward reference in the workspace so it can
4698 be filled in at the end. */
4699
4700 if (lengthptr == NULL)
4701 {
4702 *code = OP_END;
4703 if (recno != 0) called = find_bracket(cd->start_code, utf8, recno);
4704
4705 /* Forward reference */
4706
4707 if (called == NULL)
4708 {
4709 if (find_parens(ptr, cd->bracount, NULL, recno,
4710 (options & PCRE_EXTENDED) != 0) < 0)
4711 {
4712 *errorcodeptr = ERR15;
4713 goto FAILED;
4714 }
4715 called = cd->start_code + recno;
4716 PUTINC(cd->hwm, 0, code + 2 + LINK_SIZE - cd->start_code);
4717 }
4718
4719 /* If not a forward reference, and the subpattern is still open,
4720 this is a recursive call. We check to see if this is a left
4721 recursion that could loop for ever, and diagnose that case. */
4722
4723 else if (GET(called, 1) == 0 &&
4724 could_be_empty(called, code, bcptr, utf8))
4725 {
4726 *errorcodeptr = ERR40;
4727 goto FAILED;
4728 }
4729 }
4730
4731 /* Insert the recursion/subroutine item, automatically wrapped inside
4732 "once" brackets. Set up a "previous group" length so that a
4733 subsequent quantifier will work. */
4734
4735 *code = OP_ONCE;
4736 PUT(code, 1, 2 + 2*LINK_SIZE);
4737 code += 1 + LINK_SIZE;
4738
4739 *code = OP_RECURSE;
4740 PUT(code, 1, called - cd->start_code);
4741 code += 1 + LINK_SIZE;
4742
4743 *code = OP_KET;
4744 PUT(code, 1, 2 + 2*LINK_SIZE);
4745 code += 1 + LINK_SIZE;
4746
4747 length_prevgroup = 3 + 3*LINK_SIZE;
4748 }
4749
4750 /* Can't determine a first byte now */
4751
4752 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
4753 continue;
4754
4755
4756 /* ------------------------------------------------------------ */
4757 default: /* Other characters: check option setting */
4758 OTHER_CHAR_AFTER_QUERY:
4759 set = unset = 0;
4760 optset = &set;
4761
4762 while (*ptr != ')' && *ptr != ':')
4763 {
4764 switch (*ptr++)
4765 {
4766 case '-': optset = &unset; break;
4767
4768 case 'J': /* Record that it changed in the external options */
4769 *optset |= PCRE_DUPNAMES;
4770 cd->external_flags |= PCRE_JCHANGED;
4771 break;
4772
4773 case 'i': *optset |= PCRE_CASELESS; break;
4774 case 'm': *optset |= PCRE_MULTILINE; break;
4775 case 's': *optset |= PCRE_DOTALL; break;
4776 case 'x': *optset |= PCRE_EXTENDED; break;
4777 case 'U': *optset |= PCRE_UNGREEDY; break;
4778 case 'X': *optset |= PCRE_EXTRA; break;
4779
4780 default: *errorcodeptr = ERR12;
4781 ptr--; /* Correct the offset */
4782 goto FAILED;
4783 }
4784 }
4785
4786 /* Set up the changed option bits, but don't change anything yet. */
4787
4788 newoptions = (options | set) & (~unset);
4789
4790 /* If the options ended with ')' this is not the start of a nested
4791 group with option changes, so the options change at this level. If this
4792 item is right at the start of the pattern, the options can be
4793 abstracted and made external in the pre-compile phase, and ignored in
4794 the compile phase. This can be helpful when matching -- for instance in
4795 caseless checking of required bytes.
4796
4797 If the code pointer is not (cd->start_code + 1 + LINK_SIZE), we are
4798 definitely *not* at the start of the pattern because something has been
4799 compiled. In the pre-compile phase, however, the code pointer can have
4800 that value after the start, because it gets reset as code is discarded
4801 during the pre-compile. However, this can happen only at top level - if
4802 we are within parentheses, the starting BRA will still be present. At
4803 any parenthesis level, the length value can be used to test if anything
4804 has been compiled at that level. Thus, a test for both these conditions
4805 is necessary to ensure we correctly detect the start of the pattern in
4806 both phases.
4807
4808 If we are not at the pattern start, compile code to change the ims
4809 options if this setting actually changes any of them. We also pass the
4810 new setting back so that it can be put at the start of any following
4811 branches, and when this group ends (if we are in a group), a resetting
4812 item can be compiled. */
4813
4814 if (*ptr == ')')
4815 {
4816 if (code == cd->start_code + 1 + LINK_SIZE &&
4817 (lengthptr == NULL || *lengthptr == 2 + 2*LINK_SIZE))
4818 {
4819 cd->external_options = newoptions;
4820 options = newoptions;
4821 }
4822 else
4823 {
4824 if ((options & PCRE_IMS) != (newoptions & PCRE_IMS))
4825 {
4826 *code++ = OP_OPT;
4827 *code++ = newoptions & PCRE_IMS;
4828 }
4829
4830 /* Change options at this level, and pass them back for use
4831 in subsequent branches. Reset the greedy defaults and the case
4832 value for firstbyte and reqbyte. */
4833
4834 *optionsptr = options = newoptions;
4835 greedy_default = ((newoptions & PCRE_UNGREEDY) != 0);
4836 greedy_non_default = greedy_default ^ 1;
4837 req_caseopt = ((options & PCRE_CASELESS) != 0)? REQ_CASELESS : 0;
4838 }
4839
4840 previous = NULL; /* This item can't be repeated */
4841 continue; /* It is complete */
4842 }
4843
4844 /* If the options ended with ':' we are heading into a nested group
4845 with possible change of options. Such groups are non-capturing and are
4846 not assertions of any kind. All we need to do is skip over the ':';
4847 the newoptions value is handled below. */
4848
4849 bravalue = OP_BRA;
4850 ptr++;
4851 } /* End of switch for character following (? */
4852 } /* End of (? handling */
4853
4854 /* Opening parenthesis not followed by '?'. If PCRE_NO_AUTO_CAPTURE is set,
4855 all unadorned brackets become non-capturing and behave like (?:...)
4856 brackets. */
4857
4858 else if ((options & PCRE_NO_AUTO_CAPTURE) != 0)
4859 {
4860 bravalue = OP_BRA;
4861 }
4862
4863 /* Else we have a capturing group. */
4864
4865 else
4866 {
4867 NUMBERED_GROUP:
4868 cd->bracount += 1;
4869 PUT2(code, 1+LINK_SIZE, cd->bracount);
4870 skipbytes = 2;
4871 }
4872
4873 /* Process nested bracketed regex. Assertions may not be repeated, but
4874 other kinds can be. All their opcodes are >= OP_ONCE. We copy code into a
4875 non-register variable in order to be able to pass its address because some
4876 compilers complain otherwise. Pass in a new setting for the ims options if
4877 they have changed. */
4878
4879 previous = (bravalue >= OP_ONCE)? code : NULL;
4880 *code = bravalue;
4881 tempcode = code;
4882 tempreqvary = cd->req_varyopt; /* Save value before bracket */
4883 length_prevgroup = 0; /* Initialize for pre-compile phase */
4884
4885 if (!compile_regex(
4886 newoptions, /* The complete new option state */
4887 options & PCRE_IMS, /* The previous ims option state */
4888 &tempcode, /* Where to put code (updated) */
4889 &ptr, /* Input pointer (updated) */
4890 errorcodeptr, /* Where to put an error message */
4891 (bravalue == OP_ASSERTBACK ||
4892 bravalue == OP_ASSERTBACK_NOT), /* TRUE if back assert */
4893 reset_bracount, /* True if (?| group */
4894 skipbytes, /* Skip over bracket number */
4895 &subfirstbyte, /* For possible first char */
4896 &subreqbyte, /* For possible last char */
4897 bcptr, /* Current branch chain */
4898 cd, /* Tables block */
4899 (lengthptr == NULL)? NULL : /* Actual compile phase */
4900 &length_prevgroup /* Pre-compile phase */
4901 ))
4902 goto FAILED;
4903
4904 /* At the end of compiling, code is still pointing to the start of the
4905 group, while tempcode has been updated to point past the end of the group
4906 and any option resetting that may follow it. The pattern pointer (ptr)
4907 is on the bracket. */
4908
4909 /* If this is a conditional bracket, check that there are no more than
4910 two branches in the group, or just one if it's a DEFINE group. We do this
4911 in the real compile phase, not in the pre-pass, where the whole group may
4912 not be available. */
4913
4914 if (bravalue == OP_COND && lengthptr == NULL)
4915 {
4916 uschar *tc = code;
4917 int condcount = 0;
4918
4919 do {
4920 condcount++;
4921 tc += GET(tc,1);
4922 }
4923 while (*tc != OP_KET);
4924
4925 /* A DEFINE group is never obeyed inline (the "condition" is always
4926 false). It must have only one branch. */
4927
4928 if (code[LINK_SIZE+1] == OP_DEF)
4929 {
4930 if (condcount > 1)
4931 {
4932 *errorcodeptr = ERR54;
4933 goto FAILED;
4934 }
4935 bravalue = OP_DEF; /* Just a flag to suppress char handling below */
4936 }
4937
4938 /* A "normal" conditional group. If there is just one branch, we must not
4939 make use of its firstbyte or reqbyte, because this is equivalent to an
4940 empty second branch. */
4941
4942 else
4943 {
4944 if (condcount > 2)
4945 {
4946 *errorcodeptr = ERR27;
4947 goto FAILED;
4948 }
4949 if (condcount == 1) subfirstbyte = subreqbyte = REQ_NONE;
4950 }
4951 }
4952
4953 /* Error if hit end of pattern */
4954
4955 if (*ptr != ')')
4956 {
4957 *errorcodeptr = ERR14;
4958 goto FAILED;
4959 }
4960
4961 /* In the pre-compile phase, update the length by the length of the group,
4962 less the brackets at either end. Then reduce the compiled code to just a
4963 set of non-capturing brackets so that it doesn't use much memory if it is
4964 duplicated by a quantifier.*/
4965
4966 if (lengthptr != NULL)
4967 {
4968 if (OFLOW_MAX - *lengthptr < length_prevgroup - 2 - 2*LINK_SIZE)
4969 {
4970 *errorcodeptr = ERR20;
4971 goto FAILED;
4972 }
4973 *lengthptr += length_prevgroup - 2 - 2*LINK_SIZE;
4974 *code++ = OP_BRA;
4975 PUTINC(code, 0, 1 + LINK_SIZE);
4976 *code++ = OP_KET;
4977 PUTINC(code, 0, 1 + LINK_SIZE);
4978 break; /* No need to waste time with special character handling */
4979 }
4980
4981 /* Otherwise update the main code pointer to the end of the group. */
4982
4983 code = tempcode;
4984
4985 /* For a DEFINE group, required and first character settings are not
4986 relevant. */
4987
4988 if (bravalue == OP_DEF) break;
4989
4990 /* Handle updating of the required and first characters for other types of
4991 group. Update for normal brackets of all kinds, and conditions with two
4992 branches (see code above). If the bracket is followed by a quantifier with
4993 zero repeat, we have to back off. Hence the definition of zeroreqbyte and
4994 zerofirstbyte outside the main loop so that they can be accessed for the
4995 back off. */
4996
4997 zeroreqbyte = reqbyte;
4998 zerofirstbyte = firstbyte;
4999 groupsetfirstbyte = FALSE;
5000
5001 if (bravalue >= OP_ONCE)
5002 {
5003 /* If we have not yet set a firstbyte in this branch, take it from the
5004 subpattern, remembering that it was set here so that a repeat of more
5005 than one can replicate it as reqbyte if necessary. If the subpattern has
5006 no firstbyte, set "none" for the whole branch. In both cases, a zero
5007 repeat forces firstbyte to "none". */
5008
5009 if (firstbyte == REQ_UNSET)
5010 {
5011 if (subfirstbyte >= 0)
5012 {
5013 firstbyte = subfirstbyte;
5014 groupsetfirstbyte = TRUE;
5015 }
5016 else firstbyte = REQ_NONE;
5017 zerofirstbyte = REQ_NONE;
5018 }
5019
5020 /* If firstbyte was previously set, convert the subpattern's firstbyte
5021 into reqbyte if there wasn't one, using the vary flag that was in
5022 existence beforehand. */
5023
5024 else if (subfirstbyte >= 0 && subreqbyte < 0)
5025 subreqbyte = subfirstbyte | tempreqvary;
5026
5027 /* If the subpattern set a required byte (or set a first byte that isn't
5028 really the first byte - see above), set it. */
5029
5030 if (subreqbyte >= 0) reqbyte = subreqbyte;
5031 }
5032
5033 /* For a forward assertion, we take the reqbyte, if set. This can be
5034 helpful if the pattern that follows the assertion doesn't set a different
5035 char. For example, it's useful for /(?=abcde).+/. We can't set firstbyte
5036 for an assertion, however because it leads to incorrect effect for patterns
5037 such as /(?=a)a.+/ when the "real" "a" would then become a reqbyte instead
5038 of a firstbyte. This is overcome by a scan at the end if there's no
5039 firstbyte, looking for an asserted first char. */
5040
5041 else if (bravalue == OP_ASSERT && subreqbyte >= 0) reqbyte = subreqbyte;
5042 break; /* End of processing '(' */
5043
5044
5045 /* ===================================================================*/
5046 /* Handle metasequences introduced by \. For ones like \d, the ESC_ values
5047 are arranged to be the negation of the corresponding OP_values. For the
5048 back references, the values are ESC_REF plus the reference number. Only
5049 back references and those types that consume a character may be repeated.
5050 We can test for values between ESC_b and ESC_Z for the latter; this may
5051 have to change if any new ones are ever created. */
5052
5053 case '\\':
5054 tempptr = ptr;
5055 c = check_escape(&ptr, errorcodeptr, cd->bracount, options, FALSE);
5056 if (*errorcodeptr != 0) goto FAILED;
5057
5058 if (c < 0)
5059 {
5060 if (-c == ESC_Q) /* Handle start of quoted string */
5061 {
5062 if (ptr[1] == '\\' && ptr[2] == 'E') ptr += 2; /* avoid empty string */
5063 else inescq = TRUE;
5064 continue;
5065 }
5066
5067 if (-c == ESC_E) continue; /* Perl ignores an orphan \E */
5068
5069 /* For metasequences that actually match a character, we disable the
5070 setting of a first character if it hasn't already been set. */
5071
5072 if (firstbyte == REQ_UNSET && -c > ESC_b && -c < ESC_Z)
5073 firstbyte = REQ_NONE;
5074
5075 /* Set values to reset to if this is followed by a zero repeat. */
5076
5077 zerofirstbyte = firstbyte;
5078 zeroreqbyte = reqbyte;
5079
5080 /* \k<name> or \k'name' is a back reference by name (Perl syntax).
5081 We also support \k{name} (.NET syntax) */
5082
5083 if (-c == ESC_k && (ptr[1] == '<' || ptr[1] == '\'' || ptr[1] == '{'))
5084 {
5085 is_recurse = FALSE;
5086 terminator = (*(++ptr) == '<')? '>' : (*ptr == '\'')? '\'' : '}';
5087 goto NAMED_REF_OR_RECURSE;
5088 }
5089
5090 /* Back references are handled specially; must disable firstbyte if
5091 not set to cope with cases like (?=(\w+))\1: which would otherwise set
5092 ':' later. */
5093
5094 if (-c >= ESC_REF)
5095 {
5096 recno = -c - ESC_REF;
5097
5098 HANDLE_REFERENCE: /* Come here from named backref handling */
5099 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
5100 previous = code;
5101 *code++ = OP_REF;
5102 PUT2INC(code, 0, recno);
5103 cd->backref_map |= (recno < 32)? (1 << recno) : 1;
5104 if (recno > cd->top_backref) cd->top_backref = recno;
5105 }
5106
5107 /* So are Unicode property matches, if supported. */
5108
5109 #ifdef SUPPORT_UCP
5110 else if (-c == ESC_P || -c == ESC_p)
5111 {
5112 BOOL negated;
5113 int pdata;
5114 int ptype = get_ucp(&ptr, &negated, &pdata, errorcodeptr);
5115 if (ptype < 0) goto FAILED;
5116 previous = code;
5117 *code++ = ((-c == ESC_p) != negated)? OP_PROP : OP_NOTPROP;
5118 *code++ = ptype;
5119 *code++ = pdata;
5120 }
5121 #else
5122
5123 /* If Unicode properties are not supported, \X, \P, and \p are not
5124 allowed. */
5125
5126 else if (-c == ESC_X || -c == ESC_P || -c == ESC_p)
5127 {
5128 *errorcodeptr = ERR45;
5129 goto FAILED;
5130 }
5131 #endif
5132
5133 /* For the rest (including \X when Unicode properties are supported), we
5134 can obtain the OP value by negating the escape value. */
5135
5136 else
5137 {
5138 previous = (-c > ESC_b && -c < ESC_Z)? code : NULL;
5139 *code++ = -c;
5140 }
5141 continue;
5142 }
5143
5144 /* We have a data character whose value is in c. In UTF-8 mode it may have
5145 a value > 127. We set its representation in the length/buffer, and then
5146 handle it as a data character. */
5147
5148 #ifdef SUPPORT_UTF8
5149 if (utf8 && c > 127)
5150 mclength = _pcre_ord2utf8(c, mcbuffer);
5151 else
5152 #endif
5153
5154 {
5155 mcbuffer[0] = c;
5156 mclength = 1;
5157 }
5158 goto ONE_CHAR;
5159
5160
5161 /* ===================================================================*/
5162 /* Handle a literal character. It is guaranteed not to be whitespace or #
5163 when the extended flag is set. If we are in UTF-8 mode, it may be a
5164 multi-byte literal character. */
5165
5166 default:
5167 NORMAL_CHAR:
5168 mclength = 1;
5169 mcbuffer[0] = c;
5170
5171 #ifdef SUPPORT_UTF8
5172 if (utf8 && c >= 0xc0)
5173 {
5174 while ((ptr[1] & 0xc0) == 0x80)
5175 mcbuffer[mclength++] = *(++ptr);
5176 }
5177 #endif
5178
5179 /* At this point we have the character's bytes in mcbuffer, and the length
5180 in mclength. When not in UTF-8 mode, the length is always 1. */
5181
5182 ONE_CHAR:
5183 previous = code;
5184 *code++ = ((options & PCRE_CASELESS) != 0)? OP_CHARNC : OP_CHAR;
5185 for (c = 0; c < mclength; c++) *code++ = mcbuffer[c];
5186
5187 /* Remember if \r or \n were seen */
5188
5189 if (mcbuffer[0] == '\r' || mcbuffer[0] == '\n')
5190 cd->external_flags |= PCRE_HASCRORLF;
5191
5192 /* Set the first and required bytes appropriately. If no previous first
5193 byte, set it from this character, but revert to none on a zero repeat.
5194 Otherwise, leave the firstbyte value alone, and don't change it on a zero
5195 repeat. */
5196
5197 if (firstbyte == REQ_UNSET)
5198 {
5199 zerofirstbyte = REQ_NONE;
5200 zeroreqbyte = reqbyte;
5201
5202 /* If the character is more than one byte long, we can set firstbyte
5203 only if it is not to be matched caselessly. */
5204
5205 if (mclength == 1 || req_caseopt == 0)
5206 {
5207 firstbyte = mcbuffer[0] | req_caseopt;
5208 if (mclength != 1) reqbyte = code[-1] | cd->req_varyopt;
5209 }
5210 else firstbyte = reqbyte = REQ_NONE;
5211 }
5212
5213 /* firstbyte was previously set; we can set reqbyte only the length is
5214 1 or the matching is caseful. */
5215
5216 else
5217 {
5218 zerofirstbyte = firstbyte;
5219 zeroreqbyte = reqbyte;
5220 if (mclength == 1 || req_caseopt == 0)
5221 reqbyte = code[-1] | req_caseopt | cd->req_varyopt;
5222 }
5223
5224 break; /* End of literal character handling */
5225 }
5226 } /* end of big loop */
5227
5228
5229 /* Control never reaches here by falling through, only by a goto for all the
5230 error states. Pass back the position in the pattern so that it can be displayed
5231 to the user for diagnosing the error. */
5232
5233 FAILED:
5234 *ptrptr = ptr;
5235 return FALSE;
5236 }
5237
5238
5239
5240
5241 /*************************************************
5242 * Compile sequence of alternatives *
5243 *************************************************/
5244
5245 /* On entry, ptr is pointing past the bracket character, but on return it
5246 points to the closing bracket, or vertical bar, or end of string. The code
5247 variable is pointing at the byte into which the BRA operator has been stored.
5248 If the ims options are changed at the start (for a (?ims: group) or during any
5249 branch, we need to insert an OP_OPT item at the start of every following branch
5250 to ensure they get set correctly at run time, and also pass the new options
5251 into every subsequent branch compile.
5252
5253 This function is used during the pre-compile phase when we are trying to find
5254 out the amount of memory needed, as well as during the real compile phase. The
5255 value of lengthptr distinguishes the two phases.
5256
5257 Arguments:
5258 options option bits, including any changes for this subpattern
5259 oldims previous settings of ims option bits
5260 codeptr -> the address of the current code pointer
5261 ptrptr -> the address of the current pattern pointer
5262 errorcodeptr -> pointer to error code variable
5263 lookbehind TRUE if this is a lookbehind assertion
5264 reset_bracount TRUE to reset the count for each branch
5265 skipbytes skip this many bytes at start (for brackets and OP_COND)
5266 firstbyteptr place to put the first required character, or a negative number
5267 reqbyteptr place to put the last required character, or a negative number
5268 bcptr pointer to the chain of currently open branches
5269 cd points to the data block with tables pointers etc.
5270 lengthptr NULL during the real compile phase
5271 points to length accumulator during pre-compile phase
5272
5273 Returns: TRUE on success
5274 */
5275
5276 static BOOL
5277 compile_regex(int options, int oldims, uschar **codeptr, const uschar **ptrptr,
5278 int *errorcodeptr, BOOL lookbehind, BOOL reset_bracount, int skipbytes,
5279 int *firstbyteptr, int *reqbyteptr, branch_chain *bcptr, compile_data *cd,
5280 int *lengthptr)
5281 {
5282 const uschar *ptr = *ptrptr;
5283 uschar *code = *codeptr;
5284 uschar *last_branch = code;
5285 uschar *start_bracket = code;
5286 uschar *reverse_count = NULL;
5287 int firstbyte, reqbyte;
5288 int branchfirstbyte, branchreqbyte;
5289 int length;
5290 int orig_bracount;
5291 int max_bracount;
5292 branch_chain bc;
5293
5294 bc.outer = bcptr;
5295 bc.current = code;
5296
5297 firstbyte = reqbyte = REQ_UNSET;
5298
5299 /* Accumulate the length for use in the pre-compile phase. Start with the
5300 length of the BRA and KET and any extra bytes that are required at the
5301 beginning. We accumulate in a local variable to save frequent testing of
5302 lenthptr for NULL. We cannot do this by looking at the value of code at the
5303 start and end of each alternative, because compiled items are discarded during
5304 the pre-compile phase so that the work space is not exceeded. */
5305
5306 length = 2 + 2*LINK_SIZE + skipbytes;
5307
5308 /* WARNING: If the above line is changed for any reason, you must also change
5309 the code that abstracts option settings at the start of the pattern and makes
5310 them global. It tests the value of length for (2 + 2*LINK_SIZE) in the
5311 pre-compile phase to find out whether anything has yet been compiled or not. */
5312
5313 /* Offset is set zero to mark that this bracket is still open */
5314
5315 PUT(code, 1, 0);
5316 code += 1 + LINK_SIZE + skipbytes;
5317
5318 /* Loop for each alternative branch */
5319
5320 orig_bracount = max_bracount = cd->bracount;
5321 for (;;)
5322 {
5323 /* For a (?| group, reset the capturing bracket count so that each branch
5324 uses the same numbers. */
5325
5326 if (reset_bracount) cd->bracount = orig_bracount;
5327
5328 /* Handle a change of ims options at the start of the branch */
5329
5330 if ((options & PCRE_IMS) != oldims)
5331 {
5332 *code++ = OP_OPT;
5333 *code++ = options & PCRE_IMS;
5334 length += 2;
5335 }
5336
5337 /* Set up dummy OP_REVERSE if lookbehind assertion */
5338
5339 if (lookbehind)
5340 {
5341 *code++ = OP_REVERSE;
5342 reverse_count = code;
5343 PUTINC(code, 0, 0);
5344 length += 1 + LINK_SIZE;
5345 }
5346
5347 /* Now compile the branch; in the pre-compile phase its length gets added
5348 into the length. */
5349
5350 if (!compile_branch(&options, &code, &ptr, errorcodeptr, &branchfirstbyte,
5351 &branchreqbyte, &bc, cd, (lengthptr == NULL)? NULL : &length))
5352 {
5353 *ptrptr = ptr;
5354 return FALSE;
5355 }
5356
5357 /* Keep the highest bracket count in case (?| was used and some branch
5358 has fewer than the rest. */
5359
5360 if (cd->bracount > max_bracount) max_bracount = cd->bracount;
5361
5362 /* In the real compile phase, there is some post-processing to be done. */
5363
5364 if (lengthptr == NULL)
5365 {
5366 /* If this is the first branch, the firstbyte and reqbyte values for the
5367 branch become the values for the regex. */
5368
5369 if (*last_branch != OP_ALT)
5370 {
5371 firstbyte = branchfirstbyte;
5372 reqbyte = branchreqbyte;
5373 }
5374
5375 /* If this is not the first branch, the first char and reqbyte have to
5376 match the values from all the previous branches, except that if the
5377 previous value for reqbyte didn't have REQ_VARY set, it can still match,
5378 and we set REQ_VARY for the regex. */
5379
5380 else
5381 {
5382 /* If we previously had a firstbyte, but it doesn't match the new branch,
5383 we have to abandon the firstbyte for the regex, but if there was
5384 previously no reqbyte, it takes on the value of the old firstbyte. */
5385
5386 if (firstbyte >= 0 && firstbyte != branchfirstbyte)
5387 {
5388 if (reqbyte < 0) reqbyte = firstbyte;
5389 firstbyte = REQ_NONE;
5390 }
5391
5392 /* If we (now or from before) have no firstbyte, a firstbyte from the
5393 branch becomes a reqbyte if there isn't a branch reqbyte. */
5394
5395 if (firstbyte < 0 && branchfirstbyte >= 0 && branchreqbyte < 0)
5396 branchreqbyte = branchfirstbyte;
5397
5398 /* Now ensure that the reqbytes match */
5399
5400 if ((reqbyte & ~REQ_VARY) != (branchreqbyte & ~REQ_VARY))
5401 reqbyte = REQ_NONE;
5402 else reqbyte |= branchreqbyte; /* To "or" REQ_VARY */
5403 }
5404
5405 /* If lookbehind, check that this branch matches a fixed-length string, and
5406 put the length into the OP_REVERSE item. Temporarily mark the end of the
5407 branch with OP_END. */
5408
5409 if (lookbehind)
5410 {
5411 int fixed_length;
5412 *code = OP_END;
5413 fixed_length = find_fixedlength(last_branch, options);
5414 DPRINTF(("fixed length = %d\n", fixed_length));
5415 if (fixed_length < 0)
5416 {
5417 *errorcodeptr = (fixed_length == -2)? ERR36 : ERR25;
5418 *ptrptr = ptr;
5419 return FALSE;
5420 }
5421 PUT(reverse_count, 0, fixed_length);
5422 }
5423 }
5424
5425 /* Reached end of expression, either ')' or end of pattern. In the real
5426 compile phase, go back through the alternative branches and reverse the chain
5427 of offsets, with the field in the BRA item now becoming an offset to the
5428 first alternative. If there are no alternatives, it points to the end of the
5429 group. The length in the terminating ket is always the length of the whole
5430 bracketed item. If any of the ims options were changed inside the group,
5431 compile a resetting op-code following, except at the very end of the pattern.
5432 Return leaving the pointer at the terminating char. */
5433
5434 if (*ptr != '|')
5435 {
5436 if (lengthptr == NULL)
5437 {
5438 int branch_length = code - last_branch;
5439 do
5440 {
5441 int prev_length = GET(last_branch, 1);
5442 PUT(last_branch, 1, branch_length);
5443 branch_length = prev_length;
5444 last_branch -= branch_length;
5445 }
5446 while (branch_length > 0);
5447 }
5448
5449 /* Fill in the ket */
5450
5451 *code = OP_KET;
5452 PUT(code, 1, code - start_bracket);
5453 code += 1 + LINK_SIZE;
5454
5455 /* Resetting option if needed */
5456
5457 if ((options & PCRE_IMS) != oldims && *ptr == ')')
5458 {
5459 *code++ = OP_OPT;
5460 *code++ = oldims;
5461 length += 2;
5462 }
5463
5464 /* Retain the highest bracket number, in case resetting was used. */
5465
5466 cd->bracount = max_bracount;
5467
5468 /* Set values to pass back */
5469
5470 *codeptr = code;
5471 *ptrptr = ptr;
5472 *firstbyteptr = firstbyte;
5473 *reqbyteptr = reqbyte;
5474 if (lengthptr != NULL)
5475 {
5476 if (OFLOW_MAX - *lengthptr < length)
5477 {
5478 *errorcodeptr = ERR20;
5479 return FALSE;
5480 }
5481 *lengthptr += length;
5482 }
5483 return TRUE;
5484 }
5485
5486 /* Another branch follows. In the pre-compile phase, we can move the code
5487 pointer back to where it was for the start of the first branch. (That is,
5488 pretend that each branch is the only one.)
5489
5490 In the real compile phase, insert an ALT node. Its length field points back
5491 to the previous branch while the bracket remains open. At the end the chain
5492 is reversed. It's done like this so that the start of the bracket has a
5493 zero offset until it is closed, making it possible to detect recursion. */
5494
5495 if (lengthptr != NULL)
5496 {
5497 code = *codeptr + 1 + LINK_SIZE + skipbytes;
5498 length += 1 + LINK_SIZE;
5499 }
5500 else
5501 {
5502 *code = OP_ALT;
5503 PUT(code, 1, code - last_branch);
5504 bc.current = last_branch = code;
5505 code += 1 + LINK_SIZE;
5506 }
5507
5508 ptr++;
5509 }
5510 /* Control never reaches here */
5511 }
5512
5513
5514
5515
5516 /*************************************************
5517 * Check for anchored expression *
5518 *************************************************/
5519
5520 /* Try to find out if this is an anchored regular expression. Consider each
5521 alternative branch. If they all start with OP_SOD or OP_CIRC, or with a bracket
5522 all of whose alternatives start with OP_SOD or OP_CIRC (recurse ad lib), then
5523 it's anchored. However, if this is a multiline pattern, then only OP_SOD
5524 counts, since OP_CIRC can match in the middle.
5525
5526 We can also consider a regex to be anchored if OP_SOM starts all its branches.
5527 This is the code for \G, which means "match at start of match position, taking
5528 into account the match offset".
5529
5530 A branch is also implicitly anchored if it starts with .* and DOTALL is set,
5531 because that will try the rest of the pattern at all possible matching points,
5532 so there is no point trying again.... er ....
5533
5534 .... except when the .* appears inside capturing parentheses, and there is a
5535 subsequent back reference to those parentheses. We haven't enough information
5536 to catch that case precisely.
5537
5538 At first, the best we could do was to detect when .* was in capturing brackets
5539 and the highest back reference was greater than or equal to that level.
5540 However, by keeping a bitmap of the first 31 back references, we can catch some
5541 of the more common cases more precisely.
5542
5543 Arguments:
5544 code points to start of expression (the bracket)
5545 options points to the options setting
5546 bracket_map a bitmap of which brackets we are inside while testing; this
5547 handles up to substring 31; after that we just have to take
5548 the less precise approach
5549 backref_map the back reference bitmap
5550
5551 Returns: TRUE or FALSE
5552 */
5553
5554 static BOOL
5555 is_anchored(register const uschar *code, int *options, unsigned int bracket_map,
5556 unsigned int backref_map)
5557 {
5558 do {
5559 const uschar *scode = first_significant_code(code + _pcre_OP_lengths[*code],
5560 options, PCRE_MULTILINE, FALSE);
5561 register int op = *scode;
5562
5563 /* Non-capturing brackets */
5564
5565 if (op == OP_BRA)
5566 {
5567 if (!is_anchored(scode, options, bracket_map, backref_map)) return FALSE;
5568 }
5569
5570 /* Capturing brackets */
5571
5572 else if (op == OP_CBRA)
5573 {
5574 int n = GET2(scode, 1+LINK_SIZE);
5575 int new_map = bracket_map | ((n < 32)? (1 << n) : 1);
5576 if (!is_anchored(scode, options, new_map, backref_map)) return FALSE;
5577 }
5578
5579 /* Other brackets */
5580
5581 else if (op == OP_ASSERT || op == OP_ONCE || op == OP_COND)
5582 {
5583 if (!is_anchored(scode, options, bracket_map, backref_map)) return FALSE;
5584 }
5585
5586 /* .* is not anchored unless DOTALL is set and it isn't in brackets that
5587 are or may be referenced. */
5588
5589 else if ((op == OP_TYPESTAR || op == OP_TYPEMINSTAR ||
5590 op == OP_TYPEPOSSTAR) &&
5591 (*options & PCRE_DOTALL) != 0)
5592 {
5593 if (scode[1] != OP_ANY || (bracket_map & backref_map) != 0) return FALSE;
5594 }
5595
5596 /* Check for explicit anchoring */
5597
5598 else if (op != OP_SOD && op != OP_SOM &&
5599 ((*options & PCRE_MULTILINE) != 0 || op != OP_CIRC))
5600 return FALSE;
5601 code += GET(code, 1);
5602 }
5603 while (*code == OP_ALT); /* Loop for each alternative */
5604 return TRUE;
5605 }
5606
5607
5608
5609 /*************************************************
5610 * Check for starting with ^ or .* *
5611 *************************************************/
5612
5613 /* This is called to find out if every branch starts with ^ or .* so that
5614 "first char" processing can be done to speed things up in multiline
5615 matching and for non-DOTALL patterns that start with .* (which must start at
5616 the beginning or after \n). As in the case of is_anchored() (see above), we
5617 have to take account of back references to capturing brackets that contain .*
5618 because in that case we can't make the assumption.
5619
5620 Arguments:
5621 code points to start of expression (the bracket)
5622 bracket_map a bitmap of which brackets we are inside while testing; this
5623 handles up to substring 31; after that we just have to take
5624 the less precise approach
5625 backref_map the back reference bitmap
5626
5627 Returns: TRUE or FALSE
5628 */
5629
5630 static BOOL
5631 is_startline(const uschar *code, unsigned int bracket_map,
5632 unsigned int backref_map)
5633 {
5634 do {
5635 const uschar *scode = first_significant_code(code + _pcre_OP_lengths[*code],
5636 NULL, 0, FALSE);
5637 register int op = *scode;
5638
5639 /* Non-capturing brackets */
5640
5641 if (op == OP_BRA)
5642 {
5643 if (!is_startline(scode, bracket_map, backref_map)) return FALSE;
5644 }
5645
5646 /* Capturing brackets */
5647
5648 else if (op == OP_CBRA)
5649 {
5650 int n = GET2(scode, 1+LINK_SIZE);
5651 int new_map = bracket_map | ((n < 32)? (1 << n) : 1);
5652 if (!is_startline(scode, new_map, backref_map)) return FALSE;
5653 }
5654
5655 /* Other brackets */
5656
5657 else if (op == OP_ASSERT || op == OP_ONCE || op == OP_COND)
5658 { if (!is_startline(scode, bracket_map, backref_map)) return FALSE; }
5659
5660 /* .* means "start at start or after \n" if it isn't in brackets that
5661 may be referenced. */
5662
5663 else if (op == OP_TYPESTAR || op == OP_TYPEMINSTAR || op == OP_TYPEPOSSTAR)
5664 {
5665 if (scode[1] != OP_ANY || (bracket_map & backref_map) != 0) return FALSE;
5666 }
5667
5668 /* Check for explicit circumflex */
5669
5670 else if (op != OP_CIRC) return FALSE;
5671
5672 /* Move on to the next alternative */
5673
5674 code += GET(code, 1);
5675 }
5676 while (*code == OP_ALT); /* Loop for each alternative */
5677 return TRUE;
5678 }
5679
5680
5681
5682 /*************************************************
5683 * Check for asserted fixed first char *
5684 *************************************************/
5685
5686 /* During compilation, the "first char" settings from forward assertions are
5687 discarded, because they can cause conflicts with actual literals that follow.
5688 However, if we end up without a first char setting for an unanchored pattern,
5689 it is worth scanning the regex to see if there is an initial asserted first
5690 char. If all branches start with the same asserted char, or with a bracket all
5691 of whose alternatives start with the same asserted char (recurse ad lib), then
5692 we return that char, otherwise -1.
5693
5694 Arguments:
5695 code points to start of expression (the bracket)
5696 options pointer to the options (used to check casing changes)
5697 inassert TRUE if in an assertion
5698
5699 Returns: -1 or the fixed first char
5700 */
5701
5702 static int
5703 find_firstassertedchar(const uschar *code, int *options, BOOL inassert)
5704 {
5705 register int c = -1;
5706 do {
5707 int d;
5708 const uschar *scode =
5709 first_significant_code(code + 1+LINK_SIZE, options, PCRE_CASELESS, TRUE);
5710 register int op = *scode;
5711
5712 switch(op)
5713 {
5714 default:
5715 return -1;
5716
5717 case OP_BRA:
5718 case OP_CBRA:
5719 case OP_ASSERT:
5720 case OP_ONCE:
5721 case OP_COND:
5722 if ((d = find_firstassertedchar(scode, options, op == OP_ASSERT)) < 0)
5723 return -1;
5724 if (c < 0) c = d; else if (c != d) return -1;
5725 break;
5726
5727 case OP_EXACT: /* Fall through */
5728 scode += 2;
5729
5730 case OP_CHAR:
5731 case OP_CHARNC:
5732 case OP_PLUS:
5733 case OP_MINPLUS:
5734 case OP_POSPLUS:
5735 if (!inassert) return -1;
5736 if (c < 0)
5737 {
5738 c = scode[1];
5739 if ((*options & PCRE_CASELESS) != 0) c |= REQ_CASELESS;
5740 }
5741 else if (c != scode[1]) return -1;
5742 break;
5743 }
5744
5745 code += GET(code, 1);
5746 }
5747 while (*code == OP_ALT);
5748 return c;
5749 }
5750
5751
5752
5753 /*************************************************
5754 * Compile a Regular Expression *
5755 *************************************************/
5756
5757 /* This function takes a string and returns a pointer to a block of store
5758 holding a compiled version of the expression. The original API for this
5759 function had no error code return variable; it is retained for backwards
5760 compatibility. The new function is given a new name.
5761
5762 Arguments:
5763 pattern the regular expression
5764 options various option bits
5765 errorcodeptr pointer to error code variable (pcre_compile2() only)
5766 can be NULL if you don't want a code value
5767 errorptr pointer to pointer to error text
5768 erroroffset ptr offset in pattern where error was detected
5769 tables pointer to character tables or NULL
5770
5771 Returns: pointer to compiled data block, or NULL on error,
5772 with errorptr and erroroffset set
5773 */
5774
5775 PCRE_EXP_DEFN pcre *
5776 pcre_compile(const char *pattern, int options, const char **errorptr,
5777 int *erroroffset, const unsigned char *tables)
5778 {
5779 return pcre_compile2(pattern, options, NULL, errorptr, erroroffset, tables);
5780 }
5781
5782
5783 PCRE_EXP_DEFN pcre *
5784 pcre_compile2(const char *pattern, int options, int *errorcodeptr,
5785 const char **errorptr, int *erroroffset, const unsigned char *tables)
5786 {
5787 real_pcre *re;
5788 int length = 1; /* For final END opcode */
5789 int firstbyte, reqbyte, newline;
5790 int errorcode = 0;
5791 int skipatstart = 0;
5792 #ifdef SUPPORT_UTF8
5793 BOOL utf8;
5794 #endif
5795 size_t size;
5796 uschar *code;
5797 const uschar *codestart;
5798 const uschar *ptr;
5799 compile_data compile_block;
5800 compile_data *cd = &compile_block;
5801
5802 /* This space is used for "compiling" into during the first phase, when we are
5803 computing the amount of memory that is needed. Compiled items are thrown away
5804 as soon as possible, so that a fairly large buffer should be sufficient for
5805 this purpose. The same space is used in the second phase for remembering where
5806 to fill in forward references to subpatterns. */
5807
5808 uschar cworkspace[COMPILE_WORK_SIZE];
5809
5810
5811 /* Set this early so that early errors get offset 0. */
5812
5813 ptr = (const uschar *)pattern;
5814
5815 /* We can't pass back an error message if errorptr is NULL; I guess the best we
5816 can do is just return NULL, but we can set a code value if there is a code
5817 pointer. */
5818
5819 if (errorptr == NULL)
5820 {
5821 if (errorcodeptr != NULL) *errorcodeptr = 99;
5822 return NULL;
5823 }
5824
5825 *errorptr = NULL;
5826 if (errorcodeptr != NULL) *errorcodeptr = ERR0;
5827
5828 /* However, we can give a message for this error */
5829
5830 if (erroroffset == NULL)
5831 {
5832 errorcode = ERR16;
5833 goto PCRE_EARLY_ERROR_RETURN2;
5834 }
5835
5836 *erroroffset = 0;
5837
5838 /* Can't support UTF8 unless PCRE has been compiled to include the code. */
5839
5840 #ifdef SUPPORT_UTF8
5841 utf8 = (options & PCRE_UTF8) != 0;
5842 if (utf8 && (options & PCRE_NO_UTF8_CHECK) == 0 &&
5843 (*erroroffset = _pcre_valid_utf8((uschar *)pattern, -1)) >= 0)
5844 {
5845 errorcode = ERR44;
5846 goto PCRE_EARLY_ERROR_RETURN2;
5847 }
5848 #else
5849 if ((options & PCRE_UTF8) != 0)
5850 {
5851 errorcode = ERR32;
5852 goto PCRE_EARLY_ERROR_RETURN;
5853 }
5854 #endif
5855
5856 if ((options & ~PUBLIC_OPTIONS) != 0)
5857 {
5858 errorcode = ERR17;
5859 goto PCRE_EARLY_ERROR_RETURN;
5860 }
5861
5862 /* Set up pointers to the individual character tables */
5863
5864 if (tables == NULL) tables = _pcre_default_tables;
5865 cd->lcc = tables + lcc_offset;
5866 cd->fcc = tables + fcc_offset;
5867 cd->cbits = tables + cbits_offset;
5868 cd->ctypes = tables + ctypes_offset;
5869
5870 /* Check for global one-time settings at the start of the pattern, and remember
5871 the offset for later. */
5872
5873 while (ptr[skipatstart] == '(' && ptr[skipatstart+1] == '*')
5874 {
5875 int newnl = 0;
5876 int newbsr = 0;
5877
5878 if (strncmp((char *)(ptr+skipatstart+2), "CR)", 3) == 0)
5879 { skipatstart += 5; newnl = PCRE_NEWLINE_CR; }
5880 else if (strncmp((char *)(ptr+skipatstart+2), "LF)", 3) == 0)
5881 { skipatstart += 5; newnl = PCRE_NEWLINE_LF; }
5882 else if (strncmp((char *)(ptr+skipatstart+2), "CRLF)", 5) == 0)
5883 { skipatstart += 7; newnl = PCRE_NEWLINE_CR + PCRE_NEWLINE_LF; }
5884 else if (strncmp((char *)(ptr+skipatstart+2), "ANY)", 4) == 0)
5885 { skipatstart += 6; newnl = PCRE_NEWLINE_ANY; }
5886 else if (strncmp((char *)(ptr+skipatstart+2), "ANYCRLF)", 8) == 0)
5887 { skipatstart += 10; newnl = PCRE_NEWLINE_ANYCRLF; }
5888
5889 else if (strncmp((char *)(ptr+skipatstart+2), "BSR_ANYCRLF)", 12) == 0)
5890 { skipatstart += 14; newbsr = PCRE_BSR_ANYCRLF; }
5891 else if (strncmp((char *)(ptr+skipatstart+2), "BSR_UNICODE)", 12) == 0)
5892 { skipatstart += 14; newbsr = PCRE_BSR_UNICODE; }
5893
5894 if (newnl != 0)
5895 options = (options & ~PCRE_NEWLINE_BITS) | newnl;
5896 else if (newbsr != 0)
5897 options = (options & ~(PCRE_BSR_ANYCRLF|PCRE_BSR_UNICODE)) | newbsr;
5898 else break;
5899 }
5900
5901 /* Check validity of \R options. */
5902
5903 switch (options & (PCRE_BSR_ANYCRLF|PCRE_BSR_UNICODE))
5904 {
5905 case 0:
5906 case PCRE_BSR_ANYCRLF:
5907 case PCRE_BSR_UNICODE:
5908 break;
5909 default: errorcode = ERR56; goto PCRE_EARLY_ERROR_RETURN;
5910 }
5911
5912 /* Handle different types of newline. The three bits give seven cases. The
5913 current code allows for fixed one- or two-byte sequences, plus "any" and
5914 "anycrlf". */
5915
5916 switch (options & PCRE_NEWLINE_BITS)
5917 {
5918 case 0: newline = NEWLINE; break; /* Build-time default */
5919 case PCRE_NEWLINE_CR: newline = '\r'; break;
5920 case PCRE_NEWLINE_LF: newline = '\n'; break;
5921 case PCRE_NEWLINE_CR+
5922 PCRE_NEWLINE_LF: newline = ('\r' << 8) | '\n'; break;
5923 case PCRE_NEWLINE_ANY: newline = -1; break;
5924 case PCRE_NEWLINE_ANYCRLF: newline = -2; break;
5925 default: errorcode = ERR56; goto PCRE_EARLY_ERROR_RETURN;
5926 }
5927
5928 if (newline == -2)
5929 {
5930 cd->nltype = NLTYPE_ANYCRLF;
5931 }
5932 else if (newline < 0)
5933 {
5934 cd->nltype = NLTYPE_ANY;
5935 }
5936 else
5937 {
5938 cd->nltype = NLTYPE_FIXED;
5939 if (newline > 255)
5940 {
5941 cd->nllen = 2;
5942 cd->nl[0] = (newline >> 8) & 255;
5943 cd->nl[1] = newline & 255;
5944 }
5945 else
5946 {
5947 cd->nllen = 1;
5948 cd->nl[0] = newline;
5949 }
5950 }
5951
5952 /* Maximum back reference and backref bitmap. The bitmap records up to 31 back
5953 references to help in deciding whether (.*) can be treated as anchored or not.
5954 */
5955
5956 cd->top_backref = 0;
5957 cd->backref_map = 0;
5958
5959 /* Reflect pattern for debugging output */
5960
5961 DPRINTF(("------------------------------------------------------------------\n"));
5962 DPRINTF(("%s\n", pattern));
5963
5964 /* Pretend to compile the pattern while actually just accumulating the length
5965 of memory required. This behaviour is triggered by passing a non-NULL final
5966 argument to compile_regex(). We pass a block of workspace (cworkspace) for it
5967 to compile parts of the pattern into; the compiled code is discarded when it is
5968 no longer needed, so hopefully this workspace will never overflow, though there
5969 is a test for its doing so. */
5970
5971 cd->bracount = cd->final_bracount = 0;
5972 cd->names_found = 0;
5973 cd->name_entry_size = 0;
5974 cd->name_table = NULL;
5975 cd->start_workspace = cworkspace;
5976 cd->start_code = cworkspace;
5977 cd->hwm = cworkspace;
5978 cd->start_pattern = (const uschar *)pattern;
5979 cd->end_pattern = (const uschar *)(pattern + strlen(pattern));
5980 cd->req_varyopt = 0;
5981 cd->external_options = options;
5982 cd->external_flags = 0;
5983
5984 /* Now do the pre-compile. On error, errorcode will be set non-zero, so we
5985 don't need to look at the result of the function here. The initial options have
5986 been put into the cd block so that they can be changed if an option setting is
5987 found within the regex right at the beginning. Bringing initial option settings
5988 outside can help speed up starting point checks. */
5989
5990 ptr += skipatstart;
5991 code = cworkspace;
5992 *code = OP_BRA;
5993 (void)compile_regex(cd->external_options, cd->external_options & PCRE_IMS,
5994 &code, &ptr, &errorcode, FALSE, FALSE, 0, &firstbyte, &reqbyte, NULL, cd,
5995 &length);
5996 if (errorcode != 0) goto PCRE_EARLY_ERROR_RETURN;
5997
5998 DPRINTF(("end pre-compile: length=%d workspace=%d\n", length,
5999 cd->hwm - cworkspace));
6000
6001 if (length > MAX_PATTERN_SIZE)
6002 {
6003 errorcode = ERR20;
6004 goto PCRE_EARLY_ERROR_RETURN;
6005 }
6006
6007 /* Compute the size of data block needed and get it, either from malloc or
6008 externally provided function. Integer overflow should no longer be possible
6009 because nowadays we limit the maximum value of cd->names_found and
6010 cd->name_entry_size. */
6011
6012 size = length + sizeof(real_pcre) + cd->names_found * (cd->name_entry_size + 3);
6013 re = (real_pcre *)(pcre_malloc)(size);
6014
6015 if (re == NULL)
6016 {
6017 errorcode = ERR21;
6018 goto PCRE_EARLY_ERROR_RETURN;
6019 }
6020
6021 /* Put in the magic number, and save the sizes, initial options, internal
6022 flags, and character table pointer. NULL is used for the default character
6023 tables. The nullpad field is at the end; it's there to help in the case when a
6024 regex compiled on a system with 4-byte pointers is run on another with 8-byte
6025 pointers. */
6026
6027 re->magic_number = MAGIC_NUMBER;
6028 re->size = size;
6029 re->options = cd->external_options;
6030 re->flags = cd->external_flags;
6031 re->dummy1 = 0;
6032 re->first_byte = 0;
6033 re->req_byte = 0;
6034 re->name_table_offset = sizeof(real_pcre);
6035 re->name_entry_size = cd->name_entry_size;
6036 re->name_count = cd->names_found;
6037 re->ref_count = 0;
6038 re->tables = (tables == _pcre_default_tables)? NULL : tables;
6039 re->nullpad = NULL;
6040
6041 /* The starting points of the name/number translation table and of the code are
6042 passed around in the compile data block. The start/end pattern and initial
6043 options are already set from the pre-compile phase, as is the name_entry_size
6044 field. Reset the bracket count and the names_found field. Also reset the hwm
6045 field; this time it's used for remembering forward references to subpatterns.
6046 */
6047
6048 cd->final_bracount = cd->bracount; /* Save for checking forward references */
6049 cd->bracount = 0;
6050 cd->names_found = 0;
6051 cd->name_table = (uschar *)re + re->name_table_offset;
6052 codestart = cd->name_table + re->name_entry_size * re->name_count;
6053 cd->start_code = codestart;
6054 cd->hwm = cworkspace;
6055 cd->req_varyopt = 0;
6056 cd->had_accept = FALSE;
6057
6058 /* Set up a starting, non-extracting bracket, then compile the expression. On
6059 error, errorcode will be set non-zero, so we don't need to look at the result
6060 of the function here. */
6061
6062 ptr = (const uschar *)pattern + skipatstart;
6063 code = (uschar *)codestart;
6064 *code = OP_BRA;
6065 (void)compile_regex(re->options, re->options & PCRE_IMS, &code, &ptr,
6066 &errorcode, FALSE, FALSE, 0, &firstbyte, &reqbyte, NULL, cd, NULL);
6067 re->top_bracket = cd->bracount;
6068 re->top_backref = cd->top_backref;
6069 re->flags = cd->external_flags;
6070
6071 if (cd->had_accept) reqbyte = -1; /* Must disable after (*ACCEPT) */
6072
6073 /* If not reached end of pattern on success, there's an excess bracket. */
6074
6075 if (errorcode == 0 && *ptr != 0) errorcode = ERR22;
6076
6077 /* Fill in the terminating state and check for disastrous overflow, but
6078 if debugging, leave the test till after things are printed out. */
6079
6080 *code++ = OP_END;
6081
6082 #ifndef DEBUG
6083 if (code - codestart > length) errorcode = ERR23;
6084 #endif
6085
6086 /* Fill in any forward references that are required. */
6087
6088 while (errorcode == 0 && cd->hwm > cworkspace)
6089 {
6090 int offset, recno;
6091 const uschar *groupptr;
6092 cd->hwm -= LINK_SIZE;
6093 offset = GET(cd->hwm, 0);
6094 recno = GET(codestart, offset);
6095 groupptr = find_bracket(codestart, (re->options & PCRE_UTF8) != 0, recno);
6096 if (groupptr == NULL) errorcode = ERR53;
6097 else PUT(((uschar *)codestart), offset, groupptr - codestart);
6098 }
6099
6100 /* Give an error if there's back reference to a non-existent capturing
6101 subpattern. */
6102
6103 if (errorcode == 0 && re->top_backref > re->top_bracket) errorcode = ERR15;
6104
6105 /* Failed to compile, or error while post-processing */
6106
6107 if (errorcode != 0)
6108 {
6109 (pcre_free)(re);
6110 PCRE_EARLY_ERROR_RETURN:
6111 *erroroffset = ptr - (const uschar *)pattern;
6112 PCRE_EARLY_ERROR_RETURN2:
6113 *errorptr = find_error_text(errorcode);
6114 if (errorcodeptr != NULL) *errorcodeptr = errorcode;
6115 return NULL;
6116 }
6117
6118 /* If the anchored option was not passed, set the flag if we can determine that
6119 the pattern is anchored by virtue of ^ characters or \A or anything else (such
6120 as starting with .* when DOTALL is set).
6121
6122 Otherwise, if we know what the first byte has to be, save it, because that
6123 speeds up unanchored matches no end. If not, see if we can set the
6124 PCRE_STARTLINE flag. This is helpful for multiline matches when all branches
6125 start with ^. and also when all branches start with .* for non-DOTALL matches.
6126 */
6127
6128 if ((re->options & PCRE_ANCHORED) == 0)
6129 {
6130 int temp_options = re->options; /* May get changed during these scans */
6131 if (is_anchored(codestart, &temp_options, 0, cd->backref_map))
6132 re->options |= PCRE_ANCHORED;
6133 else
6134 {
6135 if (firstbyte < 0)
6136 firstbyte = find_firstassertedchar(codestart, &temp_options, FALSE);
6137 if (firstbyte >= 0) /* Remove caseless flag for non-caseable chars */
6138 {
6139 int ch = firstbyte & 255;
6140 re->first_byte = ((firstbyte & REQ_CASELESS) != 0 &&
6141 cd->fcc[ch] == ch)? ch : firstbyte;
6142 re->flags |= PCRE_FIRSTSET;
6143 }
6144 else if (is_startline(codestart, 0, cd->backref_map))
6145 re->flags |= PCRE_STARTLINE;
6146 }
6147 }
6148
6149 /* For an anchored pattern, we use the "required byte" only if it follows a
6150 variable length item in the regex. Remove the caseless flag for non-caseable
6151 bytes. */
6152
6153 if (reqbyte >= 0 &&
6154 ((re->options & PCRE_ANCHORED) == 0 || (reqbyte & REQ_VARY) != 0))
6155 {
6156 int ch = reqbyte & 255;
6157 re->req_byte = ((reqbyte & REQ_CASELESS) != 0 &&
6158 cd->fcc[ch] == ch)? (reqbyte & ~REQ_CASELESS) : reqbyte;
6159 re->flags |= PCRE_REQCHSET;
6160 }
6161
6162 /* Print out the compiled data if debugging is enabled. This is never the
6163 case when building a production library. */
6164
6165 #ifdef DEBUG
6166
6167 printf("Length = %d top_bracket = %d top_backref = %d\n",
6168 length, re->top_bracket, re->top_backref);
6169
6170 printf("Options=%08x\n", re->options);
6171
6172 if ((re->flags & PCRE_FIRSTSET) != 0)
6173 {
6174 int ch = re->first_byte & 255;
6175 const char *caseless = ((re->first_byte & REQ_CASELESS) == 0)?
6176 "" : " (caseless)";
6177 if (isprint(ch)) printf("First char = %c%s\n", ch, caseless);
6178 else printf("First char = \\x%02x%s\n", ch, caseless);
6179 }
6180
6181 if ((re->flags & PCRE_REQCHSET) != 0)
6182 {
6183 int ch = re->req_byte & 255;
6184 const char *caseless = ((re->req_byte & REQ_CASELESS) == 0)?
6185 "" : " (caseless)";
6186 if (isprint(ch)) printf("Req char = %c%s\n", ch, caseless);
6187 else printf("Req char = \\x%02x%s\n", ch, caseless);
6188 }
6189
6190 pcre_printint(re, stdout, TRUE);
6191
6192 /* This check is done here in the debugging case so that the code that
6193 was compiled can be seen. */
6194
6195 if (code - codestart > length)
6196 {
6197 (pcre_free)(re);
6198 *errorptr = find_error_text(ERR23);
6199 *erroroffset = ptr - (uschar *)pattern;
6200 if (errorcodeptr != NULL) *errorcodeptr = ERR23;
6201 return NULL;
6202 }
6203 #endif /* DEBUG */
6204
6205 return (pcre *)re;
6206 }
6207
6208 /* End of pcre_compile.c */

Properties

Name Value
svn:eol-style native
svn:keywords "Author Date Id Revision Url"

webmaster@exim.org
ViewVC Help
Powered by ViewVC 1.1.12