/[pcre]/code/trunk/pcre_compile.c
ViewVC logotype

Contents of /code/trunk/pcre_compile.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 167 - (show annotations) (download)
Wed May 9 15:53:54 2007 UTC (7 years, 4 months ago) by ph10
File MIME type: text/plain
File size: 174513 byte(s)
Add (?(-n) and (?(+n) relative conditions.

1 /*************************************************
2 * Perl-Compatible Regular Expressions *
3 *************************************************/
4
5 /* PCRE is a library of functions to support regular expressions whose syntax
6 and semantics are as close as possible to those of the Perl 5 language.
7
8 Written by Philip Hazel
9 Copyright (c) 1997-2007 University of Cambridge
10
11 -----------------------------------------------------------------------------
12 Redistribution and use in source and binary forms, with or without
13 modification, are permitted provided that the following conditions are met:
14
15 * Redistributions of source code must retain the above copyright notice,
16 this list of conditions and the following disclaimer.
17
18 * Redistributions in binary form must reproduce the above copyright
19 notice, this list of conditions and the following disclaimer in the
20 documentation and/or other materials provided with the distribution.
21
22 * Neither the name of the University of Cambridge nor the names of its
23 contributors may be used to endorse or promote products derived from
24 this software without specific prior written permission.
25
26 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
27 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
30 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 POSSIBILITY OF SUCH DAMAGE.
37 -----------------------------------------------------------------------------
38 */
39
40
41 /* This module contains the external function pcre_compile(), along with
42 supporting internal functions that are not used by other modules. */
43
44
45 #define NLBLOCK cd /* Block containing newline information */
46 #define PSSTART start_pattern /* Field containing processed string start */
47 #define PSEND end_pattern /* Field containing processed string end */
48
49
50 #include "pcre_internal.h"
51
52
53 /* When DEBUG is defined, we need the pcre_printint() function, which is also
54 used by pcretest. DEBUG is not defined when building a production library. */
55
56 #ifdef DEBUG
57 #include "pcre_printint.src"
58 #endif
59
60
61 /*************************************************
62 * Code parameters and static tables *
63 *************************************************/
64
65 /* This value specifies the size of stack workspace that is used during the
66 first pre-compile phase that determines how much memory is required. The regex
67 is partly compiled into this space, but the compiled parts are discarded as
68 soon as they can be, so that hopefully there will never be an overrun. The code
69 does, however, check for an overrun. The largest amount I've seen used is 218,
70 so this number is very generous.
71
72 The same workspace is used during the second, actual compile phase for
73 remembering forward references to groups so that they can be filled in at the
74 end. Each entry in this list occupies LINK_SIZE bytes, so even when LINK_SIZE
75 is 4 there is plenty of room. */
76
77 #define COMPILE_WORK_SIZE (4096)
78
79
80 /* Table for handling escaped characters in the range '0'-'z'. Positive returns
81 are simple data values; negative values are for special things like \d and so
82 on. Zero means further processing is needed (for things like \x), or the escape
83 is invalid. */
84
85 #ifndef EBCDIC /* This is the "normal" table for ASCII systems */
86 static const short int escapes[] = {
87 0, 0, 0, 0, 0, 0, 0, 0, /* 0 - 7 */
88 0, 0, ':', ';', '<', '=', '>', '?', /* 8 - ? */
89 '@', -ESC_A, -ESC_B, -ESC_C, -ESC_D, -ESC_E, 0, -ESC_G, /* @ - G */
90 0, 0, 0, 0, 0, 0, 0, 0, /* H - O */
91 -ESC_P, -ESC_Q, -ESC_R, -ESC_S, 0, 0, 0, -ESC_W, /* P - W */
92 -ESC_X, 0, -ESC_Z, '[', '\\', ']', '^', '_', /* X - _ */
93 '`', 7, -ESC_b, 0, -ESC_d, ESC_e, ESC_f, 0, /* ` - g */
94 0, 0, 0, -ESC_k, 0, 0, ESC_n, 0, /* h - o */
95 -ESC_p, 0, ESC_r, -ESC_s, ESC_tee, 0, 0, -ESC_w, /* p - w */
96 0, 0, -ESC_z /* x - z */
97 };
98
99 #else /* This is the "abnormal" table for EBCDIC systems */
100 static const short int escapes[] = {
101 /* 48 */ 0, 0, 0, '.', '<', '(', '+', '|',
102 /* 50 */ '&', 0, 0, 0, 0, 0, 0, 0,
103 /* 58 */ 0, 0, '!', '$', '*', ')', ';', '~',
104 /* 60 */ '-', '/', 0, 0, 0, 0, 0, 0,
105 /* 68 */ 0, 0, '|', ',', '%', '_', '>', '?',
106 /* 70 */ 0, 0, 0, 0, 0, 0, 0, 0,
107 /* 78 */ 0, '`', ':', '#', '@', '\'', '=', '"',
108 /* 80 */ 0, 7, -ESC_b, 0, -ESC_d, ESC_e, ESC_f, 0,
109 /* 88 */ 0, 0, 0, '{', 0, 0, 0, 0,
110 /* 90 */ 0, 0, -ESC_k, 'l', 0, ESC_n, 0, -ESC_p,
111 /* 98 */ 0, ESC_r, 0, '}', 0, 0, 0, 0,
112 /* A0 */ 0, '~', -ESC_s, ESC_tee, 0, 0, -ESC_w, 0,
113 /* A8 */ 0,-ESC_z, 0, 0, 0, '[', 0, 0,
114 /* B0 */ 0, 0, 0, 0, 0, 0, 0, 0,
115 /* B8 */ 0, 0, 0, 0, 0, ']', '=', '-',
116 /* C0 */ '{',-ESC_A, -ESC_B, -ESC_C, -ESC_D,-ESC_E, 0, -ESC_G,
117 /* C8 */ 0, 0, 0, 0, 0, 0, 0, 0,
118 /* D0 */ '}', 0, 0, 0, 0, 0, 0, -ESC_P,
119 /* D8 */-ESC_Q,-ESC_R, 0, 0, 0, 0, 0, 0,
120 /* E0 */ '\\', 0, -ESC_S, 0, 0, 0, -ESC_W, -ESC_X,
121 /* E8 */ 0,-ESC_Z, 0, 0, 0, 0, 0, 0,
122 /* F0 */ 0, 0, 0, 0, 0, 0, 0, 0,
123 /* F8 */ 0, 0, 0, 0, 0, 0, 0, 0
124 };
125 #endif
126
127
128 /* Tables of names of POSIX character classes and their lengths. The list is
129 terminated by a zero length entry. The first three must be alpha, lower, upper,
130 as this is assumed for handling case independence. */
131
132 static const char *const posix_names[] = {
133 "alpha", "lower", "upper",
134 "alnum", "ascii", "blank", "cntrl", "digit", "graph",
135 "print", "punct", "space", "word", "xdigit" };
136
137 static const uschar posix_name_lengths[] = {
138 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 6, 0 };
139
140 /* Table of class bit maps for each POSIX class. Each class is formed from a
141 base map, with an optional addition or removal of another map. Then, for some
142 classes, there is some additional tweaking: for [:blank:] the vertical space
143 characters are removed, and for [:alpha:] and [:alnum:] the underscore
144 character is removed. The triples in the table consist of the base map offset,
145 second map offset or -1 if no second map, and a non-negative value for map
146 addition or a negative value for map subtraction (if there are two maps). The
147 absolute value of the third field has these meanings: 0 => no tweaking, 1 =>
148 remove vertical space characters, 2 => remove underscore. */
149
150 static const int posix_class_maps[] = {
151 cbit_word, cbit_digit, -2, /* alpha */
152 cbit_lower, -1, 0, /* lower */
153 cbit_upper, -1, 0, /* upper */
154 cbit_word, -1, 2, /* alnum - word without underscore */
155 cbit_print, cbit_cntrl, 0, /* ascii */
156 cbit_space, -1, 1, /* blank - a GNU extension */
157 cbit_cntrl, -1, 0, /* cntrl */
158 cbit_digit, -1, 0, /* digit */
159 cbit_graph, -1, 0, /* graph */
160 cbit_print, -1, 0, /* print */
161 cbit_punct, -1, 0, /* punct */
162 cbit_space, -1, 0, /* space */
163 cbit_word, -1, 0, /* word - a Perl extension */
164 cbit_xdigit,-1, 0 /* xdigit */
165 };
166
167
168 #define STRING(a) # a
169 #define XSTRING(s) STRING(s)
170
171 /* The texts of compile-time error messages. These are "char *" because they
172 are passed to the outside world. Do not ever re-use any error number, because
173 they are documented. Always add a new error instead. Messages marked DEAD below
174 are no longer used. */
175
176 static const char *error_texts[] = {
177 "no error",
178 "\\ at end of pattern",
179 "\\c at end of pattern",
180 "unrecognized character follows \\",
181 "numbers out of order in {} quantifier",
182 /* 5 */
183 "number too big in {} quantifier",
184 "missing terminating ] for character class",
185 "invalid escape sequence in character class",
186 "range out of order in character class",
187 "nothing to repeat",
188 /* 10 */
189 "operand of unlimited repeat could match the empty string", /** DEAD **/
190 "internal error: unexpected repeat",
191 "unrecognized character after (?",
192 "POSIX named classes are supported only within a class",
193 "missing )",
194 /* 15 */
195 "reference to non-existent subpattern",
196 "erroffset passed as NULL",
197 "unknown option bit(s) set",
198 "missing ) after comment",
199 "parentheses nested too deeply", /** DEAD **/
200 /* 20 */
201 "regular expression too large",
202 "failed to get memory",
203 "unmatched parentheses",
204 "internal error: code overflow",
205 "unrecognized character after (?<",
206 /* 25 */
207 "lookbehind assertion is not fixed length",
208 "malformed number or name after (?(",
209 "conditional group contains more than two branches",
210 "assertion expected after (?(",
211 "(?R or (?[+-]digits must be followed by )",
212 /* 30 */
213 "unknown POSIX class name",
214 "POSIX collating elements are not supported",
215 "this version of PCRE is not compiled with PCRE_UTF8 support",
216 "spare error", /** DEAD **/
217 "character value in \\x{...} sequence is too large",
218 /* 35 */
219 "invalid condition (?(0)",
220 "\\C not allowed in lookbehind assertion",
221 "PCRE does not support \\L, \\l, \\N, \\U, or \\u",
222 "number after (?C is > 255",
223 "closing ) for (?C expected",
224 /* 40 */
225 "recursive call could loop indefinitely",
226 "unrecognized character after (?P",
227 "syntax error in subpattern name (missing terminator)",
228 "two named subpatterns have the same name",
229 "invalid UTF-8 string",
230 /* 45 */
231 "support for \\P, \\p, and \\X has not been compiled",
232 "malformed \\P or \\p sequence",
233 "unknown property name after \\P or \\p",
234 "subpattern name is too long (maximum " XSTRING(MAX_NAME_SIZE) " characters)",
235 "too many named subpatterns (maximum " XSTRING(MAX_NAME_COUNT) ")",
236 /* 50 */
237 "repeated subpattern is too long",
238 "octal value is greater than \\377 (not in UTF-8 mode)",
239 "internal error: overran compiling workspace",
240 "internal error: previously-checked referenced subpattern not found",
241 "DEFINE group contains more than one branch",
242 /* 55 */
243 "repeating a DEFINE group is not allowed",
244 "inconsistent NEWLINE options",
245 "\\g is not followed by an (optionally braced) non-zero number",
246 "(?+ or (?- or (?(+ or (?(- must be followed by a non-zero number"
247 };
248
249
250 /* Table to identify digits and hex digits. This is used when compiling
251 patterns. Note that the tables in chartables are dependent on the locale, and
252 may mark arbitrary characters as digits - but the PCRE compiling code expects
253 to handle only 0-9, a-z, and A-Z as digits when compiling. That is why we have
254 a private table here. It costs 256 bytes, but it is a lot faster than doing
255 character value tests (at least in some simple cases I timed), and in some
256 applications one wants PCRE to compile efficiently as well as match
257 efficiently.
258
259 For convenience, we use the same bit definitions as in chartables:
260
261 0x04 decimal digit
262 0x08 hexadecimal digit
263
264 Then we can use ctype_digit and ctype_xdigit in the code. */
265
266 #ifndef EBCDIC /* This is the "normal" case, for ASCII systems */
267 static const unsigned char digitab[] =
268 {
269 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 0- 7 */
270 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 8- 15 */
271 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 16- 23 */
272 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */
273 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - ' */
274 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ( - / */
275 0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c, /* 0 - 7 */
276 0x0c,0x0c,0x00,0x00,0x00,0x00,0x00,0x00, /* 8 - ? */
277 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* @ - G */
278 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* H - O */
279 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* P - W */
280 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* X - _ */
281 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* ` - g */
282 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* h - o */
283 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* p - w */
284 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* x -127 */
285 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 128-135 */
286 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 136-143 */
287 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 144-151 */
288 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 152-159 */
289 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 160-167 */
290 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 168-175 */
291 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 176-183 */
292 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 184-191 */
293 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 192-199 */
294 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 200-207 */
295 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 208-215 */
296 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 216-223 */
297 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 224-231 */
298 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 232-239 */
299 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 240-247 */
300 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};/* 248-255 */
301
302 #else /* This is the "abnormal" case, for EBCDIC systems */
303 static const unsigned char digitab[] =
304 {
305 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 0- 7 0 */
306 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 8- 15 */
307 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 16- 23 10 */
308 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */
309 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 32- 39 20 */
310 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 40- 47 */
311 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 48- 55 30 */
312 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 56- 63 */
313 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - 71 40 */
314 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 72- | */
315 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* & - 87 50 */
316 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 88- 95 */
317 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - -103 60 */
318 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 104- ? */
319 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 112-119 70 */
320 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 120- " */
321 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* 128- g 80 */
322 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* h -143 */
323 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 144- p 90 */
324 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* q -159 */
325 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 160- x A0 */
326 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* y -175 */
327 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ^ -183 B0 */
328 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 184-191 */
329 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* { - G C0 */
330 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* H -207 */
331 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* } - P D0 */
332 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* Q -223 */
333 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* \ - X E0 */
334 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* Y -239 */
335 0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c, /* 0 - 7 F0 */
336 0x0c,0x0c,0x00,0x00,0x00,0x00,0x00,0x00};/* 8 -255 */
337
338 static const unsigned char ebcdic_chartab[] = { /* chartable partial dup */
339 0x80,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 0- 7 */
340 0x00,0x00,0x00,0x00,0x01,0x01,0x00,0x00, /* 8- 15 */
341 0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 16- 23 */
342 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */
343 0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 32- 39 */
344 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 40- 47 */
345 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 48- 55 */
346 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 56- 63 */
347 0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - 71 */
348 0x00,0x00,0x00,0x80,0x00,0x80,0x80,0x80, /* 72- | */
349 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* & - 87 */
350 0x00,0x00,0x00,0x80,0x80,0x80,0x00,0x00, /* 88- 95 */
351 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - -103 */
352 0x00,0x00,0x00,0x00,0x00,0x10,0x00,0x80, /* 104- ? */
353 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 112-119 */
354 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 120- " */
355 0x00,0x1a,0x1a,0x1a,0x1a,0x1a,0x1a,0x12, /* 128- g */
356 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* h -143 */
357 0x00,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* 144- p */
358 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* q -159 */
359 0x00,0x00,0x12,0x12,0x12,0x12,0x12,0x12, /* 160- x */
360 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* y -175 */
361 0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ^ -183 */
362 0x00,0x00,0x80,0x00,0x00,0x00,0x00,0x00, /* 184-191 */
363 0x80,0x1a,0x1a,0x1a,0x1a,0x1a,0x1a,0x12, /* { - G */
364 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* H -207 */
365 0x00,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* } - P */
366 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* Q -223 */
367 0x00,0x00,0x12,0x12,0x12,0x12,0x12,0x12, /* \ - X */
368 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* Y -239 */
369 0x1c,0x1c,0x1c,0x1c,0x1c,0x1c,0x1c,0x1c, /* 0 - 7 */
370 0x1c,0x1c,0x00,0x00,0x00,0x00,0x00,0x00};/* 8 -255 */
371 #endif
372
373
374 /* Definition to allow mutual recursion */
375
376 static BOOL
377 compile_regex(int, int, uschar **, const uschar **, int *, BOOL, int, int *,
378 int *, branch_chain *, compile_data *, int *);
379
380
381
382 /*************************************************
383 * Handle escapes *
384 *************************************************/
385
386 /* This function is called when a \ has been encountered. It either returns a
387 positive value for a simple escape such as \n, or a negative value which
388 encodes one of the more complicated things such as \d. A backreference to group
389 n is returned as -(ESC_REF + n); ESC_REF is the highest ESC_xxx macro. When
390 UTF-8 is enabled, a positive value greater than 255 may be returned. On entry,
391 ptr is pointing at the \. On exit, it is on the final character of the escape
392 sequence.
393
394 Arguments:
395 ptrptr points to the pattern position pointer
396 errorcodeptr points to the errorcode variable
397 bracount number of previous extracting brackets
398 options the options bits
399 isclass TRUE if inside a character class
400
401 Returns: zero or positive => a data character
402 negative => a special escape sequence
403 on error, errorptr is set
404 */
405
406 static int
407 check_escape(const uschar **ptrptr, int *errorcodeptr, int bracount,
408 int options, BOOL isclass)
409 {
410 BOOL utf8 = (options & PCRE_UTF8) != 0;
411 const uschar *ptr = *ptrptr + 1;
412 int c, i;
413
414 GETCHARINCTEST(c, ptr); /* Get character value, increment pointer */
415 ptr--; /* Set pointer back to the last byte */
416
417 /* If backslash is at the end of the pattern, it's an error. */
418
419 if (c == 0) *errorcodeptr = ERR1;
420
421 /* Non-alphamerics are literals. For digits or letters, do an initial lookup in
422 a table. A non-zero result is something that can be returned immediately.
423 Otherwise further processing may be required. */
424
425 #ifndef EBCDIC /* ASCII coding */
426 else if (c < '0' || c > 'z') {} /* Not alphameric */
427 else if ((i = escapes[c - '0']) != 0) c = i;
428
429 #else /* EBCDIC coding */
430 else if (c < 'a' || (ebcdic_chartab[c] & 0x0E) == 0) {} /* Not alphameric */
431 else if ((i = escapes[c - 0x48]) != 0) c = i;
432 #endif
433
434 /* Escapes that need further processing, or are illegal. */
435
436 else
437 {
438 const uschar *oldptr;
439 BOOL braced, negated;
440
441 switch (c)
442 {
443 /* A number of Perl escapes are not handled by PCRE. We give an explicit
444 error. */
445
446 case 'l':
447 case 'L':
448 case 'N':
449 case 'u':
450 case 'U':
451 *errorcodeptr = ERR37;
452 break;
453
454 /* \g must be followed by a number, either plain or braced. If positive, it
455 is an absolute backreference. If negative, it is a relative backreference.
456 This is a Perl 5.10 feature. */
457
458 case 'g':
459 if (ptr[1] == '{')
460 {
461 braced = TRUE;
462 ptr++;
463 }
464 else braced = FALSE;
465
466 if (ptr[1] == '-')
467 {
468 negated = TRUE;
469 ptr++;
470 }
471 else negated = FALSE;
472
473 c = 0;
474 while ((digitab[ptr[1]] & ctype_digit) != 0)
475 c = c * 10 + *(++ptr) - '0';
476
477 if (c == 0 || (braced && *(++ptr) != '}'))
478 {
479 *errorcodeptr = ERR57;
480 return 0;
481 }
482
483 if (negated)
484 {
485 if (c > bracount)
486 {
487 *errorcodeptr = ERR15;
488 return 0;
489 }
490 c = bracount - (c - 1);
491 }
492
493 c = -(ESC_REF + c);
494 break;
495
496 /* The handling of escape sequences consisting of a string of digits
497 starting with one that is not zero is not straightforward. By experiment,
498 the way Perl works seems to be as follows:
499
500 Outside a character class, the digits are read as a decimal number. If the
501 number is less than 10, or if there are that many previous extracting
502 left brackets, then it is a back reference. Otherwise, up to three octal
503 digits are read to form an escaped byte. Thus \123 is likely to be octal
504 123 (cf \0123, which is octal 012 followed by the literal 3). If the octal
505 value is greater than 377, the least significant 8 bits are taken. Inside a
506 character class, \ followed by a digit is always an octal number. */
507
508 case '1': case '2': case '3': case '4': case '5':
509 case '6': case '7': case '8': case '9':
510
511 if (!isclass)
512 {
513 oldptr = ptr;
514 c -= '0';
515 while ((digitab[ptr[1]] & ctype_digit) != 0)
516 c = c * 10 + *(++ptr) - '0';
517 if (c < 10 || c <= bracount)
518 {
519 c = -(ESC_REF + c);
520 break;
521 }
522 ptr = oldptr; /* Put the pointer back and fall through */
523 }
524
525 /* Handle an octal number following \. If the first digit is 8 or 9, Perl
526 generates a binary zero byte and treats the digit as a following literal.
527 Thus we have to pull back the pointer by one. */
528
529 if ((c = *ptr) >= '8')
530 {
531 ptr--;
532 c = 0;
533 break;
534 }
535
536 /* \0 always starts an octal number, but we may drop through to here with a
537 larger first octal digit. The original code used just to take the least
538 significant 8 bits of octal numbers (I think this is what early Perls used
539 to do). Nowadays we allow for larger numbers in UTF-8 mode, but no more
540 than 3 octal digits. */
541
542 case '0':
543 c -= '0';
544 while(i++ < 2 && ptr[1] >= '0' && ptr[1] <= '7')
545 c = c * 8 + *(++ptr) - '0';
546 if (!utf8 && c > 255) *errorcodeptr = ERR51;
547 break;
548
549 /* \x is complicated. \x{ddd} is a character number which can be greater
550 than 0xff in utf8 mode, but only if the ddd are hex digits. If not, { is
551 treated as a data character. */
552
553 case 'x':
554 if (ptr[1] == '{')
555 {
556 const uschar *pt = ptr + 2;
557 int count = 0;
558
559 c = 0;
560 while ((digitab[*pt] & ctype_xdigit) != 0)
561 {
562 register int cc = *pt++;
563 if (c == 0 && cc == '0') continue; /* Leading zeroes */
564 count++;
565
566 #ifndef EBCDIC /* ASCII coding */
567 if (cc >= 'a') cc -= 32; /* Convert to upper case */
568 c = (c << 4) + cc - ((cc < 'A')? '0' : ('A' - 10));
569 #else /* EBCDIC coding */
570 if (cc >= 'a' && cc <= 'z') cc += 64; /* Convert to upper case */
571 c = (c << 4) + cc - ((cc >= '0')? '0' : ('A' - 10));
572 #endif
573 }
574
575 if (*pt == '}')
576 {
577 if (c < 0 || count > (utf8? 8 : 2)) *errorcodeptr = ERR34;
578 ptr = pt;
579 break;
580 }
581
582 /* If the sequence of hex digits does not end with '}', then we don't
583 recognize this construct; fall through to the normal \x handling. */
584 }
585
586 /* Read just a single-byte hex-defined char */
587
588 c = 0;
589 while (i++ < 2 && (digitab[ptr[1]] & ctype_xdigit) != 0)
590 {
591 int cc; /* Some compilers don't like ++ */
592 cc = *(++ptr); /* in initializers */
593 #ifndef EBCDIC /* ASCII coding */
594 if (cc >= 'a') cc -= 32; /* Convert to upper case */
595 c = c * 16 + cc - ((cc < 'A')? '0' : ('A' - 10));
596 #else /* EBCDIC coding */
597 if (cc <= 'z') cc += 64; /* Convert to upper case */
598 c = c * 16 + cc - ((cc >= '0')? '0' : ('A' - 10));
599 #endif
600 }
601 break;
602
603 /* For \c, a following letter is upper-cased; then the 0x40 bit is flipped.
604 This coding is ASCII-specific, but then the whole concept of \cx is
605 ASCII-specific. (However, an EBCDIC equivalent has now been added.) */
606
607 case 'c':
608 c = *(++ptr);
609 if (c == 0)
610 {
611 *errorcodeptr = ERR2;
612 return 0;
613 }
614
615 #ifndef EBCDIC /* ASCII coding */
616 if (c >= 'a' && c <= 'z') c -= 32;
617 c ^= 0x40;
618 #else /* EBCDIC coding */
619 if (c >= 'a' && c <= 'z') c += 64;
620 c ^= 0xC0;
621 #endif
622 break;
623
624 /* PCRE_EXTRA enables extensions to Perl in the matter of escapes. Any
625 other alphameric following \ is an error if PCRE_EXTRA was set; otherwise,
626 for Perl compatibility, it is a literal. This code looks a bit odd, but
627 there used to be some cases other than the default, and there may be again
628 in future, so I haven't "optimized" it. */
629
630 default:
631 if ((options & PCRE_EXTRA) != 0) switch(c)
632 {
633 default:
634 *errorcodeptr = ERR3;
635 break;
636 }
637 break;
638 }
639 }
640
641 *ptrptr = ptr;
642 return c;
643 }
644
645
646
647 #ifdef SUPPORT_UCP
648 /*************************************************
649 * Handle \P and \p *
650 *************************************************/
651
652 /* This function is called after \P or \p has been encountered, provided that
653 PCRE is compiled with support for Unicode properties. On entry, ptrptr is
654 pointing at the P or p. On exit, it is pointing at the final character of the
655 escape sequence.
656
657 Argument:
658 ptrptr points to the pattern position pointer
659 negptr points to a boolean that is set TRUE for negation else FALSE
660 dptr points to an int that is set to the detailed property value
661 errorcodeptr points to the error code variable
662
663 Returns: type value from ucp_type_table, or -1 for an invalid type
664 */
665
666 static int
667 get_ucp(const uschar **ptrptr, BOOL *negptr, int *dptr, int *errorcodeptr)
668 {
669 int c, i, bot, top;
670 const uschar *ptr = *ptrptr;
671 char name[32];
672
673 c = *(++ptr);
674 if (c == 0) goto ERROR_RETURN;
675
676 *negptr = FALSE;
677
678 /* \P or \p can be followed by a name in {}, optionally preceded by ^ for
679 negation. */
680
681 if (c == '{')
682 {
683 if (ptr[1] == '^')
684 {
685 *negptr = TRUE;
686 ptr++;
687 }
688 for (i = 0; i < sizeof(name) - 1; i++)
689 {
690 c = *(++ptr);
691 if (c == 0) goto ERROR_RETURN;
692 if (c == '}') break;
693 name[i] = c;
694 }
695 if (c !='}') goto ERROR_RETURN;
696 name[i] = 0;
697 }
698
699 /* Otherwise there is just one following character */
700
701 else
702 {
703 name[0] = c;
704 name[1] = 0;
705 }
706
707 *ptrptr = ptr;
708
709 /* Search for a recognized property name using binary chop */
710
711 bot = 0;
712 top = _pcre_utt_size;
713
714 while (bot < top)
715 {
716 i = (bot + top) >> 1;
717 c = strcmp(name, _pcre_utt[i].name);
718 if (c == 0)
719 {
720 *dptr = _pcre_utt[i].value;
721 return _pcre_utt[i].type;
722 }
723 if (c > 0) bot = i + 1; else top = i;
724 }
725
726 *errorcodeptr = ERR47;
727 *ptrptr = ptr;
728 return -1;
729
730 ERROR_RETURN:
731 *errorcodeptr = ERR46;
732 *ptrptr = ptr;
733 return -1;
734 }
735 #endif
736
737
738
739
740 /*************************************************
741 * Check for counted repeat *
742 *************************************************/
743
744 /* This function is called when a '{' is encountered in a place where it might
745 start a quantifier. It looks ahead to see if it really is a quantifier or not.
746 It is only a quantifier if it is one of the forms {ddd} {ddd,} or {ddd,ddd}
747 where the ddds are digits.
748
749 Arguments:
750 p pointer to the first char after '{'
751
752 Returns: TRUE or FALSE
753 */
754
755 static BOOL
756 is_counted_repeat(const uschar *p)
757 {
758 if ((digitab[*p++] & ctype_digit) == 0) return FALSE;
759 while ((digitab[*p] & ctype_digit) != 0) p++;
760 if (*p == '}') return TRUE;
761
762 if (*p++ != ',') return FALSE;
763 if (*p == '}') return TRUE;
764
765 if ((digitab[*p++] & ctype_digit) == 0) return FALSE;
766 while ((digitab[*p] & ctype_digit) != 0) p++;
767
768 return (*p == '}');
769 }
770
771
772
773 /*************************************************
774 * Read repeat counts *
775 *************************************************/
776
777 /* Read an item of the form {n,m} and return the values. This is called only
778 after is_counted_repeat() has confirmed that a repeat-count quantifier exists,
779 so the syntax is guaranteed to be correct, but we need to check the values.
780
781 Arguments:
782 p pointer to first char after '{'
783 minp pointer to int for min
784 maxp pointer to int for max
785 returned as -1 if no max
786 errorcodeptr points to error code variable
787
788 Returns: pointer to '}' on success;
789 current ptr on error, with errorcodeptr set non-zero
790 */
791
792 static const uschar *
793 read_repeat_counts(const uschar *p, int *minp, int *maxp, int *errorcodeptr)
794 {
795 int min = 0;
796 int max = -1;
797
798 /* Read the minimum value and do a paranoid check: a negative value indicates
799 an integer overflow. */
800
801 while ((digitab[*p] & ctype_digit) != 0) min = min * 10 + *p++ - '0';
802 if (min < 0 || min > 65535)
803 {
804 *errorcodeptr = ERR5;
805 return p;
806 }
807
808 /* Read the maximum value if there is one, and again do a paranoid on its size.
809 Also, max must not be less than min. */
810
811 if (*p == '}') max = min; else
812 {
813 if (*(++p) != '}')
814 {
815 max = 0;
816 while((digitab[*p] & ctype_digit) != 0) max = max * 10 + *p++ - '0';
817 if (max < 0 || max > 65535)
818 {
819 *errorcodeptr = ERR5;
820 return p;
821 }
822 if (max < min)
823 {
824 *errorcodeptr = ERR4;
825 return p;
826 }
827 }
828 }
829
830 /* Fill in the required variables, and pass back the pointer to the terminating
831 '}'. */
832
833 *minp = min;
834 *maxp = max;
835 return p;
836 }
837
838
839
840 /*************************************************
841 * Find forward referenced subpattern *
842 *************************************************/
843
844 /* This function scans along a pattern's text looking for capturing
845 subpatterns, and counting them. If it finds a named pattern that matches the
846 name it is given, it returns its number. Alternatively, if the name is NULL, it
847 returns when it reaches a given numbered subpattern. This is used for forward
848 references to subpatterns. We know that if (?P< is encountered, the name will
849 be terminated by '>' because that is checked in the first pass.
850
851 Arguments:
852 ptr current position in the pattern
853 count current count of capturing parens so far encountered
854 name name to seek, or NULL if seeking a numbered subpattern
855 lorn name length, or subpattern number if name is NULL
856 xmode TRUE if we are in /x mode
857
858 Returns: the number of the named subpattern, or -1 if not found
859 */
860
861 static int
862 find_parens(const uschar *ptr, int count, const uschar *name, int lorn,
863 BOOL xmode)
864 {
865 const uschar *thisname;
866
867 for (; *ptr != 0; ptr++)
868 {
869 int term;
870
871 /* Skip over backslashed characters and also entire \Q...\E */
872
873 if (*ptr == '\\')
874 {
875 if (*(++ptr) == 0) return -1;
876 if (*ptr == 'Q') for (;;)
877 {
878 while (*(++ptr) != 0 && *ptr != '\\');
879 if (*ptr == 0) return -1;
880 if (*(++ptr) == 'E') break;
881 }
882 continue;
883 }
884
885 /* Skip over character classes */
886
887 if (*ptr == '[')
888 {
889 while (*(++ptr) != ']')
890 {
891 if (*ptr == '\\')
892 {
893 if (*(++ptr) == 0) return -1;
894 if (*ptr == 'Q') for (;;)
895 {
896 while (*(++ptr) != 0 && *ptr != '\\');
897 if (*ptr == 0) return -1;
898 if (*(++ptr) == 'E') break;
899 }
900 continue;
901 }
902 }
903 continue;
904 }
905
906 /* Skip comments in /x mode */
907
908 if (xmode && *ptr == '#')
909 {
910 while (*(++ptr) != 0 && *ptr != '\n');
911 if (*ptr == 0) return -1;
912 continue;
913 }
914
915 /* An opening parens must now be a real metacharacter */
916
917 if (*ptr != '(') continue;
918 if (ptr[1] != '?')
919 {
920 count++;
921 if (name == NULL && count == lorn) return count;
922 continue;
923 }
924
925 ptr += 2;
926 if (*ptr == 'P') ptr++; /* Allow optional P */
927
928 /* We have to disambiguate (?<! and (?<= from (?<name> */
929
930 if ((*ptr != '<' || ptr[1] == '!' || ptr[1] == '=') &&
931 *ptr != '\'')
932 continue;
933
934 count++;
935
936 if (name == NULL && count == lorn) return count;
937 term = *ptr++;
938 if (term == '<') term = '>';
939 thisname = ptr;
940 while (*ptr != term) ptr++;
941 if (name != NULL && lorn == ptr - thisname &&
942 strncmp((const char *)name, (const char *)thisname, lorn) == 0)
943 return count;
944 }
945
946 return -1;
947 }
948
949
950
951 /*************************************************
952 * Find first significant op code *
953 *************************************************/
954
955 /* This is called by several functions that scan a compiled expression looking
956 for a fixed first character, or an anchoring op code etc. It skips over things
957 that do not influence this. For some calls, a change of option is important.
958 For some calls, it makes sense to skip negative forward and all backward
959 assertions, and also the \b assertion; for others it does not.
960
961 Arguments:
962 code pointer to the start of the group
963 options pointer to external options
964 optbit the option bit whose changing is significant, or
965 zero if none are
966 skipassert TRUE if certain assertions are to be skipped
967
968 Returns: pointer to the first significant opcode
969 */
970
971 static const uschar*
972 first_significant_code(const uschar *code, int *options, int optbit,
973 BOOL skipassert)
974 {
975 for (;;)
976 {
977 switch ((int)*code)
978 {
979 case OP_OPT:
980 if (optbit > 0 && ((int)code[1] & optbit) != (*options & optbit))
981 *options = (int)code[1];
982 code += 2;
983 break;
984
985 case OP_ASSERT_NOT:
986 case OP_ASSERTBACK:
987 case OP_ASSERTBACK_NOT:
988 if (!skipassert) return code;
989 do code += GET(code, 1); while (*code == OP_ALT);
990 code += _pcre_OP_lengths[*code];
991 break;
992
993 case OP_WORD_BOUNDARY:
994 case OP_NOT_WORD_BOUNDARY:
995 if (!skipassert) return code;
996 /* Fall through */
997
998 case OP_CALLOUT:
999 case OP_CREF:
1000 case OP_RREF:
1001 case OP_DEF:
1002 code += _pcre_OP_lengths[*code];
1003 break;
1004
1005 default:
1006 return code;
1007 }
1008 }
1009 /* Control never reaches here */
1010 }
1011
1012
1013
1014
1015 /*************************************************
1016 * Find the fixed length of a pattern *
1017 *************************************************/
1018
1019 /* Scan a pattern and compute the fixed length of subject that will match it,
1020 if the length is fixed. This is needed for dealing with backward assertions.
1021 In UTF8 mode, the result is in characters rather than bytes.
1022
1023 Arguments:
1024 code points to the start of the pattern (the bracket)
1025 options the compiling options
1026
1027 Returns: the fixed length, or -1 if there is no fixed length,
1028 or -2 if \C was encountered
1029 */
1030
1031 static int
1032 find_fixedlength(uschar *code, int options)
1033 {
1034 int length = -1;
1035
1036 register int branchlength = 0;
1037 register uschar *cc = code + 1 + LINK_SIZE;
1038
1039 /* Scan along the opcodes for this branch. If we get to the end of the
1040 branch, check the length against that of the other branches. */
1041
1042 for (;;)
1043 {
1044 int d;
1045 register int op = *cc;
1046
1047 switch (op)
1048 {
1049 case OP_CBRA:
1050 case OP_BRA:
1051 case OP_ONCE:
1052 case OP_COND:
1053 d = find_fixedlength(cc + ((op == OP_CBRA)? 2:0), options);
1054 if (d < 0) return d;
1055 branchlength += d;
1056 do cc += GET(cc, 1); while (*cc == OP_ALT);
1057 cc += 1 + LINK_SIZE;
1058 break;
1059
1060 /* Reached end of a branch; if it's a ket it is the end of a nested
1061 call. If it's ALT it is an alternation in a nested call. If it is
1062 END it's the end of the outer call. All can be handled by the same code. */
1063
1064 case OP_ALT:
1065 case OP_KET:
1066 case OP_KETRMAX:
1067 case OP_KETRMIN:
1068 case OP_END:
1069 if (length < 0) length = branchlength;
1070 else if (length != branchlength) return -1;
1071 if (*cc != OP_ALT) return length;
1072 cc += 1 + LINK_SIZE;
1073 branchlength = 0;
1074 break;
1075
1076 /* Skip over assertive subpatterns */
1077
1078 case OP_ASSERT:
1079 case OP_ASSERT_NOT:
1080 case OP_ASSERTBACK:
1081 case OP_ASSERTBACK_NOT:
1082 do cc += GET(cc, 1); while (*cc == OP_ALT);
1083 /* Fall through */
1084
1085 /* Skip over things that don't match chars */
1086
1087 case OP_REVERSE:
1088 case OP_CREF:
1089 case OP_RREF:
1090 case OP_DEF:
1091 case OP_OPT:
1092 case OP_CALLOUT:
1093 case OP_SOD:
1094 case OP_SOM:
1095 case OP_EOD:
1096 case OP_EODN:
1097 case OP_CIRC:
1098 case OP_DOLL:
1099 case OP_NOT_WORD_BOUNDARY:
1100 case OP_WORD_BOUNDARY:
1101 cc += _pcre_OP_lengths[*cc];
1102 break;
1103
1104 /* Handle literal characters */
1105
1106 case OP_CHAR:
1107 case OP_CHARNC:
1108 case OP_NOT:
1109 branchlength++;
1110 cc += 2;
1111 #ifdef SUPPORT_UTF8
1112 if ((options & PCRE_UTF8) != 0)
1113 {
1114 while ((*cc & 0xc0) == 0x80) cc++;
1115 }
1116 #endif
1117 break;
1118
1119 /* Handle exact repetitions. The count is already in characters, but we
1120 need to skip over a multibyte character in UTF8 mode. */
1121
1122 case OP_EXACT:
1123 branchlength += GET2(cc,1);
1124 cc += 4;
1125 #ifdef SUPPORT_UTF8
1126 if ((options & PCRE_UTF8) != 0)
1127 {
1128 while((*cc & 0x80) == 0x80) cc++;
1129 }
1130 #endif
1131 break;
1132
1133 case OP_TYPEEXACT:
1134 branchlength += GET2(cc,1);
1135 cc += 4;
1136 break;
1137
1138 /* Handle single-char matchers */
1139
1140 case OP_PROP:
1141 case OP_NOTPROP:
1142 cc += 2;
1143 /* Fall through */
1144
1145 case OP_NOT_DIGIT:
1146 case OP_DIGIT:
1147 case OP_NOT_WHITESPACE:
1148 case OP_WHITESPACE:
1149 case OP_NOT_WORDCHAR:
1150 case OP_WORDCHAR:
1151 case OP_ANY:
1152 branchlength++;
1153 cc++;
1154 break;
1155
1156 /* The single-byte matcher isn't allowed */
1157
1158 case OP_ANYBYTE:
1159 return -2;
1160
1161 /* Check a class for variable quantification */
1162
1163 #ifdef SUPPORT_UTF8
1164 case OP_XCLASS:
1165 cc += GET(cc, 1) - 33;
1166 /* Fall through */
1167 #endif
1168
1169 case OP_CLASS:
1170 case OP_NCLASS:
1171 cc += 33;
1172
1173 switch (*cc)
1174 {
1175 case OP_CRSTAR:
1176 case OP_CRMINSTAR:
1177 case OP_CRQUERY:
1178 case OP_CRMINQUERY:
1179 return -1;
1180
1181 case OP_CRRANGE:
1182 case OP_CRMINRANGE:
1183 if (GET2(cc,1) != GET2(cc,3)) return -1;
1184 branchlength += GET2(cc,1);
1185 cc += 5;
1186 break;
1187
1188 default:
1189 branchlength++;
1190 }
1191 break;
1192
1193 /* Anything else is variable length */
1194
1195 default:
1196 return -1;
1197 }
1198 }
1199 /* Control never gets here */
1200 }
1201
1202
1203
1204
1205 /*************************************************
1206 * Scan compiled regex for numbered bracket *
1207 *************************************************/
1208
1209 /* This little function scans through a compiled pattern until it finds a
1210 capturing bracket with the given number.
1211
1212 Arguments:
1213 code points to start of expression
1214 utf8 TRUE in UTF-8 mode
1215 number the required bracket number
1216
1217 Returns: pointer to the opcode for the bracket, or NULL if not found
1218 */
1219
1220 static const uschar *
1221 find_bracket(const uschar *code, BOOL utf8, int number)
1222 {
1223 for (;;)
1224 {
1225 register int c = *code;
1226 if (c == OP_END) return NULL;
1227
1228 /* XCLASS is used for classes that cannot be represented just by a bit
1229 map. This includes negated single high-valued characters. The length in
1230 the table is zero; the actual length is stored in the compiled code. */
1231
1232 if (c == OP_XCLASS) code += GET(code, 1);
1233
1234 /* Handle capturing bracket */
1235
1236 else if (c == OP_CBRA)
1237 {
1238 int n = GET2(code, 1+LINK_SIZE);
1239 if (n == number) return (uschar *)code;
1240 code += _pcre_OP_lengths[c];
1241 }
1242
1243 /* In UTF-8 mode, opcodes that are followed by a character may be followed by
1244 a multi-byte character. The length in the table is a minimum, so we have to
1245 arrange to skip the extra bytes. */
1246
1247 else
1248 {
1249 code += _pcre_OP_lengths[c];
1250 #ifdef SUPPORT_UTF8
1251 if (utf8) switch(c)
1252 {
1253 case OP_CHAR:
1254 case OP_CHARNC:
1255 case OP_EXACT:
1256 case OP_UPTO:
1257 case OP_MINUPTO:
1258 case OP_POSUPTO:
1259 case OP_STAR:
1260 case OP_MINSTAR:
1261 case OP_POSSTAR:
1262 case OP_PLUS:
1263 case OP_MINPLUS:
1264 case OP_POSPLUS:
1265 case OP_QUERY:
1266 case OP_MINQUERY:
1267 case OP_POSQUERY:
1268 if (code[-1] >= 0xc0) code += _pcre_utf8_table4[code[-1] & 0x3f];
1269 break;
1270 }
1271 #endif
1272 }
1273 }
1274 }
1275
1276
1277
1278 /*************************************************
1279 * Scan compiled regex for recursion reference *
1280 *************************************************/
1281
1282 /* This little function scans through a compiled pattern until it finds an
1283 instance of OP_RECURSE.
1284
1285 Arguments:
1286 code points to start of expression
1287 utf8 TRUE in UTF-8 mode
1288
1289 Returns: pointer to the opcode for OP_RECURSE, or NULL if not found
1290 */
1291
1292 static const uschar *
1293 find_recurse(const uschar *code, BOOL utf8)
1294 {
1295 for (;;)
1296 {
1297 register int c = *code;
1298 if (c == OP_END) return NULL;
1299 if (c == OP_RECURSE) return code;
1300
1301 /* XCLASS is used for classes that cannot be represented just by a bit
1302 map. This includes negated single high-valued characters. The length in
1303 the table is zero; the actual length is stored in the compiled code. */
1304
1305 if (c == OP_XCLASS) code += GET(code, 1);
1306
1307 /* Otherwise, we get the item's length from the table. In UTF-8 mode, opcodes
1308 that are followed by a character may be followed by a multi-byte character.
1309 The length in the table is a minimum, so we have to arrange to skip the extra
1310 bytes. */
1311
1312 else
1313 {
1314 code += _pcre_OP_lengths[c];
1315 #ifdef SUPPORT_UTF8
1316 if (utf8) switch(c)
1317 {
1318 case OP_CHAR:
1319 case OP_CHARNC:
1320 case OP_EXACT:
1321 case OP_UPTO:
1322 case OP_MINUPTO:
1323 case OP_POSUPTO:
1324 case OP_STAR:
1325 case OP_MINSTAR:
1326 case OP_POSSTAR:
1327 case OP_PLUS:
1328 case OP_MINPLUS:
1329 case OP_POSPLUS:
1330 case OP_QUERY:
1331 case OP_MINQUERY:
1332 case OP_POSQUERY:
1333 if (code[-1] >= 0xc0) code += _pcre_utf8_table4[code[-1] & 0x3f];
1334 break;
1335 }
1336 #endif
1337 }
1338 }
1339 }
1340
1341
1342
1343 /*************************************************
1344 * Scan compiled branch for non-emptiness *
1345 *************************************************/
1346
1347 /* This function scans through a branch of a compiled pattern to see whether it
1348 can match the empty string or not. It is called from could_be_empty()
1349 below and from compile_branch() when checking for an unlimited repeat of a
1350 group that can match nothing. Note that first_significant_code() skips over
1351 assertions. If we hit an unclosed bracket, we return "empty" - this means we've
1352 struck an inner bracket whose current branch will already have been scanned.
1353
1354 Arguments:
1355 code points to start of search
1356 endcode points to where to stop
1357 utf8 TRUE if in UTF8 mode
1358
1359 Returns: TRUE if what is matched could be empty
1360 */
1361
1362 static BOOL
1363 could_be_empty_branch(const uschar *code, const uschar *endcode, BOOL utf8)
1364 {
1365 register int c;
1366 for (code = first_significant_code(code + _pcre_OP_lengths[*code], NULL, 0, TRUE);
1367 code < endcode;
1368 code = first_significant_code(code + _pcre_OP_lengths[c], NULL, 0, TRUE))
1369 {
1370 const uschar *ccode;
1371
1372 c = *code;
1373
1374 if (c == OP_BRA || c == OP_CBRA || c == OP_ONCE)
1375 {
1376 BOOL empty_branch;
1377 if (GET(code, 1) == 0) return TRUE; /* Hit unclosed bracket */
1378
1379 /* Scan a closed bracket */
1380
1381 empty_branch = FALSE;
1382 do
1383 {
1384 if (!empty_branch && could_be_empty_branch(code, endcode, utf8))
1385 empty_branch = TRUE;
1386 code += GET(code, 1);
1387 }
1388 while (*code == OP_ALT);
1389 if (!empty_branch) return FALSE; /* All branches are non-empty */
1390
1391 /* Move past the KET and fudge things so that the increment in the "for"
1392 above has no effect. */
1393
1394 c = OP_END;
1395 code += 1 + LINK_SIZE - _pcre_OP_lengths[c];
1396 continue;
1397 }
1398
1399 /* Handle the other opcodes */
1400
1401 switch (c)
1402 {
1403 /* Check for quantifiers after a class */
1404
1405 #ifdef SUPPORT_UTF8
1406 case OP_XCLASS:
1407 ccode = code + GET(code, 1);
1408 goto CHECK_CLASS_REPEAT;
1409 #endif
1410
1411 case OP_CLASS:
1412 case OP_NCLASS:
1413 ccode = code + 33;
1414
1415 #ifdef SUPPORT_UTF8
1416 CHECK_CLASS_REPEAT:
1417 #endif
1418
1419 switch (*ccode)
1420 {
1421 case OP_CRSTAR: /* These could be empty; continue */
1422 case OP_CRMINSTAR:
1423 case OP_CRQUERY:
1424 case OP_CRMINQUERY:
1425 break;
1426
1427 default: /* Non-repeat => class must match */
1428 case OP_CRPLUS: /* These repeats aren't empty */
1429 case OP_CRMINPLUS:
1430 return FALSE;
1431
1432 case OP_CRRANGE:
1433 case OP_CRMINRANGE:
1434 if (GET2(ccode, 1) > 0) return FALSE; /* Minimum > 0 */
1435 break;
1436 }
1437 break;
1438
1439 /* Opcodes that must match a character */
1440
1441 case OP_PROP:
1442 case OP_NOTPROP:
1443 case OP_EXTUNI:
1444 case OP_NOT_DIGIT:
1445 case OP_DIGIT:
1446 case OP_NOT_WHITESPACE:
1447 case OP_WHITESPACE:
1448 case OP_NOT_WORDCHAR:
1449 case OP_WORDCHAR:
1450 case OP_ANY:
1451 case OP_ANYBYTE:
1452 case OP_CHAR:
1453 case OP_CHARNC:
1454 case OP_NOT:
1455 case OP_PLUS:
1456 case OP_MINPLUS:
1457 case OP_POSPLUS:
1458 case OP_EXACT:
1459 case OP_NOTPLUS:
1460 case OP_NOTMINPLUS:
1461 case OP_NOTPOSPLUS:
1462 case OP_NOTEXACT:
1463 case OP_TYPEPLUS:
1464 case OP_TYPEMINPLUS:
1465 case OP_TYPEPOSPLUS:
1466 case OP_TYPEEXACT:
1467 return FALSE;
1468
1469 /* End of branch */
1470
1471 case OP_KET:
1472 case OP_KETRMAX:
1473 case OP_KETRMIN:
1474 case OP_ALT:
1475 return TRUE;
1476
1477 /* In UTF-8 mode, STAR, MINSTAR, POSSTAR, QUERY, MINQUERY, POSQUERY, UPTO,
1478 MINUPTO, and POSUPTO may be followed by a multibyte character */
1479
1480 #ifdef SUPPORT_UTF8
1481 case OP_STAR:
1482 case OP_MINSTAR:
1483 case OP_POSSTAR:
1484 case OP_QUERY:
1485 case OP_MINQUERY:
1486 case OP_POSQUERY:
1487 case OP_UPTO:
1488 case OP_MINUPTO:
1489 case OP_POSUPTO:
1490 if (utf8) while ((code[2] & 0xc0) == 0x80) code++;
1491 break;
1492 #endif
1493 }
1494 }
1495
1496 return TRUE;
1497 }
1498
1499
1500
1501 /*************************************************
1502 * Scan compiled regex for non-emptiness *
1503 *************************************************/
1504
1505 /* This function is called to check for left recursive calls. We want to check
1506 the current branch of the current pattern to see if it could match the empty
1507 string. If it could, we must look outwards for branches at other levels,
1508 stopping when we pass beyond the bracket which is the subject of the recursion.
1509
1510 Arguments:
1511 code points to start of the recursion
1512 endcode points to where to stop (current RECURSE item)
1513 bcptr points to the chain of current (unclosed) branch starts
1514 utf8 TRUE if in UTF-8 mode
1515
1516 Returns: TRUE if what is matched could be empty
1517 */
1518
1519 static BOOL
1520 could_be_empty(const uschar *code, const uschar *endcode, branch_chain *bcptr,
1521 BOOL utf8)
1522 {
1523 while (bcptr != NULL && bcptr->current >= code)
1524 {
1525 if (!could_be_empty_branch(bcptr->current, endcode, utf8)) return FALSE;
1526 bcptr = bcptr->outer;
1527 }
1528 return TRUE;
1529 }
1530
1531
1532
1533 /*************************************************
1534 * Check for POSIX class syntax *
1535 *************************************************/
1536
1537 /* This function is called when the sequence "[:" or "[." or "[=" is
1538 encountered in a character class. It checks whether this is followed by an
1539 optional ^ and then a sequence of letters, terminated by a matching ":]" or
1540 ".]" or "=]".
1541
1542 Argument:
1543 ptr pointer to the initial [
1544 endptr where to return the end pointer
1545 cd pointer to compile data
1546
1547 Returns: TRUE or FALSE
1548 */
1549
1550 static BOOL
1551 check_posix_syntax(const uschar *ptr, const uschar **endptr, compile_data *cd)
1552 {
1553 int terminator; /* Don't combine these lines; the Solaris cc */
1554 terminator = *(++ptr); /* compiler warns about "non-constant" initializer. */
1555 if (*(++ptr) == '^') ptr++;
1556 while ((cd->ctypes[*ptr] & ctype_letter) != 0) ptr++;
1557 if (*ptr == terminator && ptr[1] == ']')
1558 {
1559 *endptr = ptr;
1560 return TRUE;
1561 }
1562 return FALSE;
1563 }
1564
1565
1566
1567
1568 /*************************************************
1569 * Check POSIX class name *
1570 *************************************************/
1571
1572 /* This function is called to check the name given in a POSIX-style class entry
1573 such as [:alnum:].
1574
1575 Arguments:
1576 ptr points to the first letter
1577 len the length of the name
1578
1579 Returns: a value representing the name, or -1 if unknown
1580 */
1581
1582 static int
1583 check_posix_name(const uschar *ptr, int len)
1584 {
1585 register int yield = 0;
1586 while (posix_name_lengths[yield] != 0)
1587 {
1588 if (len == posix_name_lengths[yield] &&
1589 strncmp((const char *)ptr, posix_names[yield], len) == 0) return yield;
1590 yield++;
1591 }
1592 return -1;
1593 }
1594
1595
1596 /*************************************************
1597 * Adjust OP_RECURSE items in repeated group *
1598 *************************************************/
1599
1600 /* OP_RECURSE items contain an offset from the start of the regex to the group
1601 that is referenced. This means that groups can be replicated for fixed
1602 repetition simply by copying (because the recursion is allowed to refer to
1603 earlier groups that are outside the current group). However, when a group is
1604 optional (i.e. the minimum quantifier is zero), OP_BRAZERO is inserted before
1605 it, after it has been compiled. This means that any OP_RECURSE items within it
1606 that refer to the group itself or any contained groups have to have their
1607 offsets adjusted. That one of the jobs of this function. Before it is called,
1608 the partially compiled regex must be temporarily terminated with OP_END.
1609
1610 This function has been extended with the possibility of forward references for
1611 recursions and subroutine calls. It must also check the list of such references
1612 for the group we are dealing with. If it finds that one of the recursions in
1613 the current group is on this list, it adjusts the offset in the list, not the
1614 value in the reference (which is a group number).
1615
1616 Arguments:
1617 group points to the start of the group
1618 adjust the amount by which the group is to be moved
1619 utf8 TRUE in UTF-8 mode
1620 cd contains pointers to tables etc.
1621 save_hwm the hwm forward reference pointer at the start of the group
1622
1623 Returns: nothing
1624 */
1625
1626 static void
1627 adjust_recurse(uschar *group, int adjust, BOOL utf8, compile_data *cd,
1628 uschar *save_hwm)
1629 {
1630 uschar *ptr = group;
1631 while ((ptr = (uschar *)find_recurse(ptr, utf8)) != NULL)
1632 {
1633 int offset;
1634 uschar *hc;
1635
1636 /* See if this recursion is on the forward reference list. If so, adjust the
1637 reference. */
1638
1639 for (hc = save_hwm; hc < cd->hwm; hc += LINK_SIZE)
1640 {
1641 offset = GET(hc, 0);
1642 if (cd->start_code + offset == ptr + 1)
1643 {
1644 PUT(hc, 0, offset + adjust);
1645 break;
1646 }
1647 }
1648
1649 /* Otherwise, adjust the recursion offset if it's after the start of this
1650 group. */
1651
1652 if (hc >= cd->hwm)
1653 {
1654 offset = GET(ptr, 1);
1655 if (cd->start_code + offset >= group) PUT(ptr, 1, offset + adjust);
1656 }
1657
1658 ptr += 1 + LINK_SIZE;
1659 }
1660 }
1661
1662
1663
1664 /*************************************************
1665 * Insert an automatic callout point *
1666 *************************************************/
1667
1668 /* This function is called when the PCRE_AUTO_CALLOUT option is set, to insert
1669 callout points before each pattern item.
1670
1671 Arguments:
1672 code current code pointer
1673 ptr current pattern pointer
1674 cd pointers to tables etc
1675
1676 Returns: new code pointer
1677 */
1678
1679 static uschar *
1680 auto_callout(uschar *code, const uschar *ptr, compile_data *cd)
1681 {
1682 *code++ = OP_CALLOUT;
1683 *code++ = 255;
1684 PUT(code, 0, ptr - cd->start_pattern); /* Pattern offset */
1685 PUT(code, LINK_SIZE, 0); /* Default length */
1686 return code + 2*LINK_SIZE;
1687 }
1688
1689
1690
1691 /*************************************************
1692 * Complete a callout item *
1693 *************************************************/
1694
1695 /* A callout item contains the length of the next item in the pattern, which
1696 we can't fill in till after we have reached the relevant point. This is used
1697 for both automatic and manual callouts.
1698
1699 Arguments:
1700 previous_callout points to previous callout item
1701 ptr current pattern pointer
1702 cd pointers to tables etc
1703
1704 Returns: nothing
1705 */
1706
1707 static void
1708 complete_callout(uschar *previous_callout, const uschar *ptr, compile_data *cd)
1709 {
1710 int length = ptr - cd->start_pattern - GET(previous_callout, 2);
1711 PUT(previous_callout, 2 + LINK_SIZE, length);
1712 }
1713
1714
1715
1716 #ifdef SUPPORT_UCP
1717 /*************************************************
1718 * Get othercase range *
1719 *************************************************/
1720
1721 /* This function is passed the start and end of a class range, in UTF-8 mode
1722 with UCP support. It searches up the characters, looking for internal ranges of
1723 characters in the "other" case. Each call returns the next one, updating the
1724 start address.
1725
1726 Arguments:
1727 cptr points to starting character value; updated
1728 d end value
1729 ocptr where to put start of othercase range
1730 odptr where to put end of othercase range
1731
1732 Yield: TRUE when range returned; FALSE when no more
1733 */
1734
1735 static BOOL
1736 get_othercase_range(unsigned int *cptr, unsigned int d, unsigned int *ocptr,
1737 unsigned int *odptr)
1738 {
1739 unsigned int c, othercase, next;
1740
1741 for (c = *cptr; c <= d; c++)
1742 { if ((othercase = _pcre_ucp_othercase(c)) != NOTACHAR) break; }
1743
1744 if (c > d) return FALSE;
1745
1746 *ocptr = othercase;
1747 next = othercase + 1;
1748
1749 for (++c; c <= d; c++)
1750 {
1751 if (_pcre_ucp_othercase(c) != next) break;
1752 next++;
1753 }
1754
1755 *odptr = next - 1;
1756 *cptr = c;
1757
1758 return TRUE;
1759 }
1760 #endif /* SUPPORT_UCP */
1761
1762
1763
1764 /*************************************************
1765 * Check if auto-possessifying is possible *
1766 *************************************************/
1767
1768 /* This function is called for unlimited repeats of certain items, to see
1769 whether the next thing could possibly match the repeated item. If not, it makes
1770 sense to automatically possessify the repeated item.
1771
1772 Arguments:
1773 op_code the repeated op code
1774 this data for this item, depends on the opcode
1775 utf8 TRUE in UTF-8 mode
1776 utf8_char used for utf8 character bytes, NULL if not relevant
1777 ptr next character in pattern
1778 options options bits
1779 cd contains pointers to tables etc.
1780
1781 Returns: TRUE if possessifying is wanted
1782 */
1783
1784 static BOOL
1785 check_auto_possessive(int op_code, int item, BOOL utf8, uschar *utf8_char,
1786 const uschar *ptr, int options, compile_data *cd)
1787 {
1788 int next;
1789
1790 /* Skip whitespace and comments in extended mode */
1791
1792 if ((options & PCRE_EXTENDED) != 0)
1793 {
1794 for (;;)
1795 {
1796 while ((cd->ctypes[*ptr] & ctype_space) != 0) ptr++;
1797 if (*ptr == '#')
1798 {
1799 while (*(++ptr) != 0)
1800 if (IS_NEWLINE(ptr)) { ptr += cd->nllen; break; }
1801 }
1802 else break;
1803 }
1804 }
1805
1806 /* If the next item is one that we can handle, get its value. A non-negative
1807 value is a character, a negative value is an escape value. */
1808
1809 if (*ptr == '\\')
1810 {
1811 int temperrorcode = 0;
1812 next = check_escape(&ptr, &temperrorcode, cd->bracount, options, FALSE);
1813 if (temperrorcode != 0) return FALSE;
1814 ptr++; /* Point after the escape sequence */
1815 }
1816
1817 else if ((cd->ctypes[*ptr] & ctype_meta) == 0)
1818 {
1819 #ifdef SUPPORT_UTF8
1820 if (utf8) { GETCHARINC(next, ptr); } else
1821 #endif
1822 next = *ptr++;
1823 }
1824
1825 else return FALSE;
1826
1827 /* Skip whitespace and comments in extended mode */
1828
1829 if ((options & PCRE_EXTENDED) != 0)
1830 {
1831 for (;;)
1832 {
1833 while ((cd->ctypes[*ptr] & ctype_space) != 0) ptr++;
1834 if (*ptr == '#')
1835 {
1836 while (*(++ptr) != 0)
1837 if (IS_NEWLINE(ptr)) { ptr += cd->nllen; break; }
1838 }
1839 else break;
1840 }
1841 }
1842
1843 /* If the next thing is itself optional, we have to give up. */
1844
1845 if (*ptr == '*' || *ptr == '?' || strncmp((char *)ptr, "{0,", 3) == 0)
1846 return FALSE;
1847
1848 /* Now compare the next item with the previous opcode. If the previous is a
1849 positive single character match, "item" either contains the character or, if
1850 "item" is greater than 127 in utf8 mode, the character's bytes are in
1851 utf8_char. */
1852
1853
1854 /* Handle cases when the next item is a character. */
1855
1856 if (next >= 0) switch(op_code)
1857 {
1858 case OP_CHAR:
1859 #ifdef SUPPORT_UTF8
1860 if (utf8 && item > 127) { GETCHAR(item, utf8_char); }
1861 #endif
1862 return item != next;
1863
1864 /* For CHARNC (caseless character) we must check the other case. If we have
1865 Unicode property support, we can use it to test the other case of
1866 high-valued characters. */
1867
1868 case OP_CHARNC:
1869 #ifdef SUPPORT_UTF8
1870 if (utf8 && item > 127) { GETCHAR(item, utf8_char); }
1871 #endif
1872 if (item == next) return FALSE;
1873 #ifdef SUPPORT_UTF8
1874 if (utf8)
1875 {
1876 unsigned int othercase;
1877 if (next < 128) othercase = cd->fcc[next]; else
1878 #ifdef SUPPORT_UCP
1879 othercase = _pcre_ucp_othercase((unsigned int)next);
1880 #else
1881 othercase = NOTACHAR;
1882 #endif
1883 return (unsigned int)item != othercase;
1884 }
1885 else
1886 #endif /* SUPPORT_UTF8 */
1887 return (item != cd->fcc[next]); /* Non-UTF-8 mode */
1888
1889 /* For OP_NOT, "item" must be a single-byte character. */
1890
1891 case OP_NOT:
1892 if (next < 0) return FALSE; /* Not a character */
1893 if (item == next) return TRUE;
1894 if ((options & PCRE_CASELESS) == 0) return FALSE;
1895 #ifdef SUPPORT_UTF8
1896 if (utf8)
1897 {
1898 unsigned int othercase;
1899 if (next < 128) othercase = cd->fcc[next]; else
1900 #ifdef SUPPORT_UCP
1901 othercase = _pcre_ucp_othercase(next);
1902 #else
1903 othercase = NOTACHAR;
1904 #endif
1905 return (unsigned int)item == othercase;
1906 }
1907 else
1908 #endif /* SUPPORT_UTF8 */
1909 return (item == cd->fcc[next]); /* Non-UTF-8 mode */
1910
1911 case OP_DIGIT:
1912 return next > 127 || (cd->ctypes[next] & ctype_digit) == 0;
1913
1914 case OP_NOT_DIGIT:
1915 return next <= 127 && (cd->ctypes[next] & ctype_digit) != 0;
1916
1917 case OP_WHITESPACE:
1918 return next > 127 || (cd->ctypes[next] & ctype_space) == 0;
1919
1920 case OP_NOT_WHITESPACE:
1921 return next <= 127 && (cd->ctypes[next] & ctype_space) != 0;
1922
1923 case OP_WORDCHAR:
1924 return next > 127 || (cd->ctypes[next] & ctype_word) == 0;
1925
1926 case OP_NOT_WORDCHAR:
1927 return next <= 127 && (cd->ctypes[next] & ctype_word) != 0;
1928
1929 default:
1930 return FALSE;
1931 }
1932
1933
1934 /* Handle the case when the next item is \d, \s, etc. */
1935
1936 switch(op_code)
1937 {
1938 case OP_CHAR:
1939 case OP_CHARNC:
1940 #ifdef SUPPORT_UTF8
1941 if (utf8 && item > 127) { GETCHAR(item, utf8_char); }
1942 #endif
1943 switch(-next)
1944 {
1945 case ESC_d:
1946 return item > 127 || (cd->ctypes[item] & ctype_digit) == 0;
1947
1948 case ESC_D:
1949 return item <= 127 && (cd->ctypes[item] & ctype_digit) != 0;
1950
1951 case ESC_s:
1952 return item > 127 || (cd->ctypes[item] & ctype_space) == 0;
1953
1954 case ESC_S:
1955 return item <= 127 && (cd->ctypes[item] & ctype_space) != 0;
1956
1957 case ESC_w:
1958 return item > 127 || (cd->ctypes[item] & ctype_word) == 0;
1959
1960 case ESC_W:
1961 return item <= 127 && (cd->ctypes[item] & ctype_word) != 0;
1962
1963 default:
1964 return FALSE;
1965 }
1966
1967 case OP_DIGIT:
1968 return next == -ESC_D || next == -ESC_s || next == -ESC_W;
1969
1970 case OP_NOT_DIGIT:
1971 return next == -ESC_d;
1972
1973 case OP_WHITESPACE:
1974 return next == -ESC_S || next == -ESC_d || next == -ESC_w;
1975
1976 case OP_NOT_WHITESPACE:
1977 return next == -ESC_s;
1978
1979 case OP_WORDCHAR:
1980 return next == -ESC_W || next == -ESC_s;
1981
1982 case OP_NOT_WORDCHAR:
1983 return next == -ESC_w || next == -ESC_d;
1984
1985 default:
1986 return FALSE;
1987 }
1988
1989 /* Control does not reach here */
1990 }
1991
1992
1993
1994 /*************************************************
1995 * Compile one branch *
1996 *************************************************/
1997
1998 /* Scan the pattern, compiling it into the a vector. If the options are
1999 changed during the branch, the pointer is used to change the external options
2000 bits. This function is used during the pre-compile phase when we are trying
2001 to find out the amount of memory needed, as well as during the real compile
2002 phase. The value of lengthptr distinguishes the two phases.
2003
2004 Arguments:
2005 optionsptr pointer to the option bits
2006 codeptr points to the pointer to the current code point
2007 ptrptr points to the current pattern pointer
2008 errorcodeptr points to error code variable
2009 firstbyteptr set to initial literal character, or < 0 (REQ_UNSET, REQ_NONE)
2010 reqbyteptr set to the last literal character required, else < 0
2011 bcptr points to current branch chain
2012 cd contains pointers to tables etc.
2013 lengthptr NULL during the real compile phase
2014 points to length accumulator during pre-compile phase
2015
2016 Returns: TRUE on success
2017 FALSE, with *errorcodeptr set non-zero on error
2018 */
2019
2020 static BOOL
2021 compile_branch(int *optionsptr, uschar **codeptr, const uschar **ptrptr,
2022 int *errorcodeptr, int *firstbyteptr, int *reqbyteptr, branch_chain *bcptr,
2023 compile_data *cd, int *lengthptr)
2024 {
2025 int repeat_type, op_type;
2026 int repeat_min = 0, repeat_max = 0; /* To please picky compilers */
2027 int bravalue = 0;
2028 int greedy_default, greedy_non_default;
2029 int firstbyte, reqbyte;
2030 int zeroreqbyte, zerofirstbyte;
2031 int req_caseopt, reqvary, tempreqvary;
2032 int options = *optionsptr;
2033 int after_manual_callout = 0;
2034 int length_prevgroup = 0;
2035 register int c;
2036 register uschar *code = *codeptr;
2037 uschar *last_code = code;
2038 uschar *orig_code = code;
2039 uschar *tempcode;
2040 BOOL inescq = FALSE;
2041 BOOL groupsetfirstbyte = FALSE;
2042 const uschar *ptr = *ptrptr;
2043 const uschar *tempptr;
2044 uschar *previous = NULL;
2045 uschar *previous_callout = NULL;
2046 uschar *save_hwm = NULL;
2047 uschar classbits[32];
2048
2049 #ifdef SUPPORT_UTF8
2050 BOOL class_utf8;
2051 BOOL utf8 = (options & PCRE_UTF8) != 0;
2052 uschar *class_utf8data;
2053 uschar utf8_char[6];
2054 #else
2055 BOOL utf8 = FALSE;
2056 uschar *utf8_char = NULL;
2057 #endif
2058
2059 #ifdef DEBUG
2060 if (lengthptr != NULL) DPRINTF((">> start branch\n"));
2061 #endif
2062
2063 /* Set up the default and non-default settings for greediness */
2064
2065 greedy_default = ((options & PCRE_UNGREEDY) != 0);
2066 greedy_non_default = greedy_default ^ 1;
2067
2068 /* Initialize no first byte, no required byte. REQ_UNSET means "no char
2069 matching encountered yet". It gets changed to REQ_NONE if we hit something that
2070 matches a non-fixed char first char; reqbyte just remains unset if we never
2071 find one.
2072
2073 When we hit a repeat whose minimum is zero, we may have to adjust these values
2074 to take the zero repeat into account. This is implemented by setting them to
2075 zerofirstbyte and zeroreqbyte when such a repeat is encountered. The individual
2076 item types that can be repeated set these backoff variables appropriately. */
2077
2078 firstbyte = reqbyte = zerofirstbyte = zeroreqbyte = REQ_UNSET;
2079
2080 /* The variable req_caseopt contains either the REQ_CASELESS value or zero,
2081 according to the current setting of the caseless flag. REQ_CASELESS is a bit
2082 value > 255. It is added into the firstbyte or reqbyte variables to record the
2083 case status of the value. This is used only for ASCII characters. */
2084
2085 req_caseopt = ((options & PCRE_CASELESS) != 0)? REQ_CASELESS : 0;
2086
2087 /* Switch on next character until the end of the branch */
2088
2089 for (;; ptr++)
2090 {
2091 BOOL negate_class;
2092 BOOL possessive_quantifier;
2093 BOOL is_quantifier;
2094 BOOL is_recurse;
2095 int class_charcount;
2096 int class_lastchar;
2097 int newoptions;
2098 int recno;
2099 int refsign;
2100 int skipbytes;
2101 int subreqbyte;
2102 int subfirstbyte;
2103 int terminator;
2104 int mclength;
2105 uschar mcbuffer[8];
2106
2107 /* Get next byte in the pattern */
2108
2109 c = *ptr;
2110
2111 /* If we are in the pre-compile phase, accumulate the length used for the
2112 previous cycle of this loop. */
2113
2114 if (lengthptr != NULL)
2115 {
2116 #ifdef DEBUG
2117 if (code > cd->hwm) cd->hwm = code; /* High water info */
2118 #endif
2119 if (code > cd->start_workspace + COMPILE_WORK_SIZE) /* Check for overrun */
2120 {
2121 *errorcodeptr = ERR52;
2122 goto FAILED;
2123 }
2124
2125 /* There is at least one situation where code goes backwards: this is the
2126 case of a zero quantifier after a class (e.g. [ab]{0}). At compile time,
2127 the class is simply eliminated. However, it is created first, so we have to
2128 allow memory for it. Therefore, don't ever reduce the length at this point.
2129 */
2130
2131 if (code < last_code) code = last_code;
2132 *lengthptr += code - last_code;
2133 DPRINTF(("length=%d added %d c=%c\n", *lengthptr, code - last_code, c));
2134
2135 /* If "previous" is set and it is not at the start of the work space, move
2136 it back to there, in order to avoid filling up the work space. Otherwise,
2137 if "previous" is NULL, reset the current code pointer to the start. */
2138
2139 if (previous != NULL)
2140 {
2141 if (previous > orig_code)
2142 {
2143 memmove(orig_code, previous, code - previous);
2144 code -= previous - orig_code;
2145 previous = orig_code;
2146 }
2147 }
2148 else code = orig_code;
2149
2150 /* Remember where this code item starts so we can pick up the length
2151 next time round. */
2152
2153 last_code = code;
2154 }
2155
2156 /* In the real compile phase, just check the workspace used by the forward
2157 reference list. */
2158
2159 else if (cd->hwm > cd->start_workspace + COMPILE_WORK_SIZE)
2160 {
2161 *errorcodeptr = ERR52;
2162 goto FAILED;
2163 }
2164
2165 /* If in \Q...\E, check for the end; if not, we have a literal */
2166
2167 if (inescq && c != 0)
2168 {
2169 if (c == '\\' && ptr[1] == 'E')
2170 {
2171 inescq = FALSE;
2172 ptr++;
2173 continue;
2174 }
2175 else
2176 {
2177 if (previous_callout != NULL)
2178 {
2179 if (lengthptr == NULL) /* Don't attempt in pre-compile phase */
2180 complete_callout(previous_callout, ptr, cd);
2181 previous_callout = NULL;
2182 }
2183 if ((options & PCRE_AUTO_CALLOUT) != 0)
2184 {
2185 previous_callout = code;
2186 code = auto_callout(code, ptr, cd);
2187 }
2188 goto NORMAL_CHAR;
2189 }
2190 }
2191
2192 /* Fill in length of a previous callout, except when the next thing is
2193 a quantifier. */
2194
2195 is_quantifier = c == '*' || c == '+' || c == '?' ||
2196 (c == '{' && is_counted_repeat(ptr+1));
2197
2198 if (!is_quantifier && previous_callout != NULL &&
2199 after_manual_callout-- <= 0)
2200 {
2201 if (lengthptr == NULL) /* Don't attempt in pre-compile phase */
2202 complete_callout(previous_callout, ptr, cd);
2203 previous_callout = NULL;
2204 }
2205
2206 /* In extended mode, skip white space and comments */
2207
2208 if ((options & PCRE_EXTENDED) != 0)
2209 {
2210 if ((cd->ctypes[c] & ctype_space) != 0) continue;
2211 if (c == '#')
2212 {
2213 while (*(++ptr) != 0)
2214 {
2215 if (IS_NEWLINE(ptr)) { ptr += cd->nllen - 1; break; }
2216 }
2217 if (*ptr != 0) continue;
2218
2219 /* Else fall through to handle end of string */
2220 c = 0;
2221 }
2222 }
2223
2224 /* No auto callout for quantifiers. */
2225
2226 if ((options & PCRE_AUTO_CALLOUT) != 0 && !is_quantifier)
2227 {
2228 previous_callout = code;
2229 code = auto_callout(code, ptr, cd);
2230 }
2231
2232 switch(c)
2233 {
2234 /* ===================================================================*/
2235 case 0: /* The branch terminates at string end */
2236 case '|': /* or | or ) */
2237 case ')':
2238 *firstbyteptr = firstbyte;
2239 *reqbyteptr = reqbyte;
2240 *codeptr = code;
2241 *ptrptr = ptr;
2242 if (lengthptr != NULL)
2243 {
2244 *lengthptr += code - last_code; /* To include callout length */
2245 DPRINTF((">> end branch\n"));
2246 }
2247 return TRUE;
2248
2249
2250 /* ===================================================================*/
2251 /* Handle single-character metacharacters. In multiline mode, ^ disables
2252 the setting of any following char as a first character. */
2253
2254 case '^':
2255 if ((options & PCRE_MULTILINE) != 0)
2256 {
2257 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
2258 }
2259 previous = NULL;
2260 *code++ = OP_CIRC;
2261 break;
2262
2263 case '$':
2264 previous = NULL;
2265 *code++ = OP_DOLL;
2266 break;
2267
2268 /* There can never be a first char if '.' is first, whatever happens about
2269 repeats. The value of reqbyte doesn't change either. */
2270
2271 case '.':
2272 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
2273 zerofirstbyte = firstbyte;
2274 zeroreqbyte = reqbyte;
2275 previous = code;
2276 *code++ = OP_ANY;
2277 break;
2278
2279
2280 /* ===================================================================*/
2281 /* Character classes. If the included characters are all < 256, we build a
2282 32-byte bitmap of the permitted characters, except in the special case
2283 where there is only one such character. For negated classes, we build the
2284 map as usual, then invert it at the end. However, we use a different opcode
2285 so that data characters > 255 can be handled correctly.
2286
2287 If the class contains characters outside the 0-255 range, a different
2288 opcode is compiled. It may optionally have a bit map for characters < 256,
2289 but those above are are explicitly listed afterwards. A flag byte tells
2290 whether the bitmap is present, and whether this is a negated class or not.
2291 */
2292
2293 case '[':
2294 previous = code;
2295
2296 /* PCRE supports POSIX class stuff inside a class. Perl gives an error if
2297 they are encountered at the top level, so we'll do that too. */
2298
2299 if ((ptr[1] == ':' || ptr[1] == '.' || ptr[1] == '=') &&
2300 check_posix_syntax(ptr, &tempptr, cd))
2301 {
2302 *errorcodeptr = (ptr[1] == ':')? ERR13 : ERR31;
2303 goto FAILED;
2304 }
2305
2306 /* If the first character is '^', set the negation flag and skip it. */
2307
2308 if ((c = *(++ptr)) == '^')
2309 {
2310 negate_class = TRUE;
2311 c = *(++ptr);
2312 }
2313 else
2314 {
2315 negate_class = FALSE;
2316 }
2317
2318 /* Keep a count of chars with values < 256 so that we can optimize the case
2319 of just a single character (as long as it's < 256). However, For higher
2320 valued UTF-8 characters, we don't yet do any optimization. */
2321
2322 class_charcount = 0;
2323 class_lastchar = -1;
2324
2325 /* Initialize the 32-char bit map to all zeros. We build the map in a
2326 temporary bit of memory, in case the class contains only 1 character (less
2327 than 256), because in that case the compiled code doesn't use the bit map.
2328 */
2329
2330 memset(classbits, 0, 32 * sizeof(uschar));
2331
2332 #ifdef SUPPORT_UTF8
2333 class_utf8 = FALSE; /* No chars >= 256 */
2334 class_utf8data = code + LINK_SIZE + 2; /* For UTF-8 items */
2335 #endif
2336
2337 /* Process characters until ] is reached. By writing this as a "do" it
2338 means that an initial ] is taken as a data character. At the start of the
2339 loop, c contains the first byte of the character. */
2340
2341 if (c != 0) do
2342 {
2343 const uschar *oldptr;
2344
2345 #ifdef SUPPORT_UTF8
2346 if (utf8 && c > 127)
2347 { /* Braces are required because the */
2348 GETCHARLEN(c, ptr, ptr); /* macro generates multiple statements */
2349 }
2350 #endif
2351
2352 /* Inside \Q...\E everything is literal except \E */
2353
2354 if (inescq)
2355 {
2356 if (c == '\\' && ptr[1] == 'E') /* If we are at \E */
2357 {
2358 inescq = FALSE; /* Reset literal state */
2359 ptr++; /* Skip the 'E' */
2360 continue; /* Carry on with next */
2361 }
2362 goto CHECK_RANGE; /* Could be range if \E follows */
2363 }
2364
2365 /* Handle POSIX class names. Perl allows a negation extension of the
2366 form [:^name:]. A square bracket that doesn't match the syntax is
2367 treated as a literal. We also recognize the POSIX constructions
2368 [.ch.] and [=ch=] ("collating elements") and fault them, as Perl
2369 5.6 and 5.8 do. */
2370
2371 if (c == '[' &&
2372 (ptr[1] == ':' || ptr[1] == '.' || ptr[1] == '=') &&
2373 check_posix_syntax(ptr, &tempptr, cd))
2374 {
2375 BOOL local_negate = FALSE;
2376 int posix_class, taboffset, tabopt;
2377 register const uschar *cbits = cd->cbits;
2378 uschar pbits[32];
2379
2380 if (ptr[1] != ':')
2381 {
2382 *errorcodeptr = ERR31;
2383 goto FAILED;
2384 }
2385
2386 ptr += 2;
2387 if (*ptr == '^')
2388 {
2389 local_negate = TRUE;
2390 ptr++;
2391 }
2392
2393 posix_class = check_posix_name(ptr, tempptr - ptr);
2394 if (posix_class < 0)
2395 {
2396 *errorcodeptr = ERR30;
2397 goto FAILED;
2398 }
2399
2400 /* If matching is caseless, upper and lower are converted to
2401 alpha. This relies on the fact that the class table starts with
2402 alpha, lower, upper as the first 3 entries. */
2403
2404 if ((options & PCRE_CASELESS) != 0 && posix_class <= 2)
2405 posix_class = 0;
2406
2407 /* We build the bit map for the POSIX class in a chunk of local store
2408 because we may be adding and subtracting from it, and we don't want to
2409 subtract bits that may be in the main map already. At the end we or the
2410 result into the bit map that is being built. */
2411
2412 posix_class *= 3;
2413
2414 /* Copy in the first table (always present) */
2415
2416 memcpy(pbits, cbits + posix_class_maps[posix_class],
2417 32 * sizeof(uschar));
2418
2419 /* If there is a second table, add or remove it as required. */
2420
2421 taboffset = posix_class_maps[posix_class + 1];
2422 tabopt = posix_class_maps[posix_class + 2];
2423
2424 if (taboffset >= 0)
2425 {
2426 if (tabopt >= 0)
2427 for (c = 0; c < 32; c++) pbits[c] |= cbits[c + taboffset];
2428 else
2429 for (c = 0; c < 32; c++) pbits[c] &= ~cbits[c + taboffset];
2430 }
2431
2432 /* Not see if we need to remove any special characters. An option
2433 value of 1 removes vertical space and 2 removes underscore. */
2434
2435 if (tabopt < 0) tabopt = -tabopt;
2436 if (tabopt == 1) pbits[1] &= ~0x3c;
2437 else if (tabopt == 2) pbits[11] &= 0x7f;
2438
2439 /* Add the POSIX table or its complement into the main table that is
2440 being built and we are done. */
2441
2442 if (local_negate)
2443 for (c = 0; c < 32; c++) classbits[c] |= ~pbits[c];
2444 else
2445 for (c = 0; c < 32; c++) classbits[c] |= pbits[c];
2446
2447 ptr = tempptr + 1;
2448 class_charcount = 10; /* Set > 1; assumes more than 1 per class */
2449 continue; /* End of POSIX syntax handling */
2450 }
2451
2452 /* Backslash may introduce a single character, or it may introduce one
2453 of the specials, which just set a flag. The sequence \b is a special
2454 case. Inside a class (and only there) it is treated as backspace.
2455 Elsewhere it marks a word boundary. Other escapes have preset maps ready
2456 to or into the one we are building. We assume they have more than one
2457 character in them, so set class_charcount bigger than one. */
2458
2459 if (c == '\\')
2460 {
2461 c = check_escape(&ptr, errorcodeptr, cd->bracount, options, TRUE);
2462 if (*errorcodeptr != 0) goto FAILED;
2463
2464 if (-c == ESC_b) c = '\b'; /* \b is backslash in a class */
2465 else if (-c == ESC_X) c = 'X'; /* \X is literal X in a class */
2466 else if (-c == ESC_R) c = 'R'; /* \R is literal R in a class */
2467 else if (-c == ESC_Q) /* Handle start of quoted string */
2468 {
2469 if (ptr[1] == '\\' && ptr[2] == 'E')
2470 {
2471 ptr += 2; /* avoid empty string */
2472 }
2473 else inescq = TRUE;
2474 continue;
2475 }
2476
2477 if (c < 0)
2478 {
2479 register const uschar *cbits = cd->cbits;
2480 class_charcount += 2; /* Greater than 1 is what matters */
2481
2482 /* Save time by not doing this in the pre-compile phase. */
2483
2484 if (lengthptr == NULL) switch (-c)
2485 {
2486 case ESC_d:
2487 for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_digit];
2488 continue;
2489
2490 case ESC_D:
2491 for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_digit];
2492 continue;
2493
2494 case ESC_w:
2495 for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_word];
2496 continue;
2497
2498 case ESC_W:
2499 for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_word];
2500 continue;
2501
2502 case ESC_s:
2503 for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_space];
2504 classbits[1] &= ~0x08; /* Perl 5.004 onwards omits VT from \s */
2505 continue;
2506
2507 case ESC_S:
2508 for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_space];
2509 classbits[1] |= 0x08; /* Perl 5.004 onwards omits VT from \s */
2510 continue;
2511
2512 case ESC_E: /* Perl ignores an orphan \E */
2513 continue;
2514
2515 default: /* Not recognized; fall through */
2516 break; /* Need "default" setting to stop compiler warning. */
2517 }
2518
2519 /* In the pre-compile phase, just do the recognition. */
2520
2521 else if (c == -ESC_d || c == -ESC_D || c == -ESC_w ||
2522 c == -ESC_W || c == -ESC_s || c == -ESC_S) continue;
2523
2524 /* We need to deal with \P and \p in both phases. */
2525
2526 #ifdef SUPPORT_UCP
2527 if (-c == ESC_p || -c == ESC_P)
2528 {
2529 BOOL negated;
2530 int pdata;
2531 int ptype = get_ucp(&ptr, &negated, &pdata, errorcodeptr);
2532 if (ptype < 0) goto FAILED;
2533 class_utf8 = TRUE;
2534 *class_utf8data++ = ((-c == ESC_p) != negated)?
2535 XCL_PROP : XCL_NOTPROP;
2536 *class_utf8data++ = ptype;
2537 *class_utf8data++ = pdata;
2538 class_charcount -= 2; /* Not a < 256 character */
2539 continue;
2540 }
2541 #endif
2542 /* Unrecognized escapes are faulted if PCRE is running in its
2543 strict mode. By default, for compatibility with Perl, they are
2544 treated as literals. */
2545
2546 if ((options & PCRE_EXTRA) != 0)
2547 {
2548 *errorcodeptr = ERR7;
2549 goto FAILED;
2550 }
2551
2552 class_charcount -= 2; /* Undo the default count from above */
2553 c = *ptr; /* Get the final character and fall through */
2554 }
2555
2556 /* Fall through if we have a single character (c >= 0). This may be
2557 greater than 256 in UTF-8 mode. */
2558
2559 } /* End of backslash handling */
2560
2561 /* A single character may be followed by '-' to form a range. However,
2562 Perl does not permit ']' to be the end of the range. A '-' character
2563 at the end is treated as a literal. Perl ignores orphaned \E sequences
2564 entirely. The code for handling \Q and \E is messy. */
2565
2566 CHECK_RANGE:
2567 while (ptr[1] == '\\' && ptr[2] == 'E')
2568 {
2569 inescq = FALSE;
2570 ptr += 2;
2571 }
2572
2573 oldptr = ptr;
2574
2575 if (!inescq && ptr[1] == '-')
2576 {
2577 int d;
2578 ptr += 2;
2579 while (*ptr == '\\' && ptr[1] == 'E') ptr += 2;
2580
2581 /* If we hit \Q (not followed by \E) at this point, go into escaped
2582 mode. */
2583
2584 while (*ptr == '\\' && ptr[1] == 'Q')
2585 {
2586 ptr += 2;
2587 if (*ptr == '\\' && ptr[1] == 'E') { ptr += 2; continue; }
2588 inescq = TRUE;
2589 break;
2590 }
2591
2592 if (*ptr == 0 || (!inescq && *ptr == ']'))
2593 {
2594 ptr = oldptr;
2595 goto LONE_SINGLE_CHARACTER;
2596 }
2597
2598 #ifdef SUPPORT_UTF8
2599 if (utf8)
2600 { /* Braces are required because the */
2601 GETCHARLEN(d, ptr, ptr); /* macro generates multiple statements */
2602 }
2603 else
2604 #endif
2605 d = *ptr; /* Not UTF-8 mode */
2606
2607 /* The second part of a range can be a single-character escape, but
2608 not any of the other escapes. Perl 5.6 treats a hyphen as a literal
2609 in such circumstances. */
2610
2611 if (!inescq && d == '\\')
2612 {
2613 d = check_escape(&ptr, errorcodeptr, cd->bracount, options, TRUE);
2614 if (*errorcodeptr != 0) goto FAILED;
2615
2616 /* \b is backslash; \X is literal X; \R is literal R; any other
2617 special means the '-' was literal */
2618
2619 if (d < 0)
2620 {
2621 if (d == -ESC_b) d = '\b';
2622 else if (d == -ESC_X) d = 'X';
2623 else if (d == -ESC_R) d = 'R'; else
2624 {
2625 ptr = oldptr;
2626 goto LONE_SINGLE_CHARACTER; /* A few lines below */
2627 }
2628 }
2629 }
2630
2631 /* Check that the two values are in the correct order. Optimize
2632 one-character ranges */
2633
2634 if (d < c)
2635 {
2636 *errorcodeptr = ERR8;
2637 goto FAILED;
2638 }
2639
2640 if (d == c) goto LONE_SINGLE_CHARACTER; /* A few lines below */
2641
2642 /* In UTF-8 mode, if the upper limit is > 255, or > 127 for caseless
2643 matching, we have to use an XCLASS with extra data items. Caseless
2644 matching for characters > 127 is available only if UCP support is
2645 available. */
2646
2647 #ifdef SUPPORT_UTF8
2648 if (utf8 && (d > 255 || ((options & PCRE_CASELESS) != 0 && d > 127)))
2649 {
2650 class_utf8 = TRUE;
2651
2652 /* With UCP support, we can find the other case equivalents of
2653 the relevant characters. There may be several ranges. Optimize how
2654 they fit with the basic range. */
2655
2656 #ifdef SUPPORT_UCP
2657 if ((options & PCRE_CASELESS) != 0)
2658 {
2659 unsigned int occ, ocd;
2660 unsigned int cc = c;
2661 unsigned int origd = d;
2662 while (get_othercase_range(&cc, origd, &occ, &ocd))
2663 {
2664 if (occ >= c && ocd <= d) continue; /* Skip embedded ranges */
2665
2666 if (occ < c && ocd >= c - 1) /* Extend the basic range */
2667 { /* if there is overlap, */
2668 c = occ; /* noting that if occ < c */
2669 continue; /* we can't have ocd > d */
2670 } /* because a subrange is */
2671 if (ocd > d && occ <= d + 1) /* always shorter than */
2672 { /* the basic range. */
2673 d = ocd;
2674 continue;
2675 }
2676
2677 if (occ == ocd)
2678 {
2679 *class_utf8data++ = XCL_SINGLE;
2680 }
2681 else
2682 {
2683 *class_utf8data++ = XCL_RANGE;
2684 class_utf8data += _pcre_ord2utf8(occ, class_utf8data);
2685 }
2686 class_utf8data += _pcre_ord2utf8(ocd, class_utf8data);
2687 }
2688 }
2689 #endif /* SUPPORT_UCP */
2690
2691 /* Now record the original range, possibly modified for UCP caseless
2692 overlapping ranges. */
2693
2694 *class_utf8data++ = XCL_RANGE;
2695 class_utf8data += _pcre_ord2utf8(c, class_utf8data);
2696 class_utf8data += _pcre_ord2utf8(d, class_utf8data);
2697
2698 /* With UCP support, we are done. Without UCP support, there is no
2699 caseless matching for UTF-8 characters > 127; we can use the bit map
2700 for the smaller ones. */
2701
2702 #ifdef SUPPORT_UCP
2703 continue; /* With next character in the class */
2704 #else
2705 if ((options & PCRE_CASELESS) == 0 || c > 127) continue;
2706
2707 /* Adjust upper limit and fall through to set up the map */
2708
2709 d = 127;
2710
2711 #endif /* SUPPORT_UCP */
2712 }
2713 #endif /* SUPPORT_UTF8 */
2714
2715 /* We use the bit map for all cases when not in UTF-8 mode; else
2716 ranges that lie entirely within 0-127 when there is UCP support; else
2717 for partial ranges without UCP support. */
2718
2719 class_charcount += d - c + 1;
2720 class_lastchar = d;
2721
2722 /* We can save a bit of time by skipping this in the pre-compile. */
2723
2724 if (lengthptr == NULL) for (; c <= d; c++)
2725 {
2726 classbits[c/8] |= (1 << (c&7));
2727 if ((options & PCRE_CASELESS) != 0)
2728 {
2729 int uc = cd->fcc[c]; /* flip case */
2730 classbits[uc/8] |= (1 << (uc&7));
2731 }
2732 }
2733
2734 continue; /* Go get the next char in the class */
2735 }
2736
2737 /* Handle a lone single character - we can get here for a normal
2738 non-escape char, or after \ that introduces a single character or for an
2739 apparent range that isn't. */
2740
2741 LONE_SINGLE_CHARACTER:
2742
2743 /* Handle a character that cannot go in the bit map */
2744
2745 #ifdef SUPPORT_UTF8
2746 if (utf8 && (c > 255 || ((options & PCRE_CASELESS) != 0 && c > 127)))
2747 {
2748 class_utf8 = TRUE;
2749 *class_utf8data++ = XCL_SINGLE;
2750 class_utf8data += _pcre_ord2utf8(c, class_utf8data);
2751
2752 #ifdef SUPPORT_UCP
2753 if ((options & PCRE_CASELESS) != 0)
2754 {
2755 unsigned int othercase;
2756 if ((othercase = _pcre_ucp_othercase(c)) != NOTACHAR)
2757 {
2758 *class_utf8data++ = XCL_SINGLE;
2759 class_utf8data += _pcre_ord2utf8(othercase, class_utf8data);
2760 }
2761 }
2762 #endif /* SUPPORT_UCP */
2763
2764 }
2765 else
2766 #endif /* SUPPORT_UTF8 */
2767
2768 /* Handle a single-byte character */
2769 {
2770 classbits[c/8] |= (1 << (c&7));
2771 if ((options & PCRE_CASELESS) != 0)
2772 {
2773 c = cd->fcc[c]; /* flip case */
2774 classbits[c/8] |= (1 << (c&7));
2775 }
2776 class_charcount++;
2777 class_lastchar = c;
2778 }
2779 }
2780
2781 /* Loop until ']' reached. This "while" is the end of the "do" above. */
2782
2783 while ((c = *(++ptr)) != 0 && (c != ']' || inescq));
2784
2785 if (c == 0) /* Missing terminating ']' */
2786 {
2787 *errorcodeptr = ERR6;
2788 goto FAILED;
2789 }
2790
2791 /* If class_charcount is 1, we saw precisely one character whose value is
2792 less than 256. In non-UTF-8 mode we can always optimize. In UTF-8 mode, we
2793 can optimize the negative case only if there were no characters >= 128
2794 because OP_NOT and the related opcodes like OP_NOTSTAR operate on
2795 single-bytes only. This is an historical hangover. Maybe one day we can
2796 tidy these opcodes to handle multi-byte characters.
2797
2798 The optimization throws away the bit map. We turn the item into a
2799 1-character OP_CHAR[NC] if it's positive, or OP_NOT if it's negative. Note
2800 that OP_NOT does not support multibyte characters. In the positive case, it
2801 can cause firstbyte to be set. Otherwise, there can be no first char if
2802 this item is first, whatever repeat count may follow. In the case of
2803 reqbyte, save the previous value for reinstating. */
2804
2805 #ifdef SUPPORT_UTF8
2806 if (class_charcount == 1 &&
2807 (!utf8 ||
2808 (!class_utf8 && (!negate_class || class_lastchar < 128))))
2809
2810 #else
2811 if (class_charcount == 1)
2812 #endif
2813 {
2814 zeroreqbyte = reqbyte;
2815
2816 /* The OP_NOT opcode works on one-byte characters only. */
2817
2818 if (negate_class)
2819 {
2820 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
2821 zerofirstbyte = firstbyte;
2822 *code++ = OP_NOT;
2823 *code++ = class_lastchar;
2824 break;
2825 }
2826
2827 /* For a single, positive character, get the value into mcbuffer, and
2828 then we can handle this with the normal one-character code. */
2829
2830 #ifdef SUPPORT_UTF8
2831 if (utf8 && class_lastchar > 127)
2832 mclength = _pcre_ord2utf8(class_lastchar, mcbuffer);
2833 else
2834 #endif
2835 {
2836 mcbuffer[0] = class_lastchar;
2837 mclength = 1;
2838 }
2839 goto ONE_CHAR;
2840 } /* End of 1-char optimization */
2841
2842 /* The general case - not the one-char optimization. If this is the first
2843 thing in the branch, there can be no first char setting, whatever the
2844 repeat count. Any reqbyte setting must remain unchanged after any kind of
2845 repeat. */
2846
2847 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
2848 zerofirstbyte = firstbyte;
2849 zeroreqbyte = reqbyte;
2850
2851 /* If there are characters with values > 255, we have to compile an
2852 extended class, with its own opcode. If there are no characters < 256,
2853 we can omit the bitmap in the actual compiled code. */
2854
2855 #ifdef SUPPORT_UTF8
2856 if (class_utf8)
2857 {
2858 *class_utf8data++ = XCL_END; /* Marks the end of extra data */
2859 *code++ = OP_XCLASS;
2860 code += LINK_SIZE;
2861 *code = negate_class? XCL_NOT : 0;
2862
2863 /* If the map is required, move up the extra data to make room for it;
2864 otherwise just move the code pointer to the end of the extra data. */
2865
2866 if (class_charcount > 0)
2867 {
2868 *code++ |= XCL_MAP;
2869 memmove(code + 32, code, class_utf8data - code);
2870 memcpy(code, classbits, 32);
2871 code = class_utf8data + 32;
2872 }
2873 else code = class_utf8data;
2874
2875 /* Now fill in the complete length of the item */
2876
2877 PUT(previous, 1, code - previous);
2878 break; /* End of class handling */
2879 }
2880 #endif
2881
2882 /* If there are no characters > 255, negate the 32-byte map if necessary,
2883 and copy it into the code vector. If this is the first thing in the branch,
2884 there can be no first char setting, whatever the repeat count. Any reqbyte
2885 setting must remain unchanged after any kind of repeat. */
2886
2887 if (negate_class)
2888 {
2889 *code++ = OP_NCLASS;
2890 if (lengthptr == NULL) /* Save time in the pre-compile phase */
2891 for (c = 0; c < 32; c++) code[c] = ~classbits[c];
2892 }
2893 else
2894 {
2895 *code++ = OP_CLASS;
2896 memcpy(code, classbits, 32);
2897 }
2898 code += 32;
2899 break;
2900
2901
2902 /* ===================================================================*/
2903 /* Various kinds of repeat; '{' is not necessarily a quantifier, but this
2904 has been tested above. */
2905
2906 case '{':
2907 if (!is_quantifier) goto NORMAL_CHAR;
2908 ptr = read_repeat_counts(ptr+1, &repeat_min, &repeat_max, errorcodeptr);
2909 if (*errorcodeptr != 0) goto FAILED;
2910 goto REPEAT;
2911
2912 case '*':
2913 repeat_min = 0;
2914 repeat_max = -1;
2915 goto REPEAT;
2916
2917 case '+':
2918 repeat_min = 1;
2919 repeat_max = -1;
2920 goto REPEAT;
2921
2922 case '?':
2923 repeat_min = 0;
2924 repeat_max = 1;
2925
2926 REPEAT:
2927 if (previous == NULL)
2928 {
2929 *errorcodeptr = ERR9;
2930 goto FAILED;
2931 }
2932
2933 if (repeat_min == 0)
2934 {
2935 firstbyte = zerofirstbyte; /* Adjust for zero repeat */
2936 reqbyte = zeroreqbyte; /* Ditto */
2937 }
2938
2939 /* Remember whether this is a variable length repeat */
2940
2941 reqvary = (repeat_min == repeat_max)? 0 : REQ_VARY;
2942
2943 op_type = 0; /* Default single-char op codes */
2944 possessive_quantifier = FALSE; /* Default not possessive quantifier */
2945
2946 /* Save start of previous item, in case we have to move it up to make space
2947 for an inserted OP_ONCE for the additional '+' extension. */
2948
2949 tempcode = previous;
2950
2951 /* If the next character is '+', we have a possessive quantifier. This
2952 implies greediness, whatever the setting of the PCRE_UNGREEDY option.
2953 If the next character is '?' this is a minimizing repeat, by default,
2954 but if PCRE_UNGREEDY is set, it works the other way round. We change the
2955 repeat type to the non-default. */
2956
2957 if (ptr[1] == '+')
2958 {
2959 repeat_type = 0; /* Force greedy */
2960 possessive_quantifier = TRUE;
2961 ptr++;
2962 }
2963 else if (ptr[1] == '?')
2964 {
2965 repeat_type = greedy_non_default;
2966 ptr++;
2967 }
2968 else repeat_type = greedy_default;
2969
2970 /* If previous was a character match, abolish the item and generate a
2971 repeat item instead. If a char item has a minumum of more than one, ensure
2972 that it is set in reqbyte - it might not be if a sequence such as x{3} is
2973 the first thing in a branch because the x will have gone into firstbyte
2974 instead. */
2975
2976 if (*previous == OP_CHAR || *previous == OP_CHARNC)
2977 {
2978 /* Deal with UTF-8 characters that take up more than one byte. It's
2979 easier to write this out separately than try to macrify it. Use c to
2980 hold the length of the character in bytes, plus 0x80 to flag that it's a
2981 length rather than a small character. */
2982
2983 #ifdef SUPPORT_UTF8
2984 if (utf8 && (code[-1] & 0x80) != 0)
2985 {
2986 uschar *lastchar = code - 1;
2987 while((*lastchar & 0xc0) == 0x80) lastchar--;
2988 c = code - lastchar; /* Length of UTF-8 character */
2989 memcpy(utf8_char, lastchar, c); /* Save the char */
2990 c |= 0x80; /* Flag c as a length */
2991 }
2992 else
2993 #endif
2994
2995 /* Handle the case of a single byte - either with no UTF8 support, or
2996 with UTF-8 disabled, or for a UTF-8 character < 128. */
2997
2998 {
2999 c = code[-1];
3000 if (repeat_min > 1) reqbyte = c | req_caseopt | cd->req_varyopt;
3001 }
3002
3003 /* If the repetition is unlimited, it pays to see if the next thing on
3004 the line is something that cannot possibly match this character. If so,
3005 automatically possessifying this item gains some performance in the case
3006 where the match fails. */
3007
3008 if (!possessive_quantifier &&
3009 repeat_max < 0 &&
3010 check_auto_possessive(*previous, c, utf8, utf8_char, ptr + 1,
3011 options, cd))
3012 {
3013 repeat_type = 0; /* Force greedy */
3014 possessive_quantifier = TRUE;
3015 }
3016
3017 goto OUTPUT_SINGLE_REPEAT; /* Code shared with single character types */
3018 }
3019
3020 /* If previous was a single negated character ([^a] or similar), we use
3021 one of the special opcodes, replacing it. The code is shared with single-
3022 character repeats by setting opt_type to add a suitable offset into
3023 repeat_type. We can also test for auto-possessification. OP_NOT is
3024 currently used only for single-byte chars. */
3025
3026 else if (*previous == OP_NOT)
3027 {
3028 op_type = OP_NOTSTAR - OP_STAR; /* Use "not" opcodes */
3029 c = previous[1];
3030 if (!possessive_quantifier &&
3031 repeat_max < 0 &&
3032 check_auto_possessive(OP_NOT, c, utf8, NULL, ptr + 1, options, cd))
3033 {
3034 repeat_type = 0; /* Force greedy */
3035 possessive_quantifier = TRUE;
3036 }
3037 goto OUTPUT_SINGLE_REPEAT;
3038 }
3039
3040 /* If previous was a character type match (\d or similar), abolish it and
3041 create a suitable repeat item. The code is shared with single-character
3042 repeats by setting op_type to add a suitable offset into repeat_type. Note
3043 the the Unicode property types will be present only when SUPPORT_UCP is
3044 defined, but we don't wrap the little bits of code here because it just
3045 makes it horribly messy. */
3046
3047 else if (*previous < OP_EODN)
3048 {
3049 uschar *oldcode;
3050 int prop_type, prop_value;
3051 op_type = OP_TYPESTAR - OP_STAR; /* Use type opcodes */
3052 c = *previous;
3053
3054 if (!possessive_quantifier &&
3055 repeat_max < 0 &&
3056 check_auto_possessive(c, 0, utf8, NULL, ptr + 1, options, cd))
3057 {
3058 repeat_type = 0; /* Force greedy */
3059 possessive_quantifier = TRUE;
3060 }
3061
3062 OUTPUT_SINGLE_REPEAT:
3063 if (*previous == OP_PROP || *previous == OP_NOTPROP)
3064 {
3065 prop_type = previous[1];
3066 prop_value = previous[2];
3067 }
3068 else prop_type = prop_value = -1;
3069
3070 oldcode = code;
3071 code = previous; /* Usually overwrite previous item */
3072
3073 /* If the maximum is zero then the minimum must also be zero; Perl allows
3074 this case, so we do too - by simply omitting the item altogether. */
3075
3076 if (repeat_max == 0) goto END_REPEAT;
3077
3078 /* All real repeats make it impossible to handle partial matching (maybe
3079 one day we will be able to remove this restriction). */
3080
3081 if (repeat_max != 1) cd->nopartial = TRUE;
3082
3083 /* Combine the op_type with the repeat_type */
3084
3085 repeat_type += op_type;
3086
3087 /* A minimum of zero is handled either as the special case * or ?, or as
3088 an UPTO, with the maximum given. */
3089
3090 if (repeat_min == 0)
3091 {
3092 if (repeat_max == -1) *code++ = OP_STAR + repeat_type;
3093 else if (repeat_max == 1) *code++ = OP_QUERY + repeat_type;
3094 else
3095 {
3096 *code++ = OP_UPTO + repeat_type;
3097 PUT2INC(code, 0, repeat_max);
3098 }
3099 }
3100
3101 /* A repeat minimum of 1 is optimized into some special cases. If the
3102 maximum is unlimited, we use OP_PLUS. Otherwise, the original item is
3103 left in place and, if the maximum is greater than 1, we use OP_UPTO with
3104 one less than the maximum. */
3105
3106 else if (repeat_min == 1)
3107 {
3108 if (repeat_max == -1)
3109 *code++ = OP_PLUS + repeat_type;
3110 else
3111 {
3112 code = oldcode; /* leave previous item in place */
3113 if (repeat_max == 1) goto END_REPEAT;
3114 *code++ = OP_UPTO + repeat_type;
3115 PUT2INC(code, 0, repeat_max - 1);
3116 }
3117 }
3118
3119 /* The case {n,n} is just an EXACT, while the general case {n,m} is
3120 handled as an EXACT followed by an UPTO. */
3121
3122 else
3123 {
3124 *code++ = OP_EXACT + op_type; /* NB EXACT doesn't have repeat_type */
3125 PUT2INC(code, 0, repeat_min);
3126
3127 /* If the maximum is unlimited, insert an OP_STAR. Before doing so,
3128 we have to insert the character for the previous code. For a repeated
3129 Unicode property match, there are two extra bytes that define the
3130 required property. In UTF-8 mode, long characters have their length in
3131 c, with the 0x80 bit as a flag. */
3132
3133 if (repeat_max < 0)
3134 {
3135 #ifdef SUPPORT_UTF8
3136 if (utf8 && c >= 128)
3137 {
3138 memcpy(code, utf8_char, c & 7);
3139 code += c & 7;
3140 }
3141 else
3142 #endif
3143 {
3144 *code++ = c;
3145 if (prop_type >= 0)
3146 {
3147 *code++ = prop_type;
3148 *code++ = prop_value;
3149 }
3150 }
3151 *code++ = OP_STAR + repeat_type;
3152 }
3153
3154 /* Else insert an UPTO if the max is greater than the min, again
3155 preceded by the character, for the previously inserted code. If the
3156 UPTO is just for 1 instance, we can use QUERY instead. */
3157
3158 else if (repeat_max != repeat_min)
3159 {
3160 #ifdef SUPPORT_UTF8
3161 if (utf8 && c >= 128)
3162 {
3163 memcpy(code, utf8_char, c & 7);
3164 code += c & 7;
3165 }
3166 else
3167 #endif
3168 *code++ = c;
3169 if (prop_type >= 0)
3170 {
3171 *code++ = prop_type;
3172 *code++ = prop_value;
3173 }
3174 repeat_max -= repeat_min;
3175
3176 if (repeat_max == 1)
3177 {
3178 *code++ = OP_QUERY + repeat_type;
3179 }
3180 else
3181 {
3182 *code++ = OP_UPTO + repeat_type;
3183 PUT2INC(code, 0, repeat_max);
3184 }
3185 }
3186 }
3187
3188 /* The character or character type itself comes last in all cases. */
3189
3190 #ifdef SUPPORT_UTF8
3191 if (utf8 && c >= 128)
3192 {
3193 memcpy(code, utf8_char, c & 7);
3194 code += c & 7;
3195 }
3196 else
3197 #endif
3198 *code++ = c;
3199
3200 /* For a repeated Unicode property match, there are two extra bytes that
3201 define the required property. */
3202
3203 #ifdef SUPPORT_UCP
3204 if (prop_type >= 0)
3205 {
3206 *code++ = prop_type;
3207 *code++ = prop_value;
3208 }
3209 #endif
3210 }
3211
3212 /* If previous was a character class or a back reference, we put the repeat
3213 stuff after it, but just skip the item if the repeat was {0,0}. */
3214
3215 else if (*previous == OP_CLASS ||
3216 *previous == OP_NCLASS ||
3217 #ifdef SUPPORT_UTF8
3218 *previous == OP_XCLASS ||
3219 #endif
3220 *previous == OP_REF)
3221 {
3222 if (repeat_max == 0)
3223 {
3224 code = previous;
3225 goto END_REPEAT;
3226 }
3227
3228 /* All real repeats make it impossible to handle partial matching (maybe
3229 one day we will be able to remove this restriction). */
3230
3231 if (repeat_max != 1) cd->nopartial = TRUE;
3232
3233 if (repeat_min == 0 && repeat_max == -1)
3234 *code++ = OP_CRSTAR + repeat_type;
3235 else if (repeat_min == 1 && repeat_max == -1)
3236 *code++ = OP_CRPLUS + repeat_type;
3237 else if (repeat_min == 0 && repeat_max == 1)
3238 *code++ = OP_CRQUERY + repeat_type;
3239 else
3240 {
3241 *code++ = OP_CRRANGE + repeat_type;
3242 PUT2INC(code, 0, repeat_min);
3243 if (repeat_max == -1) repeat_max = 0; /* 2-byte encoding for max */
3244 PUT2INC(code, 0, repeat_max);
3245 }
3246 }
3247
3248 /* If previous was a bracket group, we may have to replicate it in certain
3249 cases. */
3250
3251 else if (*previous == OP_BRA || *previous == OP_CBRA ||
3252 *previous == OP_ONCE || *previous == OP_COND)
3253 {
3254 register int i;
3255 int ketoffset = 0;
3256 int len = code - previous;
3257 uschar *bralink = NULL;
3258
3259 /* Repeating a DEFINE group is pointless */
3260
3261 if (*previous == OP_COND && previous[LINK_SIZE+1] == OP_DEF)
3262 {
3263 *errorcodeptr = ERR55;
3264 goto FAILED;
3265 }
3266
3267 /* This is a paranoid check to stop integer overflow later on */
3268
3269 if (len > MAX_DUPLENGTH)
3270 {
3271 *errorcodeptr = ERR50;
3272 goto FAILED;
3273 }
3274
3275 /* If the maximum repeat count is unlimited, find the end of the bracket
3276 by scanning through from the start, and compute the offset back to it
3277 from the current code pointer. There may be an OP_OPT setting following
3278 the final KET, so we can't find the end just by going back from the code
3279 pointer. */
3280
3281 if (repeat_max == -1)
3282 {
3283 register uschar *ket = previous;
3284 do ket += GET(ket, 1); while (*ket != OP_KET);
3285 ketoffset = code - ket;
3286 }
3287
3288 /* The case of a zero minimum is special because of the need to stick
3289 OP_BRAZERO in front of it, and because the group appears once in the
3290 data, whereas in other cases it appears the minimum number of times. For
3291 this reason, it is simplest to treat this case separately, as otherwise
3292 the code gets far too messy. There are several special subcases when the
3293 minimum is zero. */
3294
3295 if (repeat_min == 0)
3296 {
3297 /* If the maximum is also zero, we just omit the group from the output
3298 altogether. */
3299
3300 if (repeat_max == 0)
3301 {
3302 code = previous;
3303 goto END_REPEAT;
3304 }
3305
3306 /* If the maximum is 1 or unlimited, we just have to stick in the
3307 BRAZERO and do no more at this point. However, we do need to adjust
3308 any OP_RECURSE calls inside the group that refer to the group itself or
3309 any internal or forward referenced group, because the offset is from
3310 the start of the whole regex. Temporarily terminate the pattern while
3311 doing this. */
3312
3313 if (repeat_max <= 1)
3314 {
3315 *code = OP_END;
3316 adjust_recurse(previous, 1, utf8, cd, save_hwm);
3317 memmove(previous+1, previous, len);
3318 code++;
3319 *previous++ = OP_BRAZERO + repeat_type;
3320 }
3321
3322 /* If the maximum is greater than 1 and limited, we have to replicate
3323 in a nested fashion, sticking OP_BRAZERO before each set of brackets.
3324 The first one has to be handled carefully because it's the original
3325 copy, which has to be moved up. The remainder can be handled by code
3326 that is common with the non-zero minimum case below. We have to
3327 adjust the value or repeat_max, since one less copy is required. Once
3328 again, we may have to adjust any OP_RECURSE calls inside the group. */
3329
3330 else
3331 {
3332 int offset;
3333 *code = OP_END;
3334 adjust_recurse(previous, 2 + LINK_SIZE, utf8, cd, save_hwm);
3335 memmove(previous + 2 + LINK_SIZE, previous, len);
3336 code += 2 + LINK_SIZE;
3337 *previous++ = OP_BRAZERO + repeat_type;
3338 *previous++ = OP_BRA;
3339
3340 /* We chain together the bracket offset fields that have to be
3341 filled in later when the ends of the brackets are reached. */
3342
3343 offset = (bralink == NULL)? 0 : previous - bralink;
3344 bralink = previous;
3345 PUTINC(previous, 0, offset);
3346 }
3347
3348 repeat_max--;
3349 }
3350
3351 /* If the minimum is greater than zero, replicate the group as many
3352 times as necessary, and adjust the maximum to the number of subsequent
3353 copies that we need. If we set a first char from the group, and didn't
3354 set a required char, copy the latter from the former. If there are any
3355 forward reference subroutine calls in the group, there will be entries on
3356 the workspace list; replicate these with an appropriate increment. */
3357
3358 else
3359 {
3360 if (repeat_min > 1)
3361 {
3362 /* In the pre-compile phase, we don't actually do the replication. We
3363 just adjust the length as if we had. */
3364
3365 if (lengthptr != NULL)
3366 *lengthptr += (repeat_min - 1)*length_prevgroup;
3367
3368 /* This is compiling for real */
3369
3370 else
3371 {
3372 if (groupsetfirstbyte && reqbyte < 0) reqbyte = firstbyte;
3373 for (i = 1; i < repeat_min; i++)
3374 {
3375 uschar *hc;
3376 uschar *this_hwm = cd->hwm;
3377 memcpy(code, previous, len);
3378 for (hc = save_hwm; hc < this_hwm; hc += LINK_SIZE)
3379 {
3380 PUT(cd->hwm, 0, GET(hc, 0) + len);
3381 cd->hwm += LINK_SIZE;
3382 }
3383 save_hwm = this_hwm;
3384 code += len;
3385 }
3386 }
3387 }
3388
3389 if (repeat_max > 0) repeat_max -= repeat_min;
3390 }
3391
3392 /* This code is common to both the zero and non-zero minimum cases. If
3393 the maximum is limited, it replicates the group in a nested fashion,
3394 remembering the bracket starts on a stack. In the case of a zero minimum,
3395 the first one was set up above. In all cases the repeat_max now specifies
3396 the number of additional copies needed. Again, we must remember to
3397 replicate entries on the forward reference list. */
3398
3399 if (repeat_max >= 0)
3400 {
3401 /* In the pre-compile phase, we don't actually do the replication. We
3402 just adjust the length as if we had. For each repetition we must add 1
3403 to the length for BRAZERO and for all but the last repetition we must
3404 add 2 + 2*LINKSIZE to allow for the nesting that occurs. */
3405
3406 if (lengthptr != NULL && repeat_max > 0)
3407 *lengthptr += repeat_max * (length_prevgroup + 1 + 2 + 2*LINK_SIZE) -
3408 2 - 2*LINK_SIZE; /* Last one doesn't nest */
3409
3410 /* This is compiling for real */
3411
3412 else for (i = repeat_max - 1; i >= 0; i--)
3413 {
3414 uschar *hc;
3415 uschar *this_hwm = cd->hwm;
3416
3417 *code++ = OP_BRAZERO + repeat_type;
3418
3419 /* All but the final copy start a new nesting, maintaining the
3420 chain of brackets outstanding. */
3421
3422 if (i != 0)
3423 {
3424 int offset;
3425 *code++ = OP_BRA;
3426 offset = (bralink == NULL)? 0 : code - bralink;
3427 bralink = code;
3428 PUTINC(code, 0, offset);
3429 }
3430
3431 memcpy(code, previous, len);
3432 for (hc = save_hwm; hc < this_hwm; hc += LINK_SIZE)
3433 {
3434 PUT(cd->hwm, 0, GET(hc, 0) + len + ((i != 0)? 2+LINK_SIZE : 1));
3435 cd->hwm += LINK_SIZE;
3436 }
3437 save_hwm = this_hwm;
3438 code += len;
3439 }
3440
3441 /* Now chain through the pending brackets, and fill in their length
3442 fields (which are holding the chain links pro tem). */
3443
3444 while (bralink != NULL)
3445 {
3446 int oldlinkoffset;
3447 int offset = code - bralink + 1;
3448 uschar *bra = code - offset;
3449 oldlinkoffset = GET(bra, 1);
3450 bralink = (oldlinkoffset == 0)? NULL : bralink - oldlinkoffset;
3451 *code++ = OP_KET;
3452 PUTINC(code, 0, offset);
3453 PUT(bra, 1, offset);
3454 }
3455 }
3456
3457 /* If the maximum is unlimited, set a repeater in the final copy. We
3458 can't just offset backwards from the current code point, because we
3459 don't know if there's been an options resetting after the ket. The
3460 correct offset was computed above.
3461
3462 Then, when we are doing the actual compile phase, check to see whether
3463 this group is a non-atomic one that could match an empty string. If so,
3464 convert the initial operator to the S form (e.g. OP_BRA -> OP_SBRA) so
3465 that runtime checking can be done. [This check is also applied to
3466 atomic groups at runtime, but in a different way.] */
3467
3468 else
3469 {
3470 uschar *ketcode = code - ketoffset;
3471 uschar *bracode = ketcode - GET(ketcode, 1);
3472 *ketcode = OP_KETRMAX + repeat_type;
3473 if (lengthptr == NULL && *bracode != OP_ONCE)
3474 {
3475 uschar *scode = bracode;
3476 do
3477 {
3478 if (could_be_empty_branch(scode, ketcode, utf8))
3479 {
3480 *bracode += OP_SBRA - OP_BRA;
3481 break;
3482 }
3483 scode += GET(scode, 1);
3484 }
3485 while (*scode == OP_ALT);
3486 }
3487 }
3488 }
3489
3490 /* Else there's some kind of shambles */
3491
3492 else
3493 {
3494 *errorcodeptr = ERR11;
3495 goto FAILED;
3496 }
3497
3498 /* If the character following a repeat is '+', or if certain optimization
3499 tests above succeeded, possessive_quantifier is TRUE. For some of the
3500 simpler opcodes, there is an special alternative opcode for this. For
3501 anything else, we wrap the entire repeated item inside OP_ONCE brackets.
3502 The '+' notation is just syntactic sugar, taken from Sun's Java package,
3503 but the special opcodes can optimize it a bit. The repeated item starts at
3504 tempcode, not at previous, which might be the first part of a string whose
3505 (former) last char we repeated.
3506
3507 Possessifying an 'exact' quantifier has no effect, so we can ignore it. But
3508 an 'upto' may follow. We skip over an 'exact' item, and then test the
3509 length of what remains before proceeding. */
3510
3511 if (possessive_quantifier)
3512 {
3513 int len;
3514 if (*tempcode == OP_EXACT || *tempcode == OP_TYPEEXACT ||
3515 *tempcode == OP_NOTEXACT)
3516 tempcode += _pcre_OP_lengths[*tempcode];
3517 len = code - tempcode;
3518 if (len > 0) switch (*tempcode)
3519 {
3520 case OP_STAR: *tempcode = OP_POSSTAR; break;
3521 case OP_PLUS: *tempcode = OP_POSPLUS; break;
3522 case OP_QUERY: *tempcode = OP_POSQUERY; break;
3523 case OP_UPTO: *tempcode = OP_POSUPTO; break;
3524
3525 case OP_TYPESTAR: *tempcode = OP_TYPEPOSSTAR; break;
3526 case OP_TYPEPLUS: *tempcode = OP_TYPEPOSPLUS; break;
3527 case OP_TYPEQUERY: *tempcode = OP_TYPEPOSQUERY; break;
3528 case OP_TYPEUPTO: *tempcode = OP_TYPEPOSUPTO; break;
3529
3530 case OP_NOTSTAR: *tempcode = OP_NOTPOSSTAR; break;
3531 case OP_NOTPLUS: *tempcode = OP_NOTPOSPLUS; break;
3532 case OP_NOTQUERY: *tempcode = OP_NOTPOSQUERY; break;
3533 case OP_NOTUPTO: *tempcode = OP_NOTPOSUPTO; break;
3534
3535 default:
3536 memmove(tempcode + 1+LINK_SIZE, tempcode, len);
3537 code += 1 + LINK_SIZE;
3538 len += 1 + LINK_SIZE;
3539 tempcode[0] = OP_ONCE;
3540 *code++ = OP_KET;
3541 PUTINC(code, 0, len);
3542 PUT(tempcode, 1, len);
3543 break;
3544 }
3545 }
3546
3547 /* In all case we no longer have a previous item. We also set the
3548 "follows varying string" flag for subsequently encountered reqbytes if
3549 it isn't already set and we have just passed a varying length item. */
3550
3551 END_REPEAT:
3552 previous = NULL;
3553 cd->req_varyopt |= reqvary;
3554 break;
3555
3556
3557 /* ===================================================================*/
3558 /* Start of nested parenthesized sub-expression, or comment or lookahead or
3559 lookbehind or option setting or condition or all the other extended
3560 parenthesis forms. First deal with the specials; all are introduced by ?,
3561 and the appearance of any of them means that this is not a capturing
3562 group. */
3563
3564 case '(':
3565 newoptions = options;
3566 skipbytes = 0;
3567 bravalue = OP_CBRA;
3568 save_hwm = cd->hwm;
3569
3570 if (*(++ptr) == '?')
3571 {
3572 int i, set, unset, namelen;
3573 int *optset;
3574 const uschar *name;
3575 uschar *slot;
3576
3577 switch (*(++ptr))
3578 {
3579 case '#': /* Comment; skip to ket */
3580 ptr++;
3581 while (*ptr != 0 && *ptr != ')') ptr++;
3582 if (*ptr == 0)
3583 {
3584 *errorcodeptr = ERR18;
3585 goto FAILED;
3586 }
3587 continue;
3588
3589
3590 /* ------------------------------------------------------------ */
3591 case ':': /* Non-capturing bracket */
3592 bravalue = OP_BRA;
3593 ptr++;
3594 break;
3595
3596
3597 /* ------------------------------------------------------------ */
3598 case '(':
3599 bravalue = OP_COND; /* Conditional group */
3600
3601 /* A condition can be an assertion, a number (referring to a numbered
3602 group), a name (referring to a named group), or 'R', referring to
3603 recursion. R<digits> and R&name are also permitted for recursion tests.
3604
3605 There are several syntaxes for testing a named group: (?(name)) is used
3606 by Python; Perl 5.10 onwards uses (?(<name>) or (?('name')).
3607
3608 There are two unfortunate ambiguities, caused by history. (a) 'R' can
3609 be the recursive thing or the name 'R' (and similarly for 'R' followed
3610 by digits), and (b) a number could be a name that consists of digits.
3611 In both cases, we look for a name first; if not found, we try the other
3612 cases. */
3613
3614 /* For conditions that are assertions, check the syntax, and then exit
3615 the switch. This will take control down to where bracketed groups,
3616 including assertions, are processed. */
3617
3618 if (ptr[1] == '?' && (ptr[2] == '=' || ptr[2] == '!' || ptr[2] == '<'))
3619 break;
3620
3621 /* Most other conditions use OP_CREF (a couple change to OP_RREF
3622 below), and all need to skip 3 bytes at the start of the group. */
3623
3624 code[1+LINK_SIZE] = OP_CREF;
3625 skipbytes = 3;
3626 refsign = -1;
3627
3628 /* Check for a test for recursion in a named group. */
3629
3630 if (ptr[1] == 'R' && ptr[2] == '&')
3631 {
3632 terminator = -1;
3633 ptr += 2;
3634 code[1+LINK_SIZE] = OP_RREF; /* Change the type of test */
3635 }
3636
3637 /* Check for a test for a named group's having been set, using the Perl
3638 syntax (?(<name>) or (?('name') */
3639
3640 else if (ptr[1] == '<')
3641 {
3642 terminator = '>';
3643 ptr++;
3644 }
3645 else if (ptr[1] == '\'')
3646 {
3647 terminator = '\'';
3648 ptr++;
3649 }
3650 else
3651 {
3652 terminator = 0;
3653 if (ptr[1] == '-' || ptr[1] == '+') refsign = *(++ptr);
3654 }
3655
3656 /* We now expect to read a name; any thing else is an error */
3657
3658 if ((cd->ctypes[ptr[1]] & ctype_word) == 0)
3659 {
3660 ptr += 1; /* To get the right offset */
3661 *errorcodeptr = ERR28;
3662 goto FAILED;
3663 }
3664
3665 /* Read the name, but also get it as a number if it's all digits */
3666
3667 recno = 0;
3668 name = ++ptr;
3669 while ((cd->ctypes[*ptr] & ctype_word) != 0)
3670 {
3671 if (recno >= 0)
3672 recno = ((digitab[*ptr] & ctype_digit) != 0)?
3673 recno * 10 + *ptr - '0' : -1;
3674 ptr++;
3675 }
3676 namelen = ptr - name;
3677
3678 if ((terminator > 0 && *ptr++ != terminator) || *ptr++ != ')')
3679 {
3680 ptr--; /* Error offset */
3681 *errorcodeptr = ERR26;
3682 goto FAILED;
3683 }
3684
3685 /* Do no further checking in the pre-compile phase. */
3686
3687 if (lengthptr != NULL) break;
3688
3689 /* In the real compile we do the work of looking for the actual
3690 reference. If the string started with "+" or "-" we require the rest to
3691 be digits, in which case recno will be set. */
3692
3693 if (refsign > 0)
3694 {
3695 if (recno <= 0)
3696 {
3697 *errorcodeptr = ERR58;
3698 goto FAILED;
3699 }
3700 if (refsign == '-')
3701 {
3702 recno = cd->bracount - recno + 1;
3703 if (recno <= 0)
3704 {
3705 *errorcodeptr = ERR15;
3706 goto FAILED;
3707 }
3708 }
3709 else recno += cd->bracount;
3710 PUT2(code, 2+LINK_SIZE, recno);
3711 break;
3712 }
3713
3714 /* Otherwise (did not start with "+" or "-"), start by looking for the
3715 name. */
3716
3717 slot = cd->name_table;
3718 for (i = 0; i < cd->names_found; i++)
3719 {
3720 if (strncmp((char *)name, (char *)slot+2, namelen) == 0) break;
3721 slot += cd->name_entry_size;
3722 }
3723
3724 /* Found a previous named subpattern */
3725
3726 if (i < cd->names_found)
3727 {
3728 recno = GET2(slot, 0);
3729 PUT2(code, 2+LINK_SIZE, recno);
3730 }
3731
3732 /* Search the pattern for a forward reference */
3733
3734 else if ((i = find_parens(ptr, cd->bracount, name, namelen,
3735 (options & PCRE_EXTENDED) != 0)) > 0)
3736 {
3737 PUT2(code, 2+LINK_SIZE, i);
3738 }
3739
3740 /* If terminator == 0 it means that the name followed directly after
3741 the opening parenthesis [e.g. (?(abc)...] and in this case there are
3742 some further alternatives to try. For the cases where terminator != 0
3743 [things like (?(<name>... or (?('name')... or (?(R&name)... ] we have
3744 now checked all the possibilities, so give an error. */
3745
3746 else if (terminator != 0)
3747 {
3748 *errorcodeptr = ERR15;
3749 goto FAILED;
3750 }
3751
3752 /* Check for (?(R) for recursion. Allow digits after R to specify a
3753 specific group number. */
3754
3755 else if (*name == 'R')
3756 {
3757 recno = 0;
3758 for (i = 1; i < namelen; i++)
3759 {
3760 if ((digitab[name[i]] & ctype_digit) == 0)
3761 {
3762 *errorcodeptr = ERR15;
3763 goto FAILED;
3764 }
3765 recno = recno * 10 + name[i] - '0';
3766 }
3767 if (recno == 0) recno = RREF_ANY;
3768 code[1+LINK_SIZE] = OP_RREF; /* Change test type */
3769 PUT2(code, 2+LINK_SIZE, recno);
3770 }
3771
3772 /* Similarly, check for the (?(DEFINE) "condition", which is always
3773 false. */
3774
3775 else if (namelen == 6 && strncmp((char *)name, "DEFINE", 6) == 0)
3776 {
3777 code[1+LINK_SIZE] = OP_DEF;
3778 skipbytes = 1;
3779 }
3780
3781 /* Check for the "name" actually being a subpattern number. */
3782
3783 else if (recno > 0)
3784 {
3785 PUT2(code, 2+LINK_SIZE, recno);
3786 }
3787
3788 /* Either an unidentified subpattern, or a reference to (?(0) */
3789
3790 else
3791 {
3792 *errorcodeptr = (recno == 0)? ERR35: ERR15;
3793 goto FAILED;
3794 }
3795 break;
3796
3797
3798 /* ------------------------------------------------------------ */
3799 case '=': /* Positive lookahead */
3800 bravalue = OP_ASSERT;
3801 ptr++;
3802 break;
3803
3804
3805 /* ------------------------------------------------------------ */
3806 case '!': /* Negative lookahead */
3807 bravalue = OP_ASSERT_NOT;
3808 ptr++;
3809 break;
3810
3811
3812 /* ------------------------------------------------------------ */
3813 case '<': /* Lookbehind or named define */
3814 switch (ptr[1])
3815 {
3816 case '=': /* Positive lookbehind */
3817 bravalue = OP_ASSERTBACK;
3818 ptr += 2;
3819 break;
3820
3821 case '!': /* Negative lookbehind */
3822 bravalue = OP_ASSERTBACK_NOT;
3823 ptr += 2;
3824 break;
3825
3826 default: /* Could be name define, else bad */
3827 if ((cd->ctypes[ptr[1]] & ctype_word) != 0) goto DEFINE_NAME;
3828 ptr++; /* Correct offset for error */
3829 *errorcodeptr = ERR24;
3830 goto FAILED;
3831 }
3832 break;
3833
3834
3835 /* ------------------------------------------------------------ */
3836 case '>': /* One-time brackets */
3837 bravalue = OP_ONCE;
3838 ptr++;
3839 break;
3840
3841
3842 /* ------------------------------------------------------------ */
3843 case 'C': /* Callout - may be followed by digits; */
3844 previous_callout = code; /* Save for later completion */
3845 after_manual_callout = 1; /* Skip one item before completing */
3846 *code++ = OP_CALLOUT;
3847 {
3848 int n = 0;
3849 while ((digitab[*(++ptr)] & ctype_digit) != 0)
3850 n = n * 10 + *ptr - '0';
3851 if (*ptr != ')')
3852 {
3853 *errorcodeptr = ERR39;
3854 goto FAILED;
3855 }
3856 if (n > 255)
3857 {
3858 *errorcodeptr = ERR38;
3859 goto FAILED;
3860 }
3861 *code++ = n;
3862 PUT(code, 0, ptr - cd->start_pattern + 1); /* Pattern offset */
3863 PUT(code, LINK_SIZE, 0); /* Default length */
3864 code += 2 * LINK_SIZE;
3865 }
3866 previous = NULL;
3867 continue;
3868
3869
3870 /* ------------------------------------------------------------ */
3871 case 'P': /* Python-style named subpattern handling */
3872 if (*(++ptr) == '=' || *ptr == '>') /* Reference or recursion */
3873 {
3874 is_recurse = *ptr == '>';
3875 terminator = ')';
3876 goto NAMED_REF_OR_RECURSE;
3877 }
3878 else if (*ptr != '<') /* Test for Python-style definition */
3879 {
3880 *errorcodeptr = ERR41;
3881 goto FAILED;
3882 }
3883 /* Fall through to handle (?P< as (?< is handled */
3884
3885
3886 /* ------------------------------------------------------------ */
3887 DEFINE_NAME: /* Come here from (?< handling */
3888 case '\'':
3889 {
3890 terminator = (*ptr == '<')? '>' : '\'';
3891 name = ++ptr;
3892
3893 while ((cd->ctypes[*ptr] & ctype_word) != 0) ptr++;
3894 namelen = ptr - name;
3895
3896 /* In the pre-compile phase, just do a syntax check. */
3897
3898 if (lengthptr != NULL)
3899 {
3900 if (*ptr != terminator)
3901 {
3902 *errorcodeptr = ERR42;
3903 goto FAILED;
3904 }
3905 if (cd->names_found >= MAX_NAME_COUNT)
3906 {
3907 *errorcodeptr = ERR49;
3908 goto FAILED;
3909 }
3910 if (namelen + 3 > cd->name_entry_size)
3911 {
3912 cd->name_entry_size = namelen + 3;
3913 if (namelen > MAX_NAME_SIZE)
3914 {
3915 *errorcodeptr = ERR48;
3916 goto FAILED;
3917 }
3918 }
3919 }
3920
3921 /* In the real compile, create the entry in the table */
3922
3923 else
3924 {
3925 slot = cd->name_table;
3926 for (i = 0; i < cd->names_found; i++)
3927 {
3928 int crc = memcmp(name, slot+2, namelen);
3929 if (crc == 0)
3930 {
3931 if (slot[2+namelen] == 0)
3932 {
3933 if ((options & PCRE_DUPNAMES) == 0)
3934 {
3935 *errorcodeptr = ERR43;
3936 goto FAILED;
3937 }
3938 }
3939 else crc = -1; /* Current name is substring */
3940 }
3941 if (crc < 0)
3942 {
3943 memmove(slot + cd->name_entry_size, slot,
3944 (cd->names_found - i) * cd->name_entry_size);
3945 break;
3946 }
3947 slot += cd->name_entry_size;
3948 }
3949
3950 PUT2(slot, 0, cd->bracount + 1);
3951 memcpy(slot + 2, name, namelen);
3952 slot[2+namelen] = 0;
3953 }
3954 }
3955
3956 /* In both cases, count the number of names we've encountered. */
3957
3958 ptr++; /* Move past > or ' */
3959 cd->names_found++;
3960 goto NUMBERED_GROUP;
3961
3962
3963 /* ------------------------------------------------------------ */
3964 case '&': /* Perl recursion/subroutine syntax */
3965 terminator = ')';
3966 is_recurse = TRUE;
3967 /* Fall through */
3968
3969 /* We come here from the Python syntax above that handles both
3970 references (?P=name) and recursion (?P>name), as well as falling
3971 through from the Perl recursion syntax (?&name). */
3972
3973 NAMED_REF_OR_RECURSE:
3974 name = ++ptr;
3975 while ((cd->ctypes[*ptr] & ctype_word) != 0) ptr++;
3976 namelen = ptr - name;
3977
3978 /* In the pre-compile phase, do a syntax check and set a dummy
3979 reference number. */
3980
3981 if (lengthptr != NULL)
3982 {
3983 if (*ptr != terminator)
3984 {
3985 *errorcodeptr = ERR42;
3986 goto FAILED;
3987 }
3988 if (namelen > MAX_NAME_SIZE)
3989 {
3990 *errorcodeptr = ERR48;
3991 goto FAILED;
3992 }
3993 recno = 0;
3994 }
3995
3996 /* In the real compile, seek the name in the table */
3997
3998 else
3999 {
4000 slot = cd->name_table;
4001 for (i = 0; i < cd->names_found; i++)
4002 {
4003 if (strncmp((char *)name, (char *)slot+2, namelen) == 0) break;
4004 slot += cd->name_entry_size;
4005 }
4006
4007 if (i < cd->names_found) /* Back reference */
4008 {
4009 recno = GET2(slot, 0);
4010 }
4011 else if ((recno = /* Forward back reference */
4012 find_parens(ptr, cd->bracount, name, namelen,
4013 (options & PCRE_EXTENDED) != 0)) <= 0)
4014 {
4015 *errorcodeptr = ERR15;
4016 goto FAILED;
4017 }
4018 }
4019
4020 /* In both phases, we can now go to the code than handles numerical
4021 recursion or backreferences. */
4022
4023 if (is_recurse) goto HANDLE_RECURSION;
4024 else goto HANDLE_REFERENCE;
4025
4026
4027 /* ------------------------------------------------------------ */
4028 case 'R': /* Recursion */
4029 ptr++; /* Same as (?0) */
4030 /* Fall through */
4031
4032
4033 /* ------------------------------------------------------------ */
4034 case '-': case '+':
4035 case '0': case '1': case '2': case '3': case '4': /* Recursion or */
4036 case '5': case '6': case '7': case '8': case '9': /* subroutine */
4037 {
4038 const uschar *called;
4039
4040 if ((refsign = *ptr) == '+') ptr++;
4041 else if (refsign == '-')
4042 {
4043 if ((digitab[ptr[1]] & ctype_digit) == 0)
4044 goto OTHER_CHAR_AFTER_QUERY;
4045 ptr++;
4046 }
4047
4048 recno = 0;
4049 while((digitab[*ptr] & ctype_digit) != 0)
4050 recno = recno * 10 + *ptr++ - '0';
4051
4052 if (*ptr != ')')
4053 {
4054 *errorcodeptr = ERR29;
4055 goto FAILED;
4056 }
4057
4058 if (refsign == '-')
4059 {
4060 if (recno == 0)
4061 {
4062 *errorcodeptr = ERR58;
4063 goto FAILED;
4064 }
4065 recno = cd->bracount - recno + 1;
4066 if (recno <= 0)
4067 {
4068 *errorcodeptr = ERR15;
4069 goto FAILED;
4070 }
4071 }
4072 else if (refsign == '+')
4073 {
4074 if (recno == 0)
4075 {
4076 *errorcodeptr = ERR58;
4077 goto FAILED;
4078 }
4079 recno += cd->bracount;
4080 }
4081
4082 /* Come here from code above that handles a named recursion */
4083
4084 HANDLE_RECURSION:
4085
4086 previous = code;
4087 called = cd->start_code;
4088
4089 /* When we are actually compiling, find the bracket that is being
4090 referenced. Temporarily end the regex in case it doesn't exist before
4091 this point. If we end up with a forward reference, first check that
4092 the bracket does occur later so we can give the error (and position)
4093 now. Then remember this forward reference in the workspace so it can
4094 be filled in at the end. */
4095
4096 if (lengthptr == NULL)
4097 {
4098 *code = OP_END;
4099 if (recno != 0) called = find_bracket(cd->start_code, utf8, recno);
4100
4101 /* Forward reference */
4102
4103 if (called == NULL)
4104 {
4105 if (find_parens(ptr, cd->bracount, NULL, recno,
4106 (options & PCRE_EXTENDED) != 0) < 0)
4107 {
4108 *errorcodeptr = ERR15;
4109 goto FAILED;
4110 }
4111 called = cd->start_code + recno;
4112 PUTINC(cd->hwm, 0, code + 2 + LINK_SIZE - cd->start_code);
4113 }
4114
4115 /* If not a forward reference, and the subpattern is still open,
4116 this is a recursive call. We check to see if this is a left
4117 recursion that could loop for ever, and diagnose that case. */
4118
4119 else if (GET(called, 1) == 0 &&
4120 could_be_empty(called, code, bcptr, utf8))
4121 {
4122 *errorcodeptr = ERR40;
4123 goto FAILED;
4124 }
4125 }
4126
4127 /* Insert the recursion/subroutine item, automatically wrapped inside
4128 "once" brackets. Set up a "previous group" length so that a
4129 subsequent quantifier will work. */
4130
4131 *code = OP_ONCE;
4132 PUT(code, 1, 2 + 2*LINK_SIZE);
4133 code += 1 + LINK_SIZE;
4134
4135 *code = OP_RECURSE;
4136 PUT(code, 1, called - cd->start_code);
4137 code += 1 + LINK_SIZE;
4138
4139 *code = OP_KET;
4140 PUT(code, 1, 2 + 2*LINK_SIZE);
4141 code += 1 + LINK_SIZE;
4142
4143 length_prevgroup = 3 + 3*LINK_SIZE;
4144 }
4145
4146 /* Can't determine a first byte now */
4147
4148 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
4149 continue;
4150
4151
4152 /* ------------------------------------------------------------ */
4153 default: /* Other characters: check option setting */
4154 OTHER_CHAR_AFTER_QUERY:
4155 set = unset = 0;
4156 optset = &set;
4157
4158 while (*ptr != ')' && *ptr != ':')
4159 {
4160 switch (*ptr++)
4161 {
4162 case '-': optset = &unset; break;
4163
4164 case 'J': /* Record that it changed in the external options */
4165 *optset |= PCRE_DUPNAMES;
4166 cd->external_options |= PCRE_JCHANGED;
4167 break;
4168
4169 case 'i': *optset |= PCRE_CASELESS; break;
4170 case 'm': *optset |= PCRE_MULTILINE; break;
4171 case 's': *optset |= PCRE_DOTALL; break;
4172 case 'x': *optset |= PCRE_EXTENDED; break;
4173 case 'U': *optset |= PCRE_UNGREEDY; break;
4174 case 'X': *optset |= PCRE_EXTRA; break;
4175
4176 default: *errorcodeptr = ERR12;
4177 ptr--; /* Correct the offset */
4178 goto FAILED;
4179 }
4180 }
4181
4182 /* Set up the changed option bits, but don't change anything yet. */
4183
4184 newoptions = (options | set) & (~unset);
4185
4186 /* If the options ended with ')' this is not the start of a nested
4187 group with option changes, so the options change at this level. If this
4188 item is right at the start of the pattern, the options can be
4189 abstracted and made external in the pre-compile phase, and ignored in
4190 the compile phase. This can be helpful when matching -- for instance in
4191 caseless checking of required bytes.
4192
4193 If the code pointer is not (cd->start_code + 1 + LINK_SIZE), we are
4194 definitely *not* at the start of the pattern because something has been
4195 compiled. In the pre-compile phase, however, the code pointer can have
4196 that value after the start, because it gets reset as code is discarded
4197 during the pre-compile. However, this can happen only at top level - if
4198 we are within parentheses, the starting BRA will still be present. At
4199 any parenthesis level, the length value can be used to test if anything
4200 has been compiled at that level. Thus, a test for both these conditions
4201 is necessary to ensure we correctly detect the start of the pattern in
4202 both phases.
4203
4204 If we are not at the pattern start, compile code to change the ims
4205 options if this setting actually changes any of them. We also pass the
4206 new setting back so that it can be put at the start of any following
4207 branches, and when this group ends (if we are in a group), a resetting
4208 item can be compiled. */
4209
4210 if (*ptr == ')')
4211 {
4212 if (code == cd->start_code + 1 + LINK_SIZE &&
4213 (lengthptr == NULL || *lengthptr == 2 + 2*LINK_SIZE))
4214 {
4215 cd->external_options = newoptions;
4216 options = newoptions;
4217 }
4218 else
4219 {
4220 if ((options & PCRE_IMS) != (newoptions & PCRE_IMS))
4221 {
4222 *code++ = OP_OPT;
4223 *code++ = newoptions & PCRE_IMS;
4224 }
4225
4226 /* Change options at this level, and pass them back for use
4227 in subsequent branches. Reset the greedy defaults and the case
4228 value for firstbyte and reqbyte. */
4229
4230 *optionsptr = options = newoptions;
4231 greedy_default = ((newoptions & PCRE_UNGREEDY) != 0);
4232 greedy_non_default = greedy_default ^ 1;
4233 req_caseopt = ((options & PCRE_CASELESS) != 0)? REQ_CASELESS : 0;
4234 }
4235
4236 previous = NULL; /* This item can't be repeated */
4237 continue; /* It is complete */
4238 }
4239
4240 /* If the options ended with ':' we are heading into a nested group
4241 with possible change of options. Such groups are non-capturing and are
4242 not assertions of any kind. All we need to do is skip over the ':';
4243 the newoptions value is handled below. */
4244
4245 bravalue = OP_BRA;
4246 ptr++;
4247 } /* End of switch for character following (? */
4248 } /* End of (? handling */
4249
4250 /* Opening parenthesis not followed by '?'. If PCRE_NO_AUTO_CAPTURE is set,
4251 all unadorned brackets become non-capturing and behave like (?:...)
4252 brackets. */
4253
4254 else if ((options & PCRE_NO_AUTO_CAPTURE) != 0)
4255 {
4256 bravalue = OP_BRA;
4257 }
4258
4259 /* Else we have a capturing group. */
4260
4261 else
4262 {
4263 NUMBERED_GROUP:
4264 cd->bracount += 1;
4265 PUT2(code, 1+LINK_SIZE, cd->bracount);
4266 skipbytes = 2;
4267 }
4268
4269 /* Process nested bracketed regex. Assertions may not be repeated, but
4270 other kinds can be. All their opcodes are >= OP_ONCE. We copy code into a
4271 non-register variable in order to be able to pass its address because some
4272 compilers complain otherwise. Pass in a new setting for the ims options if
4273 they have changed. */
4274
4275 previous = (bravalue >= OP_ONCE)? code : NULL;
4276 *code = bravalue;
4277 tempcode = code;
4278 tempreqvary = cd->req_varyopt; /* Save value before bracket */
4279 length_prevgroup = 0; /* Initialize for pre-compile phase */
4280
4281 if (!compile_regex(
4282 newoptions, /* The complete new option state */
4283 options & PCRE_IMS, /* The previous ims option state */
4284 &tempcode, /* Where to put code (updated) */
4285 &ptr, /* Input pointer (updated) */
4286 errorcodeptr, /* Where to put an error message */
4287 (bravalue == OP_ASSERTBACK ||
4288 bravalue == OP_ASSERTBACK_NOT), /* TRUE if back assert */
4289 skipbytes, /* Skip over bracket number */
4290 &subfirstbyte, /* For possible first char */
4291 &subreqbyte, /* For possible last char */
4292 bcptr, /* Current branch chain */
4293 cd, /* Tables block */
4294 (lengthptr == NULL)? NULL : /* Actual compile phase */
4295 &length_prevgroup /* Pre-compile phase */
4296 ))
4297 goto FAILED;
4298
4299 /* At the end of compiling, code is still pointing to the start of the
4300 group, while tempcode has been updated to point past the end of the group
4301 and any option resetting that may follow it. The pattern pointer (ptr)
4302 is on the bracket. */
4303
4304 /* If this is a conditional bracket, check that there are no more than
4305 two branches in the group, or just one if it's a DEFINE group. */
4306
4307 if (bravalue == OP_COND)
4308 {
4309 uschar *tc = code;
4310 int condcount = 0;
4311
4312 do {
4313 condcount++;
4314 tc += GET(tc,1);
4315 }
4316 while (*tc != OP_KET);
4317
4318 /* A DEFINE group is never obeyed inline (the "condition" is always
4319 false). It must have only one branch. */
4320
4321 if (code[LINK_SIZE+1] == OP_DEF)
4322 {
4323 if (condcount > 1)
4324 {
4325 *errorcodeptr = ERR54;
4326 goto FAILED;
4327 }
4328 bravalue = OP_DEF; /* Just a flag to suppress char handling below */
4329 }
4330
4331 /* A "normal" conditional group. If there is just one branch, we must not
4332 make use of its firstbyte or reqbyte, because this is equivalent to an
4333 empty second branch. */
4334
4335 else
4336 {
4337 if (condcount > 2)
4338 {
4339 *errorcodeptr = ERR27;
4340 goto FAILED;
4341 }
4342 if (condcount == 1) subfirstbyte = subreqbyte = REQ_NONE;
4343 }
4344 }
4345
4346 /* Error if hit end of pattern */
4347
4348 if (*ptr != ')')
4349 {
4350 *errorcodeptr = ERR14;
4351 goto FAILED;
4352 }
4353
4354 /* In the pre-compile phase, update the length by the length of the nested
4355 group, less the brackets at either end. Then reduce the compiled code to
4356 just the brackets so that it doesn't use much memory if it is duplicated by
4357 a quantifier. */
4358
4359 if (lengthptr != NULL)
4360 {
4361 *lengthptr += length_prevgroup - 2 - 2*LINK_SIZE;
4362 code++;
4363 PUTINC(code, 0, 1 + LINK_SIZE);
4364 *code++ = OP_KET;
4365 PUTINC(code, 0, 1 + LINK_SIZE);
4366 }
4367
4368 /* Otherwise update the main code pointer to the end of the group. */
4369
4370 else code = tempcode;
4371
4372 /* For a DEFINE group, required and first character settings are not
4373 relevant. */
4374
4375 if (bravalue == OP_DEF) break;
4376
4377 /* Handle updating of the required and first characters for other types of
4378 group. Update for normal brackets of all kinds, and conditions with two
4379 branches (see code above). If the bracket is followed by a quantifier with
4380 zero repeat, we have to back off. Hence the definition of zeroreqbyte and
4381 zerofirstbyte outside the main loop so that they can be accessed for the
4382 back off. */
4383
4384 zeroreqbyte = reqbyte;
4385 zerofirstbyte = firstbyte;
4386 groupsetfirstbyte = FALSE;
4387
4388 if (bravalue >= OP_ONCE)
4389 {
4390 /* If we have not yet set a firstbyte in this branch, take it from the
4391 subpattern, remembering that it was set here so that a repeat of more
4392 than one can replicate it as reqbyte if necessary. If the subpattern has
4393 no firstbyte, set "none" for the whole branch. In both cases, a zero
4394 repeat forces firstbyte to "none". */
4395
4396 if (firstbyte == REQ_UNSET)
4397 {
4398 if (subfirstbyte >= 0)
4399 {
4400 firstbyte = subfirstbyte;
4401 groupsetfirstbyte = TRUE;
4402 }
4403 else firstbyte = REQ_NONE;
4404 zerofirstbyte = REQ_NONE;
4405 }
4406
4407 /* If firstbyte was previously set, convert the subpattern's firstbyte
4408 into reqbyte if there wasn't one, using the vary flag that was in
4409 existence beforehand. */
4410
4411 else if (subfirstbyte >= 0 && subreqbyte < 0)
4412 subreqbyte = subfirstbyte | tempreqvary;
4413
4414 /* If the subpattern set a required byte (or set a first byte that isn't
4415 really the first byte - see above), set it. */
4416
4417 if (subreqbyte >= 0) reqbyte = subreqbyte;
4418 }
4419
4420 /* For a forward assertion, we take the reqbyte, if set. This can be
4421 helpful if the pattern that follows the assertion doesn't set a different
4422 char. For example, it's useful for /(?=abcde).+/. We can't set firstbyte
4423 for an assertion, however because it leads to incorrect effect for patterns
4424 such as /(?=a)a.+/ when the "real" "a" would then become a reqbyte instead
4425 of a firstbyte. This is overcome by a scan at the end if there's no
4426 firstbyte, looking for an asserted first char. */
4427
4428 else if (bravalue == OP_ASSERT && subreqbyte >= 0) reqbyte = subreqbyte;
4429 break; /* End of processing '(' */
4430
4431
4432 /* ===================================================================*/
4433 /* Handle metasequences introduced by \. For ones like \d, the ESC_ values
4434 are arranged to be the negation of the corresponding OP_values. For the
4435 back references, the values are ESC_REF plus the reference number. Only
4436 back references and those types that consume a character may be repeated.
4437 We can test for values between ESC_b and ESC_Z for the latter; this may
4438 have to change if any new ones are ever created. */
4439
4440 case '\\':
4441 tempptr = ptr;
4442 c = check_escape(&ptr, errorcodeptr, cd->bracount, options, FALSE);
4443 if (*errorcodeptr != 0) goto FAILED;
4444
4445 if (c < 0)
4446 {
4447 if (-c == ESC_Q) /* Handle start of quoted string */
4448 {
4449 if (ptr[1] == '\\' && ptr[2] == 'E') ptr += 2; /* avoid empty string */
4450 else inescq = TRUE;
4451 continue;
4452 }
4453
4454 if (-c == ESC_E) continue; /* Perl ignores an orphan \E */
4455
4456 /* For metasequences that actually match a character, we disable the
4457 setting of a first character if it hasn't already been set. */
4458
4459 if (firstbyte == REQ_UNSET && -c > ESC_b && -c < ESC_Z)
4460 firstbyte = REQ_NONE;
4461
4462 /* Set values to reset to if this is followed by a zero repeat. */
4463
4464 zerofirstbyte = firstbyte;
4465 zeroreqbyte = reqbyte;
4466
4467 /* \k<name> or \k'name' is a back reference by name (Perl syntax) */
4468
4469 if (-c == ESC_k && (ptr[1] == '<' || ptr[1] == '\''))
4470 {
4471 is_recurse = FALSE;
4472 terminator = (*(++ptr) == '<')? '>' : '\'';
4473 goto NAMED_REF_OR_RECURSE;
4474 }
4475
4476 /* Back references are handled specially; must disable firstbyte if
4477 not set to cope with cases like (?=(\w+))\1: which would otherwise set
4478 ':' later. */
4479
4480 if (-c >= ESC_REF)
4481 {
4482 recno = -c - ESC_REF;
4483
4484 HANDLE_REFERENCE: /* Come here from named backref handling */
4485 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
4486 previous = code;
4487 *code++ = OP_REF;
4488 PUT2INC(code, 0, recno);
4489 cd->backref_map |= (recno < 32)? (1 << recno) : 1;
4490 if (recno > cd->top_backref) cd->top_backref = recno;
4491 }
4492
4493 /* So are Unicode property matches, if supported. */
4494
4495 #ifdef SUPPORT_UCP
4496 else if (-c == ESC_P || -c == ESC_p)
4497 {
4498 BOOL negated;
4499 int pdata;
4500 int ptype = get_ucp(&ptr, &negated, &pdata, errorcodeptr);
4501 if (ptype < 0) goto FAILED;
4502 previous = code;
4503 *code++ = ((-c == ESC_p) != negated)? OP_PROP : OP_NOTPROP;
4504 *code++ = ptype;
4505 *code++ = pdata;
4506 }
4507 #else
4508
4509 /* If Unicode properties are not supported, \X, \P, and \p are not
4510 allowed. */
4511
4512 else if (-c == ESC_X || -c == ESC_P || -c == ESC_p)
4513 {
4514 *errorcodeptr = ERR45;
4515 goto FAILED;
4516 }
4517 #endif
4518
4519 /* For the rest (including \X when Unicode properties are supported), we
4520 can obtain the OP value by negating the escape value. */
4521
4522 else
4523 {
4524 previous = (-c > ESC_b && -c < ESC_Z)? code : NULL;
4525 *code++ = -c;
4526 }
4527 continue;
4528 }
4529
4530 /* We have a data character whose value is in c. In UTF-8 mode it may have
4531 a value > 127. We set its representation in the length/buffer, and then
4532 handle it as a data character. */
4533
4534 #ifdef SUPPORT_UTF8
4535 if (utf8 && c > 127)
4536 mclength = _pcre_ord2utf8(c, mcbuffer);
4537 else
4538 #endif
4539
4540 {
4541 mcbuffer[0] = c;
4542 mclength = 1;
4543 }
4544 goto ONE_CHAR;
4545
4546
4547 /* ===================================================================*/
4548 /* Handle a literal character. It is guaranteed not to be whitespace or #
4549 when the extended flag is set. If we are in UTF-8 mode, it may be a
4550 multi-byte literal character. */
4551
4552 default:
4553 NORMAL_CHAR:
4554 mclength = 1;
4555 mcbuffer[0] = c;
4556
4557 #ifdef SUPPORT_UTF8
4558 if (utf8 && c >= 0xc0)
4559 {
4560 while ((ptr[1] & 0xc0) == 0x80)
4561 mcbuffer[mclength++] = *(++ptr);
4562 }
4563 #endif
4564
4565 /* At this point we have the character's bytes in mcbuffer, and the length
4566 in mclength. When not in UTF-8 mode, the length is always 1. */
4567
4568 ONE_CHAR:
4569 previous = code;
4570 *code++ = ((options & PCRE_CASELESS) != 0)? OP_CHARNC : OP_CHAR;
4571 for (c = 0; c < mclength; c++) *code++ = mcbuffer[c];
4572
4573 /* Set the first and required bytes appropriately. If no previous first
4574 byte, set it from this character, but revert to none on a zero repeat.
4575 Otherwise, leave the firstbyte value alone, and don't change it on a zero
4576 repeat. */
4577
4578 if (firstbyte == REQ_UNSET)
4579 {
4580 zerofirstbyte = REQ_NONE;
4581 zeroreqbyte = reqbyte;
4582
4583 /* If the character is more than one byte long, we can set firstbyte
4584 only if it is not to be matched caselessly. */
4585
4586 if (mclength == 1 || req_caseopt == 0)
4587 {
4588 firstbyte = mcbuffer[0] | req_caseopt;
4589 if (mclength != 1) reqbyte = code[-1] | cd->req_varyopt;
4590 }
4591 else firstbyte = reqbyte = REQ_NONE;
4592 }
4593
4594 /* firstbyte was previously set; we can set reqbyte only the length is
4595 1 or the matching is caseful. */
4596
4597 else
4598 {
4599 zerofirstbyte = firstbyte;
4600 zeroreqbyte = reqbyte;
4601 if (mclength == 1 || req_caseopt == 0)
4602 reqbyte = code[-1] | req_caseopt | cd->req_varyopt;
4603 }
4604
4605 break; /* End of literal character handling */
4606 }
4607 } /* end of big loop */
4608
4609
4610 /* Control never reaches here by falling through, only by a goto for all the
4611 error states. Pass back the position in the pattern so that it can be displayed
4612 to the user for diagnosing the error. */
4613
4614 FAILED:
4615 *ptrptr = ptr;
4616 return FALSE;
4617 }
4618
4619
4620
4621
4622 /*************************************************
4623 * Compile sequence of alternatives *
4624 *************************************************/
4625
4626 /* On entry, ptr is pointing past the bracket character, but on return it
4627 points to the closing bracket, or vertical bar, or end of string. The code
4628 variable is pointing at the byte into which the BRA operator has been stored.
4629 If the ims options are changed at the start (for a (?ims: group) or during any
4630 branch, we need to insert an OP_OPT item at the start of every following branch
4631 to ensure they get set correctly at run time, and also pass the new options
4632 into every subsequent branch compile.
4633
4634 This function is used during the pre-compile phase when we are trying to find
4635 out the amount of memory needed, as well as during the real compile phase. The
4636 value of lengthptr distinguishes the two phases.
4637
4638 Argument:
4639 options option bits, including any changes for this subpattern
4640 oldims previous settings of ims option bits
4641 codeptr -> the address of the current code pointer
4642 ptrptr -> the address of the current pattern pointer
4643 errorcodeptr -> pointer to error code variable
4644 lookbehind TRUE if this is a lookbehind assertion
4645 skipbytes skip this many bytes at start (for brackets and OP_COND)
4646 firstbyteptr place to put the first required character, or a negative number
4647 reqbyteptr place to put the last required character, or a negative number
4648 bcptr pointer to the chain of currently open branches
4649 cd points to the data block with tables pointers etc.
4650 lengthptr NULL during the real compile phase
4651 points to length accumulator during pre-compile phase
4652
4653 Returns: TRUE on success
4654 */
4655
4656 static BOOL
4657 compile_regex(int options, int oldims, uschar **codeptr, const uschar **ptrptr,
4658 int *errorcodeptr, BOOL lookbehind, int skipbytes, int *firstbyteptr,
4659 int *reqbyteptr, branch_chain *bcptr, compile_data *cd, int *lengthptr)
4660 {
4661 const uschar *ptr = *ptrptr;
4662 uschar *code = *codeptr;
4663 uschar *last_branch = code;
4664 uschar *start_bracket = code;
4665 uschar *reverse_count = NULL;
4666 int firstbyte, reqbyte;
4667 int branchfirstbyte, branchreqbyte;
4668 int length;
4669 branch_chain bc;
4670
4671 bc.outer = bcptr;
4672 bc.current = code;
4673
4674 firstbyte = reqbyte = REQ_UNSET;
4675
4676 /* Accumulate the length for use in the pre-compile phase. Start with the
4677 length of the BRA and KET and any extra bytes that are required at the
4678 beginning. We accumulate in a local variable to save frequent testing of
4679 lenthptr for NULL. We cannot do this by looking at the value of code at the
4680 start and end of each alternative, because compiled items are discarded during
4681 the pre-compile phase so that the work space is not exceeded. */
4682
4683 length = 2 + 2*LINK_SIZE + skipbytes;
4684
4685 /* WARNING: If the above line is changed for any reason, you must also change
4686 the code that abstracts option settings at the start of the pattern and makes
4687 them global. It tests the value of length for (2 + 2*LINK_SIZE) in the
4688 pre-compile phase to find out whether anything has yet been compiled or not. */
4689
4690 /* Offset is set zero to mark that this bracket is still open */
4691
4692 PUT(code, 1, 0);
4693 code += 1 + LINK_SIZE + skipbytes;
4694
4695 /* Loop for each alternative branch */
4696
4697 for (;;)
4698 {
4699 /* Handle a change of ims options at the start of the branch */
4700
4701 if ((options & PCRE_IMS) != oldims)
4702 {
4703 *code++ = OP_OPT;
4704 *code++ = options & PCRE_IMS;
4705 length += 2;
4706 }
4707
4708 /* Set up dummy OP_REVERSE if lookbehind assertion */
4709
4710 if (lookbehind)
4711 {
4712 *code++ = OP_REVERSE;
4713 reverse_count = code;
4714 PUTINC(code, 0, 0);
4715 length += 1 + LINK_SIZE;
4716 }
4717
4718 /* Now compile the branch; in the pre-compile phase its length gets added
4719 into the length. */
4720
4721 if (!compile_branch(&options, &code, &ptr, errorcodeptr, &branchfirstbyte,
4722 &branchreqbyte, &bc, cd, (lengthptr == NULL)? NULL : &length))
4723 {
4724 *ptrptr = ptr;
4725 return FALSE;
4726 }
4727
4728 /* In the real compile phase, there is some post-processing to be done. */
4729
4730 if (lengthptr == NULL)
4731 {
4732 /* If this is the first branch, the firstbyte and reqbyte values for the
4733 branch become the values for the regex. */
4734
4735 if (*last_branch != OP_ALT)
4736 {
4737 firstbyte = branchfirstbyte;
4738 reqbyte = branchreqbyte;
4739 }
4740
4741 /* If this is not the first branch, the first char and reqbyte have to
4742 match the values from all the previous branches, except that if the
4743 previous value for reqbyte didn't have REQ_VARY set, it can still match,
4744 and we set REQ_VARY for the regex. */
4745
4746 else
4747 {
4748 /* If we previously had a firstbyte, but it doesn't match the new branch,
4749 we have to abandon the firstbyte for the regex, but if there was
4750 previously no reqbyte, it takes on the value of the old firstbyte. */
4751
4752 if (firstbyte >= 0 && firstbyte != branchfirstbyte)
4753 {
4754 if (reqbyte < 0) reqbyte = firstbyte;
4755 firstbyte = REQ_NONE;
4756 }
4757
4758 /* If we (now or from before) have no firstbyte, a firstbyte from the
4759 branch becomes a reqbyte if there isn't a branch reqbyte. */
4760
4761 if (firstbyte < 0 && branchfirstbyte >= 0 && branchreqbyte < 0)
4762 branchreqbyte = branchfirstbyte;
4763
4764 /* Now ensure that the reqbytes match */
4765
4766 if ((reqbyte & ~REQ_VARY) != (branchreqbyte & ~REQ_VARY))
4767 reqbyte = REQ_NONE;
4768 else reqbyte |= branchreqbyte; /* To "or" REQ_VARY */
4769 }
4770
4771 /* If lookbehind, check that this branch matches a fixed-length string, and
4772 put the length into the OP_REVERSE item. Temporarily mark the end of the
4773 branch with OP_END. */
4774
4775 if (lookbehind)
4776 {
4777 int fixed_length;
4778 *code = OP_END;
4779 fixed_length = find_fixedlength(last_branch, options);
4780 DPRINTF(("fixed length = %d\n", fixed_length));
4781 if (fixed_length < 0)
4782 {
4783 *errorcodeptr = (fixed_length == -2)? ERR36 : ERR25;
4784 *ptrptr = ptr;
4785 return FALSE;
4786 }
4787 PUT(reverse_count, 0, fixed_length);
4788 }
4789 }
4790
4791 /* Reached end of expression, either ')' or end of pattern. Go back through
4792 the alternative branches and reverse the chain of offsets, with the field in
4793 the BRA item now becoming an offset to the first alternative. If there are
4794 no alternatives, it points to the end of the group. The length in the
4795 terminating ket is always the length of the whole bracketed item. If any of
4796 the ims options were changed inside the group, compile a resetting op-code
4797 following, except at the very end of the pattern. Return leaving the pointer
4798 at the terminating char. */
4799
4800 if (*ptr != '|')
4801 {
4802 int branch_length = code - last_branch;
4803 do
4804 {
4805 int prev_length = GET(last_branch, 1);
4806 PUT(last_branch, 1, branch_length);
4807 branch_length = prev_length;
4808 last_branch -= branch_length;
4809 }
4810 while (branch_length > 0);
4811
4812 /* Fill in the ket */
4813
4814 *code = OP_KET;
4815 PUT(code, 1, code - start_bracket);
4816 code += 1 + LINK_SIZE;
4817
4818 /* Resetting option if needed */
4819
4820 if ((options & PCRE_IMS) != oldims && *ptr == ')')
4821 {
4822 *code++ = OP_OPT;
4823 *code++ = oldims;
4824 length += 2;
4825 }
4826
4827 /* Set values to pass back */
4828
4829 *codeptr = code;
4830 *ptrptr = ptr;
4831 *firstbyteptr = firstbyte;
4832 *reqbyteptr = reqbyte;
4833 if (lengthptr != NULL) *lengthptr += length;
4834 return TRUE;
4835 }
4836
4837 /* Another branch follows; insert an "or" node. Its length field points back
4838 to the previous branch while the bracket remains open. At the end the chain
4839 is reversed. It's done like this so that the start of the bracket has a
4840 zero offset until it is closed, making it possible to detect recursion. */
4841
4842 *code = OP_ALT;
4843 PUT(code, 1, code - last_branch);
4844 bc.current = last_branch = code;
4845 code += 1 + LINK_SIZE;
4846 ptr++;
4847 length += 1 + LINK_SIZE;
4848 }
4849 /* Control never reaches here */
4850 }
4851
4852
4853
4854
4855 /*************************************************
4856 * Check for anchored expression *
4857 *************************************************/
4858
4859 /* Try to find out if this is an anchored regular expression. Consider each
4860 alternative branch. If they all start with OP_SOD or OP_CIRC, or with a bracket
4861 all of whose alternatives start with OP_SOD or OP_CIRC (recurse ad lib), then
4862 it's anchored. However, if this is a multiline pattern, then only OP_SOD
4863 counts, since OP_CIRC can match in the middle.
4864
4865 We can also consider a regex to be anchored if OP_SOM starts all its branches.
4866 This is the code for \G, which means "match at start of match position, taking
4867 into account the match offset".
4868
4869 A branch is also implicitly anchored if it starts with .* and DOTALL is set,
4870 because that will try the rest of the pattern at all possible matching points,
4871 so there is no point trying again.... er ....
4872
4873 .... except when the .* appears inside capturing parentheses, and there is a
4874 subsequent back reference to those parentheses. We haven't enough information
4875 to catch that case precisely.
4876
4877 At first, the best we could do was to detect when .* was in capturing brackets
4878 and the highest back reference was greater than or equal to that level.
4879 However, by keeping a bitmap of the first 31 back references, we can catch some
4880 of the more common cases more precisely.
4881
4882 Arguments:
4883 code points to start of expression (the bracket)
4884 options points to the options setting
4885 bracket_map a bitmap of which brackets we are inside while testing; this
4886 handles up to substring 31; after that we just have to take
4887 the less precise approach
4888 backref_map the back reference bitmap
4889
4890 Returns: TRUE or FALSE
4891 */
4892
4893 static BOOL
4894 is_anchored(register const uschar *code, int *options, unsigned int bracket_map,
4895 unsigned int backref_map)
4896 {
4897 do {
4898 const uschar *scode = first_significant_code(code + _pcre_OP_lengths[*code],
4899 options, PCRE_MULTILINE, FALSE);
4900 register int op = *scode;
4901
4902 /* Non-capturing brackets */
4903
4904 if (op == OP_BRA)
4905 {
4906 if (!is_anchored(scode, options, bracket_map, backref_map)) return FALSE;
4907 }
4908
4909 /* Capturing brackets */
4910
4911 else if (op == OP_CBRA)
4912 {
4913 int n = GET2(scode, 1+LINK_SIZE);
4914 int new_map = bracket_map | ((n < 32)? (1 << n) : 1);
4915 if (!is_anchored(scode, options, new_map, backref_map)) return FALSE;
4916 }
4917
4918 /* Other brackets */
4919
4920 else if (op == OP_ASSERT || op == OP_ONCE || op == OP_COND)
4921 {
4922 if (!is_anchored(scode, options, bracket_map, backref_map)) return FALSE;
4923 }
4924
4925 /* .* is not anchored unless DOTALL is set and it isn't in brackets that
4926 are or may be referenced. */
4927
4928 else if ((op == OP_TYPESTAR || op == OP_TYPEMINSTAR ||
4929 op == OP_TYPEPOSSTAR) &&
4930 (*options & PCRE_DOTALL) != 0)
4931 {
4932 if (scode[1] != OP_ANY || (bracket_map & backref_map) != 0) return FALSE;
4933 }
4934
4935 /* Check for explicit anchoring */
4936
4937 else if (op != OP_SOD && op != OP_SOM &&
4938 ((*options & PCRE_MULTILINE) != 0 || op != OP_CIRC))
4939 return FALSE;
4940 code += GET(code, 1);
4941 }
4942 while (*code == OP_ALT); /* Loop for each alternative */
4943 return TRUE;
4944 }
4945
4946
4947
4948 /*************************************************
4949 * Check for starting with ^ or .* *
4950 *************************************************/
4951
4952 /* This is called to find out if every branch starts with ^ or .* so that
4953 "first char" processing can be done to speed things up in multiline
4954 matching and for non-DOTALL patterns that start with .* (which must start at
4955 the beginning or after \n). As in the case of is_anchored() (see above), we
4956 have to take account of back references to capturing brackets that contain .*
4957 because in that case we can't make the assumption.
4958
4959 Arguments:
4960 code points to start of expression (the bracket)
4961 bracket_map a bitmap of which brackets we are inside while testing; this
4962 handles up to substring 31; after that we just have to take
4963 the less precise approach
4964 backref_map the back reference bitmap
4965
4966 Returns: TRUE or FALSE
4967 */
4968
4969 static BOOL
4970 is_startline(const uschar *code, unsigned int bracket_map,
4971 unsigned int backref_map)
4972 {
4973 do {
4974 const uschar *scode = first_significant_code(code + _pcre_OP_lengths[*code],
4975 NULL, 0, FALSE);
4976 register int op = *scode;
4977
4978 /* Non-capturing brackets */
4979
4980 if (op == OP_BRA)
4981 {
4982 if (!is_startline(scode, bracket_map, backref_map)) return FALSE;
4983 }
4984
4985 /* Capturing brackets */
4986
4987 else if (op == OP_CBRA)
4988 {
4989 int n = GET2(scode, 1+LINK_SIZE);
4990 int new_map = bracket_map | ((n < 32)? (1 << n) : 1);
4991 if (!is_startline(scode, new_map, backref_map)) return FALSE;
4992 }
4993
4994 /* Other brackets */
4995
4996 else if (op == OP_ASSERT || op == OP_ONCE || op == OP_COND)
4997 { if (!is_startline(scode, bracket_map, backref_map)) return FALSE; }
4998
4999 /* .* means "start at start or after \n" if it isn't in brackets that
5000 may be referenced. */
5001
5002 else if (op == OP_TYPESTAR || op == OP_TYPEMINSTAR || op == OP_TYPEPOSSTAR)
5003 {
5004 if (scode[1] != OP_ANY || (bracket_map & backref_map) != 0) return FALSE;
5005 }
5006
5007 /* Check for explicit circumflex */
5008
5009 else if (op != OP_CIRC) return FALSE;
5010
5011 /* Move on to the next alternative */
5012
5013 code += GET(code, 1);
5014 }
5015 while (*code == OP_ALT); /* Loop for each alternative */
5016 return TRUE;
5017 }
5018
5019
5020
5021 /*************************************************
5022 * Check for asserted fixed first char *
5023 *************************************************/
5024
5025 /* During compilation, the "first char" settings from forward assertions are
5026 discarded, because they can cause conflicts with actual literals that follow.
5027 However, if we end up without a first char setting for an unanchored pattern,
5028 it is worth scanning the regex to see if there is an initial asserted first
5029 char. If all branches start with the same asserted char, or with a bracket all
5030 of whose alternatives start with the same asserted char (recurse ad lib), then
5031 we return that char, otherwise -1.
5032
5033 Arguments:
5034 code points to start of expression (the bracket)
5035 options pointer to the options (used to check casing changes)
5036 inassert TRUE if in an assertion
5037
5038 Returns: -1 or the fixed first char
5039 */
5040
5041 static int
5042 find_firstassertedchar(const uschar *code, int *options, BOOL inassert)
5043 {
5044 register int c = -1;
5045 do {
5046 int d;
5047 const uschar *scode =
5048 first_significant_code(code + 1+LINK_SIZE, options, PCRE_CASELESS, TRUE);
5049 register int op = *scode;
5050
5051 switch(op)
5052 {
5053 default:
5054 return -1;
5055
5056 case OP_BRA:
5057 case OP_CBRA:
5058 case OP_ASSERT:
5059 case OP_ONCE:
5060 case OP_COND:
5061 if ((d = find_firstassertedchar(scode, options, op == OP_ASSERT)) < 0)
5062 return -1;
5063 if (c < 0) c = d; else if (c != d) return -1;
5064 break;
5065
5066 case OP_EXACT: /* Fall through */
5067 scode += 2;
5068
5069 case OP_CHAR:
5070 case OP_CHARNC:
5071 case OP_PLUS:
5072 case OP_MINPLUS:
5073 case OP_POSPLUS:
5074 if (!inassert) return -1;
5075 if (c < 0)
5076 {
5077 c = scode[1];
5078 if ((*options & PCRE_CASELESS) != 0) c |= REQ_CASELESS;
5079 }
5080 else if (c != scode[1]) return -1;
5081 break;
5082 }
5083
5084 code += GET(code, 1);
5085 }
5086 while (*code == OP_ALT);
5087 return c;
5088 }
5089
5090
5091
5092 /*************************************************
5093 * Compile a Regular Expression *
5094 *************************************************/
5095
5096 /* This function takes a string and returns a pointer to a block of store
5097 holding a compiled version of the expression. The original API for this
5098 function had no error code return variable; it is retained for backwards
5099 compatibility. The new function is given a new name.
5100
5101 Arguments:
5102 pattern the regular expression
5103 options various option bits
5104 errorcodeptr pointer to error code variable (pcre_compile2() only)
5105 can be NULL if you don't want a code value
5106 errorptr pointer to pointer to error text
5107 erroroffset ptr offset in pattern where error was detected
5108 tables pointer to character tables or NULL
5109
5110 Returns: pointer to compiled data block, or NULL on error,
5111 with errorptr and erroroffset set
5112 */
5113
5114 PCRE_EXP_DEFN pcre *
5115 pcre_compile(const char *pattern, int options, const char **errorptr,
5116 int *erroroffset, const unsigned char *tables)
5117 {
5118 return pcre_compile2(pattern, options, NULL, errorptr, erroroffset, tables);
5119 }
5120
5121
5122 PCRE_EXP_DEFN pcre *
5123 pcre_compile2(const char *pattern, int options, int *errorcodeptr,
5124 const char **errorptr, int *erroroffset, const unsigned char *tables)
5125 {
5126 real_pcre *re;
5127 int length = 1; /* For final END opcode */
5128 int firstbyte, reqbyte, newline;
5129 int errorcode = 0;
5130 #ifdef SUPPORT_UTF8
5131 BOOL utf8;
5132 #endif
5133 size_t size;
5134 uschar *code;
5135 const uschar *codestart;
5136 const uschar *ptr;
5137 compile_data compile_block;
5138 compile_data *cd = &compile_block;
5139
5140 /* This space is used for "compiling" into during the first phase, when we are
5141 computing the amount of memory that is needed. Compiled items are thrown away
5142 as soon as possible, so that a fairly large buffer should be sufficient for
5143 this purpose. The same space is used in the second phase for remembering where
5144 to fill in forward references to subpatterns. */
5145
5146 uschar cworkspace[COMPILE_WORK_SIZE];
5147
5148
5149 /* Set this early so that early errors get offset 0. */
5150
5151 ptr = (const uschar *)pattern;
5152
5153 /* We can't pass back an error message if errorptr is NULL; I guess the best we
5154 can do is just return NULL, but we can set a code value if there is a code
5155 pointer. */
5156
5157 if (errorptr == NULL)
5158 {
5159 if (errorcodeptr != NULL) *errorcodeptr = 99;
5160 return NULL;
5161 }
5162
5163 *errorptr = NULL;
5164 if (errorcodeptr != NULL) *errorcodeptr = ERR0;
5165
5166 /* However, we can give a message for this error */
5167
5168 if (erroroffset == NULL)
5169 {
5170 errorcode = ERR16;
5171 goto PCRE_EARLY_ERROR_RETURN2;
5172 }
5173
5174 *erroroffset = 0;
5175
5176 /* Can't support UTF8 unless PCRE has been compiled to include the code. */
5177
5178 #ifdef SUPPORT_UTF8
5179 utf8 = (options & PCRE_UTF8) != 0;
5180 if (utf8 && (options & PCRE_NO_UTF8_CHECK) == 0 &&
5181 (*erroroffset = _pcre_valid_utf8((uschar *)pattern, -1)) >= 0)
5182 {
5183 errorcode = ERR44;
5184 goto PCRE_EARLY_ERROR_RETURN2;
5185 }
5186 #else
5187 if ((options & PCRE_UTF8) != 0)
5188 {
5189 errorcode = ERR32;
5190 goto PCRE_EARLY_ERROR_RETURN;
5191 }
5192 #endif
5193
5194 if ((options & ~PUBLIC_OPTIONS) != 0)
5195 {
5196 errorcode = ERR17;
5197 goto PCRE_EARLY_ERROR_RETURN;
5198 }
5199
5200 /* Set up pointers to the individual character tables */
5201
5202 if (tables == NULL) tables = _pcre_default_tables;
5203 cd->lcc = tables + lcc_offset;
5204 cd->fcc = tables + fcc_offset;
5205 cd->cbits = tables + cbits_offset;
5206 cd->ctypes = tables + ctypes_offset;
5207
5208 /* Handle different types of newline. The three bits give seven cases. The
5209 current code allows for fixed one- or two-byte sequences, plus "any" and
5210 "anycrlf". */
5211
5212 switch (options & (PCRE_NEWLINE_CRLF | PCRE_NEWLINE_ANY))
5213 {
5214 case 0: newline = NEWLINE; break; /* Compile-time default */
5215 case PCRE_NEWLINE_CR: newline = '\r'; break;
5216 case PCRE_NEWLINE_LF: newline = '\n'; break;
5217 case PCRE_NEWLINE_CR+
5218 PCRE_NEWLINE_LF: newline = ('\r' << 8) | '\n'; break;
5219 case PCRE_NEWLINE_ANY: newline = -1; break;
5220 case PCRE_NEWLINE_ANYCRLF: newline = -2; break;
5221 default: errorcode = ERR56; goto PCRE_EARLY_ERROR_RETURN;
5222 }
5223
5224 if (newline == -2)
5225 {
5226 cd->nltype = NLTYPE_ANYCRLF;
5227 }
5228 else if (newline < 0)
5229 {
5230 cd->nltype = NLTYPE_ANY;
5231 }
5232 else
5233 {
5234 cd->nltype = NLTYPE_FIXED;
5235 if (newline > 255)
5236 {
5237 cd->nllen = 2;
5238 cd->nl[0] = (newline >> 8) & 255;
5239 cd->nl[1] = newline & 255;
5240 }
5241 else
5242 {
5243 cd->nllen = 1;
5244 cd->nl[0] = newline;
5245 }
5246 }
5247
5248 /* Maximum back reference and backref bitmap. The bitmap records up to 31 back
5249 references to help in deciding whether (.*) can be treated as anchored or not.
5250 */
5251
5252 cd->top_backref = 0;
5253 cd->backref_map = 0;
5254
5255 /* Reflect pattern for debugging output */
5256
5257 DPRINTF(("------------------------------------------------------------------\n"));
5258 DPRINTF(("%s\n", pattern));
5259
5260 /* Pretend to compile the pattern while actually just accumulating the length
5261 of memory required. This behaviour is triggered by passing a non-NULL final
5262 argument to compile_regex(). We pass a block of workspace (cworkspace) for it
5263 to compile parts of the pattern into; the compiled code is discarded when it is
5264 no longer needed, so hopefully this workspace will never overflow, though there
5265 is a test for its doing so. */
5266
5267 cd->bracount = 0;
5268 cd->names_found = 0;
5269 cd->name_entry_size = 0;
5270 cd->name_table = NULL;
5271 cd->start_workspace = cworkspace;
5272 cd->start_code = cworkspace;
5273 cd->hwm = cworkspace;
5274 cd->start_pattern = (const uschar *)pattern;
5275 cd->end_pattern = (const uschar *)(pattern + strlen(pattern));
5276 cd->req_varyopt = 0;
5277 cd->nopartial = FALSE;
5278 cd->external_options = options;
5279
5280 /* Now do the pre-compile. On error, errorcode will be set non-zero, so we
5281 don't need to look at the result of the function here. The initial options have
5282 been put into the cd block so that they can be changed if an option setting is
5283 found within the regex right at the beginning. Bringing initial option settings
5284 outside can help speed up starting point checks. */
5285
5286 code = cworkspace;
5287 *code = OP_BRA;
5288 (void)compile_regex(cd->external_options, cd->external_options & PCRE_IMS,
5289 &code, &ptr, &errorcode, FALSE, 0, &firstbyte, &reqbyte, NULL, cd, &length);
5290 if (errorcode != 0) goto PCRE_EARLY_ERROR_RETURN;
5291
5292 DPRINTF(("end pre-compile: length=%d workspace=%d\n", length,
5293 cd->hwm - cworkspace));
5294
5295 if (length > MAX_PATTERN_SIZE)
5296 {
5297 errorcode = ERR20;
5298 goto PCRE_EARLY_ERROR_RETURN;
5299 }
5300
5301 /* Compute the size of data block needed and get it, either from malloc or
5302 externally provided function. Integer overflow should no longer be possible
5303 because nowadays we limit the maximum value of cd->names_found and
5304 cd->name_entry_size. */
5305
5306 size = length + sizeof(real_pcre) + cd->names_found * (cd->name_entry_size + 3);
5307 re = (real_pcre *)(pcre_malloc)(size);
5308
5309 if (re == NULL)
5310 {
5311 errorcode = ERR21;
5312 goto PCRE_EARLY_ERROR_RETURN;
5313 }
5314
5315 /* Put in the magic number, and save the sizes, initial options, and character
5316 table pointer. NULL is used for the default character tables. The nullpad field
5317 is at the end; it's there to help in the case when a regex compiled on a system
5318 with 4-byte pointers is run on another with 8-byte pointers. */
5319
5320 re->magic_number = MAGIC_NUMBER;
5321 re->size = size;
5322 re->options = cd->external_options;
5323 re->dummy1 = 0;
5324 re->first_byte = 0;
5325 re->req_byte = 0;
5326 re->name_table_offset = sizeof(real_pcre);
5327 re->name_entry_size = cd->name_entry_size;
5328 re->name_count = cd->names_found;
5329 re->ref_count = 0;
5330 re->tables = (tables == _pcre_default_tables)? NULL : tables;
5331 re->nullpad = NULL;
5332
5333 /* The starting points of the name/number translation table and of the code are
5334 passed around in the compile data block. The start/end pattern and initial
5335 options are already set from the pre-compile phase, as is the name_entry_size
5336 field. Reset the bracket count and the names_found field. Also reset the hwm
5337 field; this time it's used for remembering forward references to subpatterns.
5338 */
5339
5340 cd->bracount = 0;
5341 cd->names_found = 0;
5342 cd->name_table = (uschar *)re + re->name_table_offset;
5343 codestart = cd->name_table + re->name_entry_size * re->name_count;
5344 cd->start_code = codestart;
5345 cd->hwm = cworkspace;
5346 cd->req_varyopt = 0;
5347 cd->nopartial = FALSE;
5348
5349 /* Set up a starting, non-extracting bracket, then compile the expression. On
5350 error, errorcode will be set non-zero, so we don't need to look at the result
5351 of the function here. */
5352
5353 ptr = (const uschar *)pattern;
5354 code = (uschar *)codestart;
5355 *code = OP_BRA;
5356 (void)compile_regex(re->options, re->options & PCRE_IMS, &code, &ptr,
5357 &errorcode, FALSE, 0, &firstbyte, &reqbyte, NULL, cd, NULL);
5358 re->top_bracket = cd->bracount;
5359 re->top_backref = cd->top_backref;
5360
5361 if (cd->nopartial) re->options |= PCRE_NOPARTIAL;
5362
5363 /* If not reached end of pattern on success, there's an excess bracket. */
5364
5365 if (errorcode == 0 && *ptr != 0) errorcode = ERR22;
5366
5367 /* Fill in the terminating state and check for disastrous overflow, but
5368 if debugging, leave the test till after things are printed out. */
5369
5370 *code++ = OP_END;
5371
5372 #ifndef DEBUG
5373 if (code - codestart > length) errorcode = ERR23;
5374 #endif
5375
5376 /* Fill in any forward references that are required. */
5377
5378 while (errorcode == 0 && cd->hwm > cworkspace)
5379 {
5380 int offset, recno;
5381 const uschar *groupptr;
5382 cd->hwm -= LINK_SIZE;
5383 offset = GET(cd->hwm, 0);
5384 recno = GET(codestart, offset);
5385 groupptr = find_bracket(codestart, (re->options & PCRE_UTF8) != 0, recno);
5386 if (groupptr == NULL) errorcode = ERR53;
5387 else PUT(((uschar *)codestart), offset, groupptr - codestart);
5388 }
5389
5390 /* Give an error if there's back reference to a non-existent capturing
5391 subpattern. */
5392
5393 if (errorcode == 0 && re->top_backref > re->top_bracket) errorcode = ERR15;
5394
5395 /* Failed to compile, or error while post-processing */
5396
5397 if (errorcode != 0)
5398 {
5399 (pcre_free)(re);
5400 PCRE_EARLY_ERROR_RETURN:
5401 *erroroffset = ptr - (const uschar *)pattern;
5402 PCRE_EARLY_ERROR_RETURN2:
5403 *errorptr = error_texts[errorcode];
5404 if (errorcodeptr != NULL) *errorcodeptr = errorcode;
5405 return NULL;
5406 }
5407
5408 /* If the anchored option was not passed, set the flag if we can determine that
5409 the pattern is anchored by virtue of ^ characters or \A or anything else (such
5410 as starting with .* when DOTALL is set).
5411
5412 Otherwise, if we know what the first byte has to be, save it, because that
5413 speeds up unanchored matches no end. If not, see if we can set the
5414 PCRE_STARTLINE flag. This is helpful for multiline matches when all branches
5415 start with ^. and also when all branches start with .* for non-DOTALL matches.
5416 */
5417
5418 if ((re->options & PCRE_ANCHORED) == 0)
5419 {
5420 int temp_options = re->options; /* May get changed during these scans */
5421 if (is_anchored(codestart, &temp_options, 0, cd->backref_map))
5422 re->options |= PCRE_ANCHORED;
5423 else
5424 {
5425 if (firstbyte < 0)
5426 firstbyte = find_firstassertedchar(codestart, &temp_options, FALSE);
5427 if (firstbyte >= 0) /* Remove caseless flag for non-caseable chars */
5428 {
5429 int ch = firstbyte & 255;
5430 re->first_byte = ((firstbyte & REQ_CASELESS) != 0 &&
5431 cd->fcc[ch] == ch)? ch : firstbyte;
5432 re->options |= PCRE_FIRSTSET;
5433 }
5434 else if (is_startline(codestart, 0, cd->backref_map))
5435 re->options |= PCRE_STARTLINE;
5436 }
5437 }
5438
5439 /* For an anchored pattern, we use the "required byte" only if it follows a
5440 variable length item in the regex. Remove the caseless flag for non-caseable
5441 bytes. */
5442
5443 if (reqbyte >= 0 &&
5444 ((re->options & PCRE_ANCHORED) == 0 || (reqbyte & REQ_VARY) != 0))
5445 {
5446 int ch = reqbyte & 255;
5447 re->req_byte = ((reqbyte & REQ_CASELESS) != 0 &&
5448 cd->fcc[ch] == ch)? (reqbyte & ~REQ_CASELESS) : reqbyte;
5449 re->options |= PCRE_REQCHSET;
5450 }
5451
5452 /* Print out the compiled data if debugging is enabled. This is never the
5453 case when building a production library. */
5454
5455 #ifdef DEBUG
5456
5457 printf("Length = %d top_bracket = %d top_backref = %d\n",
5458 length, re->top_bracket, re->top_backref);
5459
5460 if (re->options != 0)
5461 {
5462 printf("%s%s%s%s%s%s%s%s%s\n",
5463 ((re->options & PCRE_NOPARTIAL) != 0)? "nopartial " : "",
5464 ((re->options & PCRE_ANCHORED) != 0)? "anchored " : "",
5465 ((re->options & PCRE_CASELESS) != 0)? "caseless " : "",
5466 ((re->options & PCRE_EXTENDED) != 0)? "extended " : "",
5467 ((re->options & PCRE_MULTILINE) != 0)? "multiline " : "",
5468 ((re->options & PCRE_DOTALL) != 0)? "dotall " : "",
5469 ((re->options & PCRE_DOLLAR_ENDONLY) != 0)? "endonly " : "",
5470 ((re->options & PCRE_EXTRA) != 0)? "extra " : "",
5471 ((re->options & PCRE_UNGREEDY) != 0)? "ungreedy " : "");
5472 }
5473
5474 if ((re->options & PCRE_FIRSTSET) != 0)
5475 {
5476 int ch = re->first_byte & 255;
5477 const char *caseless = ((re->first_byte & REQ_CASELESS) == 0)?
5478 "" : " (caseless)";
5479 if (isprint(ch)) printf("First char = %c%s\n", ch, caseless);
5480 else printf("First char = \\x%02x%s\n", ch, caseless);
5481 }
5482
5483 if ((re->options & PCRE_REQCHSET) != 0)
5484 {
5485 int ch = re->req_byte & 255;
5486 const char *caseless = ((re->req_byte & REQ_CASELESS) == 0)?
5487 "" : " (caseless)";
5488 if (isprint(ch)) printf("Req char = %c%s\n", ch, caseless);
5489 else printf("Req char = \\x%02x%s\n", ch, caseless);
5490 }
5491
5492 pcre_printint(re, stdout, TRUE);
5493
5494 /* This check is done here in the debugging case so that the code that
5495 was compiled can be seen. */
5496
5497 if (code - codestart > length)
5498 {
5499 (pcre_free)(re);
5500 *errorptr = error_texts[ERR23];
5501 *erroroffset = ptr - (uschar *)pattern;
5502 if (errorcodeptr != NULL) *errorcodeptr = ERR23;
5503 return NULL;
5504 }
5505 #endif /* DEBUG */
5506
5507 return (pcre *)re;
5508 }
5509
5510 /* End of pcre_compile.c */

Properties

Name Value
svn:eol-style native
svn:keywords "Author Date Id Revision Url"

webmaster@exim.org
ViewVC Help
Powered by ViewVC 1.1.12