/[pcre]/code/branches/pcre16/pcre_compile.c
ViewVC logotype

Contents of /code/branches/pcre16/pcre_compile.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 629 - (show annotations) (download)
Fri Jul 22 09:18:11 2011 UTC (3 years, 1 month ago) by ph10
Original Path: code/trunk/pcre_compile.c
File MIME type: text/plain
File size: 241147 byte(s)
Fix isolated \k bug.

</
1 /*************************************************
2 * Perl-Compatible Regular Expressions *
3 *************************************************/
4
5 /* PCRE is a library of functions to support regular expressions whose syntax
6 and semantics are as close as possible to those of the Perl 5 language.
7
8 Written by Philip Hazel
9 Copyright (c) 1997-2011 University of Cambridge
10
11 -----------------------------------------------------------------------------
12 Redistribution and use in source and binary forms, with or without
13 modification, are permitted provided that the following conditions are met:
14
15 * Redistributions of source code must retain the above copyright notice,
16 this list of conditions and the following disclaimer.
17
18 * Redistributions in binary form must reproduce the above copyright
19 notice, this list of conditions and the following disclaimer in the
20 documentation and/or other materials provided with the distribution.
21
22 * Neither the name of the University of Cambridge nor the names of its
23 contributors may be used to endorse or promote products derived from
24 this software without specific prior written permission.
25
26 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
27 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
30 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 POSSIBILITY OF SUCH DAMAGE.
37 -----------------------------------------------------------------------------
38 */
39
40
41 /* This module contains the external function pcre_compile(), along with
42 supporting internal functions that are not used by other modules. */
43
44
45 #ifdef HAVE_CONFIG_H
46 #include "config.h"
47 #endif
48
49 #define NLBLOCK cd /* Block containing newline information */
50 #define PSSTART start_pattern /* Field containing processed string start */
51 #define PSEND end_pattern /* Field containing processed string end */
52
53 #include "pcre_internal.h"
54
55
56 /* When PCRE_DEBUG is defined, we need the pcre_printint() function, which is
57 also used by pcretest. PCRE_DEBUG is not defined when building a production
58 library. */
59
60 #ifdef PCRE_DEBUG
61 #include "pcre_printint.src"
62 #endif
63
64
65 /* Macro for setting individual bits in class bitmaps. */
66
67 #define SETBIT(a,b) a[b/8] |= (1 << (b%8))
68
69 /* Maximum length value to check against when making sure that the integer that
70 holds the compiled pattern length does not overflow. We make it a bit less than
71 INT_MAX to allow for adding in group terminating bytes, so that we don't have
72 to check them every time. */
73
74 #define OFLOW_MAX (INT_MAX - 20)
75
76
77 /*************************************************
78 * Code parameters and static tables *
79 *************************************************/
80
81 /* This value specifies the size of stack workspace that is used during the
82 first pre-compile phase that determines how much memory is required. The regex
83 is partly compiled into this space, but the compiled parts are discarded as
84 soon as they can be, so that hopefully there will never be an overrun. The code
85 does, however, check for an overrun. The largest amount I've seen used is 218,
86 so this number is very generous.
87
88 The same workspace is used during the second, actual compile phase for
89 remembering forward references to groups so that they can be filled in at the
90 end. Each entry in this list occupies LINK_SIZE bytes, so even when LINK_SIZE
91 is 4 there is plenty of room. */
92
93 #define COMPILE_WORK_SIZE (4096)
94
95 /* The overrun tests check for a slightly smaller size so that they detect the
96 overrun before it actually does run off the end of the data block. */
97
98 #define WORK_SIZE_CHECK (COMPILE_WORK_SIZE - 100)
99
100
101 /* Table for handling escaped characters in the range '0'-'z'. Positive returns
102 are simple data values; negative values are for special things like \d and so
103 on. Zero means further processing is needed (for things like \x), or the escape
104 is invalid. */
105
106 #ifndef EBCDIC
107
108 /* This is the "normal" table for ASCII systems or for EBCDIC systems running
109 in UTF-8 mode. */
110
111 static const short int escapes[] = {
112 0, 0,
113 0, 0,
114 0, 0,
115 0, 0,
116 0, 0,
117 CHAR_COLON, CHAR_SEMICOLON,
118 CHAR_LESS_THAN_SIGN, CHAR_EQUALS_SIGN,
119 CHAR_GREATER_THAN_SIGN, CHAR_QUESTION_MARK,
120 CHAR_COMMERCIAL_AT, -ESC_A,
121 -ESC_B, -ESC_C,
122 -ESC_D, -ESC_E,
123 0, -ESC_G,
124 -ESC_H, 0,
125 0, -ESC_K,
126 0, 0,
127 -ESC_N, 0,
128 -ESC_P, -ESC_Q,
129 -ESC_R, -ESC_S,
130 0, 0,
131 -ESC_V, -ESC_W,
132 -ESC_X, 0,
133 -ESC_Z, CHAR_LEFT_SQUARE_BRACKET,
134 CHAR_BACKSLASH, CHAR_RIGHT_SQUARE_BRACKET,
135 CHAR_CIRCUMFLEX_ACCENT, CHAR_UNDERSCORE,
136 CHAR_GRAVE_ACCENT, 7,
137 -ESC_b, 0,
138 -ESC_d, ESC_e,
139 ESC_f, 0,
140 -ESC_h, 0,
141 0, -ESC_k,
142 0, 0,
143 ESC_n, 0,
144 -ESC_p, 0,
145 ESC_r, -ESC_s,
146 ESC_tee, 0,
147 -ESC_v, -ESC_w,
148 0, 0,
149 -ESC_z
150 };
151
152 #else
153
154 /* This is the "abnormal" table for EBCDIC systems without UTF-8 support. */
155
156 static const short int escapes[] = {
157 /* 48 */ 0, 0, 0, '.', '<', '(', '+', '|',
158 /* 50 */ '&', 0, 0, 0, 0, 0, 0, 0,
159 /* 58 */ 0, 0, '!', '$', '*', ')', ';', '~',
160 /* 60 */ '-', '/', 0, 0, 0, 0, 0, 0,
161 /* 68 */ 0, 0, '|', ',', '%', '_', '>', '?',
162 /* 70 */ 0, 0, 0, 0, 0, 0, 0, 0,
163 /* 78 */ 0, '`', ':', '#', '@', '\'', '=', '"',
164 /* 80 */ 0, 7, -ESC_b, 0, -ESC_d, ESC_e, ESC_f, 0,
165 /* 88 */-ESC_h, 0, 0, '{', 0, 0, 0, 0,
166 /* 90 */ 0, 0, -ESC_k, 'l', 0, ESC_n, 0, -ESC_p,
167 /* 98 */ 0, ESC_r, 0, '}', 0, 0, 0, 0,
168 /* A0 */ 0, '~', -ESC_s, ESC_tee, 0,-ESC_v, -ESC_w, 0,
169 /* A8 */ 0,-ESC_z, 0, 0, 0, '[', 0, 0,
170 /* B0 */ 0, 0, 0, 0, 0, 0, 0, 0,
171 /* B8 */ 0, 0, 0, 0, 0, ']', '=', '-',
172 /* C0 */ '{',-ESC_A, -ESC_B, -ESC_C, -ESC_D,-ESC_E, 0, -ESC_G,
173 /* C8 */-ESC_H, 0, 0, 0, 0, 0, 0, 0,
174 /* D0 */ '}', 0, -ESC_K, 0, 0,-ESC_N, 0, -ESC_P,
175 /* D8 */-ESC_Q,-ESC_R, 0, 0, 0, 0, 0, 0,
176 /* E0 */ '\\', 0, -ESC_S, 0, 0,-ESC_V, -ESC_W, -ESC_X,
177 /* E8 */ 0,-ESC_Z, 0, 0, 0, 0, 0, 0,
178 /* F0 */ 0, 0, 0, 0, 0, 0, 0, 0,
179 /* F8 */ 0, 0, 0, 0, 0, 0, 0, 0
180 };
181 #endif
182
183
184 /* Table of special "verbs" like (*PRUNE). This is a short table, so it is
185 searched linearly. Put all the names into a single string, in order to reduce
186 the number of relocations when a shared library is dynamically linked. The
187 string is built from string macros so that it works in UTF-8 mode on EBCDIC
188 platforms. */
189
190 typedef struct verbitem {
191 int len; /* Length of verb name */
192 int op; /* Op when no arg, or -1 if arg mandatory */
193 int op_arg; /* Op when arg present, or -1 if not allowed */
194 } verbitem;
195
196 static const char verbnames[] =
197 "\0" /* Empty name is a shorthand for MARK */
198 STRING_MARK0
199 STRING_ACCEPT0
200 STRING_COMMIT0
201 STRING_F0
202 STRING_FAIL0
203 STRING_PRUNE0
204 STRING_SKIP0
205 STRING_THEN;
206
207 static const verbitem verbs[] = {
208 { 0, -1, OP_MARK },
209 { 4, -1, OP_MARK },
210 { 6, OP_ACCEPT, -1 },
211 { 6, OP_COMMIT, -1 },
212 { 1, OP_FAIL, -1 },
213 { 4, OP_FAIL, -1 },
214 { 5, OP_PRUNE, OP_PRUNE_ARG },
215 { 4, OP_SKIP, OP_SKIP_ARG },
216 { 4, OP_THEN, OP_THEN_ARG }
217 };
218
219 static const int verbcount = sizeof(verbs)/sizeof(verbitem);
220
221
222 /* Tables of names of POSIX character classes and their lengths. The names are
223 now all in a single string, to reduce the number of relocations when a shared
224 library is dynamically loaded. The list of lengths is terminated by a zero
225 length entry. The first three must be alpha, lower, upper, as this is assumed
226 for handling case independence. */
227
228 static const char posix_names[] =
229 STRING_alpha0 STRING_lower0 STRING_upper0 STRING_alnum0
230 STRING_ascii0 STRING_blank0 STRING_cntrl0 STRING_digit0
231 STRING_graph0 STRING_print0 STRING_punct0 STRING_space0
232 STRING_word0 STRING_xdigit;
233
234 static const uschar posix_name_lengths[] = {
235 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 6, 0 };
236
237 /* Table of class bit maps for each POSIX class. Each class is formed from a
238 base map, with an optional addition or removal of another map. Then, for some
239 classes, there is some additional tweaking: for [:blank:] the vertical space
240 characters are removed, and for [:alpha:] and [:alnum:] the underscore
241 character is removed. The triples in the table consist of the base map offset,
242 second map offset or -1 if no second map, and a non-negative value for map
243 addition or a negative value for map subtraction (if there are two maps). The
244 absolute value of the third field has these meanings: 0 => no tweaking, 1 =>
245 remove vertical space characters, 2 => remove underscore. */
246
247 static const int posix_class_maps[] = {
248 cbit_word, cbit_digit, -2, /* alpha */
249 cbit_lower, -1, 0, /* lower */
250 cbit_upper, -1, 0, /* upper */
251 cbit_word, -1, 2, /* alnum - word without underscore */
252 cbit_print, cbit_cntrl, 0, /* ascii */
253 cbit_space, -1, 1, /* blank - a GNU extension */
254 cbit_cntrl, -1, 0, /* cntrl */
255 cbit_digit, -1, 0, /* digit */
256 cbit_graph, -1, 0, /* graph */
257 cbit_print, -1, 0, /* print */
258 cbit_punct, -1, 0, /* punct */
259 cbit_space, -1, 0, /* space */
260 cbit_word, -1, 0, /* word - a Perl extension */
261 cbit_xdigit,-1, 0 /* xdigit */
262 };
263
264 /* Table of substitutes for \d etc when PCRE_UCP is set. The POSIX class
265 substitutes must be in the order of the names, defined above, and there are
266 both positive and negative cases. NULL means no substitute. */
267
268 #ifdef SUPPORT_UCP
269 static const uschar *substitutes[] = {
270 (uschar *)"\\P{Nd}", /* \D */
271 (uschar *)"\\p{Nd}", /* \d */
272 (uschar *)"\\P{Xsp}", /* \S */ /* NOTE: Xsp is Perl space */
273 (uschar *)"\\p{Xsp}", /* \s */
274 (uschar *)"\\P{Xwd}", /* \W */
275 (uschar *)"\\p{Xwd}" /* \w */
276 };
277
278 static const uschar *posix_substitutes[] = {
279 (uschar *)"\\p{L}", /* alpha */
280 (uschar *)"\\p{Ll}", /* lower */
281 (uschar *)"\\p{Lu}", /* upper */
282 (uschar *)"\\p{Xan}", /* alnum */
283 NULL, /* ascii */
284 (uschar *)"\\h", /* blank */
285 NULL, /* cntrl */
286 (uschar *)"\\p{Nd}", /* digit */
287 NULL, /* graph */
288 NULL, /* print */
289 NULL, /* punct */
290 (uschar *)"\\p{Xps}", /* space */ /* NOTE: Xps is POSIX space */
291 (uschar *)"\\p{Xwd}", /* word */
292 NULL, /* xdigit */
293 /* Negated cases */
294 (uschar *)"\\P{L}", /* ^alpha */
295 (uschar *)"\\P{Ll}", /* ^lower */
296 (uschar *)"\\P{Lu}", /* ^upper */
297 (uschar *)"\\P{Xan}", /* ^alnum */
298 NULL, /* ^ascii */
299 (uschar *)"\\H", /* ^blank */
300 NULL, /* ^cntrl */
301 (uschar *)"\\P{Nd}", /* ^digit */
302 NULL, /* ^graph */
303 NULL, /* ^print */
304 NULL, /* ^punct */
305 (uschar *)"\\P{Xps}", /* ^space */ /* NOTE: Xps is POSIX space */
306 (uschar *)"\\P{Xwd}", /* ^word */
307 NULL /* ^xdigit */
308 };
309 #define POSIX_SUBSIZE (sizeof(posix_substitutes)/sizeof(uschar *))
310 #endif
311
312 #define STRING(a) # a
313 #define XSTRING(s) STRING(s)
314
315 /* The texts of compile-time error messages. These are "char *" because they
316 are passed to the outside world. Do not ever re-use any error number, because
317 they are documented. Always add a new error instead. Messages marked DEAD below
318 are no longer used. This used to be a table of strings, but in order to reduce
319 the number of relocations needed when a shared library is loaded dynamically,
320 it is now one long string. We cannot use a table of offsets, because the
321 lengths of inserts such as XSTRING(MAX_NAME_SIZE) are not known. Instead, we
322 simply count through to the one we want - this isn't a performance issue
323 because these strings are used only when there is a compilation error.
324
325 Each substring ends with \0 to insert a null character. This includes the final
326 substring, so that the whole string ends with \0\0, which can be detected when
327 counting through. */
328
329 static const char error_texts[] =
330 "no error\0"
331 "\\ at end of pattern\0"
332 "\\c at end of pattern\0"
333 "unrecognized character follows \\\0"
334 "numbers out of order in {} quantifier\0"
335 /* 5 */
336 "number too big in {} quantifier\0"
337 "missing terminating ] for character class\0"
338 "invalid escape sequence in character class\0"
339 "range out of order in character class\0"
340 "nothing to repeat\0"
341 /* 10 */
342 "operand of unlimited repeat could match the empty string\0" /** DEAD **/
343 "internal error: unexpected repeat\0"
344 "unrecognized character after (? or (?-\0"
345 "POSIX named classes are supported only within a class\0"
346 "missing )\0"
347 /* 15 */
348 "reference to non-existent subpattern\0"
349 "erroffset passed as NULL\0"
350 "unknown option bit(s) set\0"
351 "missing ) after comment\0"
352 "parentheses nested too deeply\0" /** DEAD **/
353 /* 20 */
354 "regular expression is too large\0"
355 "failed to get memory\0"
356 "unmatched parentheses\0"
357 "internal error: code overflow\0"
358 "unrecognized character after (?<\0"
359 /* 25 */
360 "lookbehind assertion is not fixed length\0"
361 "malformed number or name after (?(\0"
362 "conditional group contains more than two branches\0"
363 "assertion expected after (?(\0"
364 "(?R or (?[+-]digits must be followed by )\0"
365 /* 30 */
366 "unknown POSIX class name\0"
367 "POSIX collating elements are not supported\0"
368 "this version of PCRE is not compiled with PCRE_UTF8 support\0"
369 "spare error\0" /** DEAD **/
370 "character value in \\x{...} sequence is too large\0"
371 /* 35 */
372 "invalid condition (?(0)\0"
373 "\\C not allowed in lookbehind assertion\0"
374 "PCRE does not support \\L, \\l, \\N{name}, \\U, or \\u\0"
375 "number after (?C is > 255\0"
376 "closing ) for (?C expected\0"
377 /* 40 */
378 "recursive call could loop indefinitely\0"
379 "unrecognized character after (?P\0"
380 "syntax error in subpattern name (missing terminator)\0"
381 "two named subpatterns have the same name\0"
382 "invalid UTF-8 string\0"
383 /* 45 */
384 "support for \\P, \\p, and \\X has not been compiled\0"
385 "malformed \\P or \\p sequence\0"
386 "unknown property name after \\P or \\p\0"
387 "subpattern name is too long (maximum " XSTRING(MAX_NAME_SIZE) " characters)\0"
388 "too many named subpatterns (maximum " XSTRING(MAX_NAME_COUNT) ")\0"
389 /* 50 */
390 "repeated subpattern is too long\0" /** DEAD **/
391 "octal value is greater than \\377 (not in UTF-8 mode)\0"
392 "internal error: overran compiling workspace\0"
393 "internal error: previously-checked referenced subpattern not found\0"
394 "DEFINE group contains more than one branch\0"
395 /* 55 */
396 "repeating a DEFINE group is not allowed\0"
397 "inconsistent NEWLINE options\0"
398 "\\g is not followed by a braced, angle-bracketed, or quoted name/number or by a plain number\0"
399 "a numbered reference must not be zero\0"
400 "an argument is not allowed for (*ACCEPT), (*FAIL), or (*COMMIT)\0"
401 /* 60 */
402 "(*VERB) not recognized\0"
403 "number is too big\0"
404 "subpattern name expected\0"
405 "digit expected after (?+\0"
406 "] is an invalid data character in JavaScript compatibility mode\0"
407 /* 65 */
408 "different names for subpatterns of the same number are not allowed\0"
409 "(*MARK) must have an argument\0"
410 "this version of PCRE is not compiled with PCRE_UCP support\0"
411 "\\c must be followed by an ASCII character\0"
412 "\\k is not followed by a braced, angle-bracketed, or quoted name\0"
413 ;
414
415 /* Table to identify digits and hex digits. This is used when compiling
416 patterns. Note that the tables in chartables are dependent on the locale, and
417 may mark arbitrary characters as digits - but the PCRE compiling code expects
418 to handle only 0-9, a-z, and A-Z as digits when compiling. That is why we have
419 a private table here. It costs 256 bytes, but it is a lot faster than doing
420 character value tests (at least in some simple cases I timed), and in some
421 applications one wants PCRE to compile efficiently as well as match
422 efficiently.
423
424 For convenience, we use the same bit definitions as in chartables:
425
426 0x04 decimal digit
427 0x08 hexadecimal digit
428
429 Then we can use ctype_digit and ctype_xdigit in the code. */
430
431 #ifndef EBCDIC
432
433 /* This is the "normal" case, for ASCII systems, and EBCDIC systems running in
434 UTF-8 mode. */
435
436 static const unsigned char digitab[] =
437 {
438 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 0- 7 */
439 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 8- 15 */
440 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 16- 23 */
441 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */
442 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - ' */
443 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ( - / */
444 0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c, /* 0 - 7 */
445 0x0c,0x0c,0x00,0x00,0x00,0x00,0x00,0x00, /* 8 - ? */
446 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* @ - G */
447 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* H - O */
448 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* P - W */
449 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* X - _ */
450 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* ` - g */
451 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* h - o */
452 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* p - w */
453 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* x -127 */
454 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 128-135 */
455 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 136-143 */
456 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 144-151 */
457 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 152-159 */
458 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 160-167 */
459 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 168-175 */
460 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 176-183 */
461 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 184-191 */
462 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 192-199 */
463 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 200-207 */
464 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 208-215 */
465 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 216-223 */
466 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 224-231 */
467 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 232-239 */
468 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 240-247 */
469 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};/* 248-255 */
470
471 #else
472
473 /* This is the "abnormal" case, for EBCDIC systems not running in UTF-8 mode. */
474
475 static const unsigned char digitab[] =
476 {
477 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 0- 7 0 */
478 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 8- 15 */
479 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 16- 23 10 */
480 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */
481 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 32- 39 20 */
482 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 40- 47 */
483 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 48- 55 30 */
484 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 56- 63 */
485 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - 71 40 */
486 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 72- | */
487 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* & - 87 50 */
488 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 88- 95 */
489 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - -103 60 */
490 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 104- ? */
491 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 112-119 70 */
492 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 120- " */
493 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* 128- g 80 */
494 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* h -143 */
495 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 144- p 90 */
496 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* q -159 */
497 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 160- x A0 */
498 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* y -175 */
499 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ^ -183 B0 */
500 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 184-191 */
501 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* { - G C0 */
502 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* H -207 */
503 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* } - P D0 */
504 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* Q -223 */
505 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* \ - X E0 */
506 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* Y -239 */
507 0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c, /* 0 - 7 F0 */
508 0x0c,0x0c,0x00,0x00,0x00,0x00,0x00,0x00};/* 8 -255 */
509
510 static const unsigned char ebcdic_chartab[] = { /* chartable partial dup */
511 0x80,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 0- 7 */
512 0x00,0x00,0x00,0x00,0x01,0x01,0x00,0x00, /* 8- 15 */
513 0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 16- 23 */
514 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */
515 0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 32- 39 */
516 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 40- 47 */
517 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 48- 55 */
518 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 56- 63 */
519 0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - 71 */
520 0x00,0x00,0x00,0x80,0x00,0x80,0x80,0x80, /* 72- | */
521 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* & - 87 */
522 0x00,0x00,0x00,0x80,0x80,0x80,0x00,0x00, /* 88- 95 */
523 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - -103 */
524 0x00,0x00,0x00,0x00,0x00,0x10,0x00,0x80, /* 104- ? */
525 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 112-119 */
526 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 120- " */
527 0x00,0x1a,0x1a,0x1a,0x1a,0x1a,0x1a,0x12, /* 128- g */
528 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* h -143 */
529 0x00,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* 144- p */
530 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* q -159 */
531 0x00,0x00,0x12,0x12,0x12,0x12,0x12,0x12, /* 160- x */
532 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* y -175 */
533 0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ^ -183 */
534 0x00,0x00,0x80,0x00,0x00,0x00,0x00,0x00, /* 184-191 */
535 0x80,0x1a,0x1a,0x1a,0x1a,0x1a,0x1a,0x12, /* { - G */
536 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* H -207 */
537 0x00,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* } - P */
538 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* Q -223 */
539 0x00,0x00,0x12,0x12,0x12,0x12,0x12,0x12, /* \ - X */
540 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* Y -239 */
541 0x1c,0x1c,0x1c,0x1c,0x1c,0x1c,0x1c,0x1c, /* 0 - 7 */
542 0x1c,0x1c,0x00,0x00,0x00,0x00,0x00,0x00};/* 8 -255 */
543 #endif
544
545
546 /* Definition to allow mutual recursion */
547
548 static BOOL
549 compile_regex(int, uschar **, const uschar **, int *, BOOL, BOOL, int, int *,
550 int *, branch_chain *, compile_data *, int *);
551
552
553
554 /*************************************************
555 * Find an error text *
556 *************************************************/
557
558 /* The error texts are now all in one long string, to save on relocations. As
559 some of the text is of unknown length, we can't use a table of offsets.
560 Instead, just count through the strings. This is not a performance issue
561 because it happens only when there has been a compilation error.
562
563 Argument: the error number
564 Returns: pointer to the error string
565 */
566
567 static const char *
568 find_error_text(int n)
569 {
570 const char *s = error_texts;
571 for (; n > 0; n--)
572 {
573 while (*s++ != 0) {};
574 if (*s == 0) return "Error text not found (please report)";
575 }
576 return s;
577 }
578
579
580 /*************************************************
581 * Handle escapes *
582 *************************************************/
583
584 /* This function is called when a \ has been encountered. It either returns a
585 positive value for a simple escape such as \n, or a negative value which
586 encodes one of the more complicated things such as \d. A backreference to group
587 n is returned as -(ESC_REF + n); ESC_REF is the highest ESC_xxx macro. When
588 UTF-8 is enabled, a positive value greater than 255 may be returned. On entry,
589 ptr is pointing at the \. On exit, it is on the final character of the escape
590 sequence.
591
592 Arguments:
593 ptrptr points to the pattern position pointer
594 errorcodeptr points to the errorcode variable
595 bracount number of previous extracting brackets
596 options the options bits
597 isclass TRUE if inside a character class
598
599 Returns: zero or positive => a data character
600 negative => a special escape sequence
601 on error, errorcodeptr is set
602 */
603
604 static int
605 check_escape(const uschar **ptrptr, int *errorcodeptr, int bracount,
606 int options, BOOL isclass)
607 {
608 BOOL utf8 = (options & PCRE_UTF8) != 0;
609 const uschar *ptr = *ptrptr + 1;
610 int c, i;
611
612 GETCHARINCTEST(c, ptr); /* Get character value, increment pointer */
613 ptr--; /* Set pointer back to the last byte */
614
615 /* If backslash is at the end of the pattern, it's an error. */
616
617 if (c == 0) *errorcodeptr = ERR1;
618
619 /* Non-alphanumerics are literals. For digits or letters, do an initial lookup
620 in a table. A non-zero result is something that can be returned immediately.
621 Otherwise further processing may be required. */
622
623 #ifndef EBCDIC /* ASCII/UTF-8 coding */
624 else if (c < CHAR_0 || c > CHAR_z) {} /* Not alphanumeric */
625 else if ((i = escapes[c - CHAR_0]) != 0) c = i;
626
627 #else /* EBCDIC coding */
628 else if (c < 'a' || (ebcdic_chartab[c] & 0x0E) == 0) {} /* Not alphanumeric */
629 else if ((i = escapes[c - 0x48]) != 0) c = i;
630 #endif
631
632 /* Escapes that need further processing, or are illegal. */
633
634 else
635 {
636 const uschar *oldptr;
637 BOOL braced, negated;
638
639 switch (c)
640 {
641 /* A number of Perl escapes are not handled by PCRE. We give an explicit
642 error. */
643
644 case CHAR_l:
645 case CHAR_L:
646 case CHAR_u:
647 case CHAR_U:
648 *errorcodeptr = ERR37;
649 break;
650
651 /* \g must be followed by one of a number of specific things:
652
653 (1) A number, either plain or braced. If positive, it is an absolute
654 backreference. If negative, it is a relative backreference. This is a Perl
655 5.10 feature.
656
657 (2) Perl 5.10 also supports \g{name} as a reference to a named group. This
658 is part of Perl's movement towards a unified syntax for back references. As
659 this is synonymous with \k{name}, we fudge it up by pretending it really
660 was \k.
661
662 (3) For Oniguruma compatibility we also support \g followed by a name or a
663 number either in angle brackets or in single quotes. However, these are
664 (possibly recursive) subroutine calls, _not_ backreferences. Just return
665 the -ESC_g code (cf \k). */
666
667 case CHAR_g:
668 if (ptr[1] == CHAR_LESS_THAN_SIGN || ptr[1] == CHAR_APOSTROPHE)
669 {
670 c = -ESC_g;
671 break;
672 }
673
674 /* Handle the Perl-compatible cases */
675
676 if (ptr[1] == CHAR_LEFT_CURLY_BRACKET)
677 {
678 const uschar *p;
679 for (p = ptr+2; *p != 0 && *p != CHAR_RIGHT_CURLY_BRACKET; p++)
680 if (*p != CHAR_MINUS && (digitab[*p] & ctype_digit) == 0) break;
681 if (*p != 0 && *p != CHAR_RIGHT_CURLY_BRACKET)
682 {
683 c = -ESC_k;
684 break;
685 }
686 braced = TRUE;
687 ptr++;
688 }
689 else braced = FALSE;
690
691 if (ptr[1] == CHAR_MINUS)
692 {
693 negated = TRUE;
694 ptr++;
695 }
696 else negated = FALSE;
697
698 c = 0;
699 while ((digitab[ptr[1]] & ctype_digit) != 0)
700 c = c * 10 + *(++ptr) - CHAR_0;
701
702 if (c < 0) /* Integer overflow */
703 {
704 *errorcodeptr = ERR61;
705 break;
706 }
707
708 if (braced && *(++ptr) != CHAR_RIGHT_CURLY_BRACKET)
709 {
710 *errorcodeptr = ERR57;
711 break;
712 }
713
714 if (c == 0)
715 {
716 *errorcodeptr = ERR58;
717 break;
718 }
719
720 if (negated)
721 {
722 if (c > bracount)
723 {
724 *errorcodeptr = ERR15;
725 break;
726 }
727 c = bracount - (c - 1);
728 }
729
730 c = -(ESC_REF + c);
731 break;
732
733 /* The handling of escape sequences consisting of a string of digits
734 starting with one that is not zero is not straightforward. By experiment,
735 the way Perl works seems to be as follows:
736
737 Outside a character class, the digits are read as a decimal number. If the
738 number is less than 10, or if there are that many previous extracting
739 left brackets, then it is a back reference. Otherwise, up to three octal
740 digits are read to form an escaped byte. Thus \123 is likely to be octal
741 123 (cf \0123, which is octal 012 followed by the literal 3). If the octal
742 value is greater than 377, the least significant 8 bits are taken. Inside a
743 character class, \ followed by a digit is always an octal number. */
744
745 case CHAR_1: case CHAR_2: case CHAR_3: case CHAR_4: case CHAR_5:
746 case CHAR_6: case CHAR_7: case CHAR_8: case CHAR_9:
747
748 if (!isclass)
749 {
750 oldptr = ptr;
751 c -= CHAR_0;
752 while ((digitab[ptr[1]] & ctype_digit) != 0)
753 c = c * 10 + *(++ptr) - CHAR_0;
754 if (c < 0) /* Integer overflow */
755 {
756 *errorcodeptr = ERR61;
757 break;
758 }
759 if (c < 10 || c <= bracount)
760 {
761 c = -(ESC_REF + c);
762 break;
763 }
764 ptr = oldptr; /* Put the pointer back and fall through */
765 }
766
767 /* Handle an octal number following \. If the first digit is 8 or 9, Perl
768 generates a binary zero byte and treats the digit as a following literal.
769 Thus we have to pull back the pointer by one. */
770
771 if ((c = *ptr) >= CHAR_8)
772 {
773 ptr--;
774 c = 0;
775 break;
776 }
777
778 /* \0 always starts an octal number, but we may drop through to here with a
779 larger first octal digit. The original code used just to take the least
780 significant 8 bits of octal numbers (I think this is what early Perls used
781 to do). Nowadays we allow for larger numbers in UTF-8 mode, but no more
782 than 3 octal digits. */
783
784 case CHAR_0:
785 c -= CHAR_0;
786 while(i++ < 2 && ptr[1] >= CHAR_0 && ptr[1] <= CHAR_7)
787 c = c * 8 + *(++ptr) - CHAR_0;
788 if (!utf8 && c > 255) *errorcodeptr = ERR51;
789 break;
790
791 /* \x is complicated. \x{ddd} is a character number which can be greater
792 than 0xff in utf8 mode, but only if the ddd are hex digits. If not, { is
793 treated as a data character. */
794
795 case CHAR_x:
796 if (ptr[1] == CHAR_LEFT_CURLY_BRACKET)
797 {
798 const uschar *pt = ptr + 2;
799 int count = 0;
800
801 c = 0;
802 while ((digitab[*pt] & ctype_xdigit) != 0)
803 {
804 register int cc = *pt++;
805 if (c == 0 && cc == CHAR_0) continue; /* Leading zeroes */
806 count++;
807
808 #ifndef EBCDIC /* ASCII/UTF-8 coding */
809 if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */
810 c = (c << 4) + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10));
811 #else /* EBCDIC coding */
812 if (cc >= CHAR_a && cc <= CHAR_z) cc += 64; /* Convert to upper case */
813 c = (c << 4) + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10));
814 #endif
815 }
816
817 if (*pt == CHAR_RIGHT_CURLY_BRACKET)
818 {
819 if (c < 0 || count > (utf8? 8 : 2)) *errorcodeptr = ERR34;
820 ptr = pt;
821 break;
822 }
823
824 /* If the sequence of hex digits does not end with '}', then we don't
825 recognize this construct; fall through to the normal \x handling. */
826 }
827
828 /* Read just a single-byte hex-defined char */
829
830 c = 0;
831 while (i++ < 2 && (digitab[ptr[1]] & ctype_xdigit) != 0)
832 {
833 int cc; /* Some compilers don't like */
834 cc = *(++ptr); /* ++ in initializers */
835 #ifndef EBCDIC /* ASCII/UTF-8 coding */
836 if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */
837 c = c * 16 + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10));
838 #else /* EBCDIC coding */
839 if (cc <= CHAR_z) cc += 64; /* Convert to upper case */
840 c = c * 16 + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10));
841 #endif
842 }
843 break;
844
845 /* For \c, a following letter is upper-cased; then the 0x40 bit is flipped.
846 An error is given if the byte following \c is not an ASCII character. This
847 coding is ASCII-specific, but then the whole concept of \cx is
848 ASCII-specific. (However, an EBCDIC equivalent has now been added.) */
849
850 case CHAR_c:
851 c = *(++ptr);
852 if (c == 0)
853 {
854 *errorcodeptr = ERR2;
855 break;
856 }
857 #ifndef EBCDIC /* ASCII/UTF-8 coding */
858 if (c > 127) /* Excludes all non-ASCII in either mode */
859 {
860 *errorcodeptr = ERR68;
861 break;
862 }
863 if (c >= CHAR_a && c <= CHAR_z) c -= 32;
864 c ^= 0x40;
865 #else /* EBCDIC coding */
866 if (c >= CHAR_a && c <= CHAR_z) c += 64;
867 c ^= 0xC0;
868 #endif
869 break;
870
871 /* PCRE_EXTRA enables extensions to Perl in the matter of escapes. Any
872 other alphanumeric following \ is an error if PCRE_EXTRA was set;
873 otherwise, for Perl compatibility, it is a literal. This code looks a bit
874 odd, but there used to be some cases other than the default, and there may
875 be again in future, so I haven't "optimized" it. */
876
877 default:
878 if ((options & PCRE_EXTRA) != 0) switch(c)
879 {
880 default:
881 *errorcodeptr = ERR3;
882 break;
883 }
884 break;
885 }
886 }
887
888 /* Perl supports \N{name} for character names, as well as plain \N for "not
889 newline". PCRE does not support \N{name}. */
890
891 if (c == -ESC_N && ptr[1] == CHAR_LEFT_CURLY_BRACKET)
892 *errorcodeptr = ERR37;
893
894 /* If PCRE_UCP is set, we change the values for \d etc. */
895
896 if ((options & PCRE_UCP) != 0 && c <= -ESC_D && c >= -ESC_w)
897 c -= (ESC_DU - ESC_D);
898
899 /* Set the pointer to the final character before returning. */
900
901 *ptrptr = ptr;
902 return c;
903 }
904
905
906
907 #ifdef SUPPORT_UCP
908 /*************************************************
909 * Handle \P and \p *
910 *************************************************/
911
912 /* This function is called after \P or \p has been encountered, provided that
913 PCRE is compiled with support for Unicode properties. On entry, ptrptr is
914 pointing at the P or p. On exit, it is pointing at the final character of the
915 escape sequence.
916
917 Argument:
918 ptrptr points to the pattern position pointer
919 negptr points to a boolean that is set TRUE for negation else FALSE
920 dptr points to an int that is set to the detailed property value
921 errorcodeptr points to the error code variable
922
923 Returns: type value from ucp_type_table, or -1 for an invalid type
924 */
925
926 static int
927 get_ucp(const uschar **ptrptr, BOOL *negptr, int *dptr, int *errorcodeptr)
928 {
929 int c, i, bot, top;
930 const uschar *ptr = *ptrptr;
931 char name[32];
932
933 c = *(++ptr);
934 if (c == 0) goto ERROR_RETURN;
935
936 *negptr = FALSE;
937
938 /* \P or \p can be followed by a name in {}, optionally preceded by ^ for
939 negation. */
940
941 if (c == CHAR_LEFT_CURLY_BRACKET)
942 {
943 if (ptr[1] == CHAR_CIRCUMFLEX_ACCENT)
944 {
945 *negptr = TRUE;
946 ptr++;
947 }
948 for (i = 0; i < (int)sizeof(name) - 1; i++)
949 {
950 c = *(++ptr);
951 if (c == 0) goto ERROR_RETURN;
952 if (c == CHAR_RIGHT_CURLY_BRACKET) break;
953 name[i] = c;
954 }
955 if (c != CHAR_RIGHT_CURLY_BRACKET) goto ERROR_RETURN;
956 name[i] = 0;
957 }
958
959 /* Otherwise there is just one following character */
960
961 else
962 {
963 name[0] = c;
964 name[1] = 0;
965 }
966
967 *ptrptr = ptr;
968
969 /* Search for a recognized property name using binary chop */
970
971 bot = 0;
972 top = _pcre_utt_size;
973
974 while (bot < top)
975 {
976 i = (bot + top) >> 1;
977 c = strcmp(name, _pcre_utt_names + _pcre_utt[i].name_offset);
978 if (c == 0)
979 {
980 *dptr = _pcre_utt[i].value;
981 return _pcre_utt[i].type;
982 }
983 if (c > 0) bot = i + 1; else top = i;
984 }
985
986 *errorcodeptr = ERR47;
987 *ptrptr = ptr;
988 return -1;
989
990 ERROR_RETURN:
991 *errorcodeptr = ERR46;
992 *ptrptr = ptr;
993 return -1;
994 }
995 #endif
996
997
998
999
1000 /*************************************************
1001 * Check for counted repeat *
1002 *************************************************/
1003
1004 /* This function is called when a '{' is encountered in a place where it might
1005 start a quantifier. It looks ahead to see if it really is a quantifier or not.
1006 It is only a quantifier if it is one of the forms {ddd} {ddd,} or {ddd,ddd}
1007 where the ddds are digits.
1008
1009 Arguments:
1010 p pointer to the first char after '{'
1011
1012 Returns: TRUE or FALSE
1013 */
1014
1015 static BOOL
1016 is_counted_repeat(const uschar *p)
1017 {
1018 if ((digitab[*p++] & ctype_digit) == 0) return FALSE;
1019 while ((digitab[*p] & ctype_digit) != 0) p++;
1020 if (*p == CHAR_RIGHT_CURLY_BRACKET) return TRUE;
1021
1022 if (*p++ != CHAR_COMMA) return FALSE;
1023 if (*p == CHAR_RIGHT_CURLY_BRACKET) return TRUE;
1024
1025 if ((digitab[*p++] & ctype_digit) == 0) return FALSE;
1026 while ((digitab[*p] & ctype_digit) != 0) p++;
1027
1028 return (*p == CHAR_RIGHT_CURLY_BRACKET);
1029 }
1030
1031
1032
1033 /*************************************************
1034 * Read repeat counts *
1035 *************************************************/
1036
1037 /* Read an item of the form {n,m} and return the values. This is called only
1038 after is_counted_repeat() has confirmed that a repeat-count quantifier exists,
1039 so the syntax is guaranteed to be correct, but we need to check the values.
1040
1041 Arguments:
1042 p pointer to first char after '{'
1043 minp pointer to int for min
1044 maxp pointer to int for max
1045 returned as -1 if no max
1046 errorcodeptr points to error code variable
1047
1048 Returns: pointer to '}' on success;
1049 current ptr on error, with errorcodeptr set non-zero
1050 */
1051
1052 static const uschar *
1053 read_repeat_counts(const uschar *p, int *minp, int *maxp, int *errorcodeptr)
1054 {
1055 int min = 0;
1056 int max = -1;
1057
1058 /* Read the minimum value and do a paranoid check: a negative value indicates
1059 an integer overflow. */
1060
1061 while ((digitab[*p] & ctype_digit) != 0) min = min * 10 + *p++ - CHAR_0;
1062 if (min < 0 || min > 65535)
1063 {
1064 *errorcodeptr = ERR5;
1065 return p;
1066 }
1067
1068 /* Read the maximum value if there is one, and again do a paranoid on its size.
1069 Also, max must not be less than min. */
1070
1071 if (*p == CHAR_RIGHT_CURLY_BRACKET) max = min; else
1072 {
1073 if (*(++p) != CHAR_RIGHT_CURLY_BRACKET)
1074 {
1075 max = 0;
1076 while((digitab[*p] & ctype_digit) != 0) max = max * 10 + *p++ - CHAR_0;
1077 if (max < 0 || max > 65535)
1078 {
1079 *errorcodeptr = ERR5;
1080 return p;
1081 }
1082 if (max < min)
1083 {
1084 *errorcodeptr = ERR4;
1085 return p;
1086 }
1087 }
1088 }
1089
1090 /* Fill in the required variables, and pass back the pointer to the terminating
1091 '}'. */
1092
1093 *minp = min;
1094 *maxp = max;
1095 return p;
1096 }
1097
1098
1099
1100 /*************************************************
1101 * Subroutine for finding forward reference *
1102 *************************************************/
1103
1104 /* This recursive function is called only from find_parens() below. The
1105 top-level call starts at the beginning of the pattern. All other calls must
1106 start at a parenthesis. It scans along a pattern's text looking for capturing
1107 subpatterns, and counting them. If it finds a named pattern that matches the
1108 name it is given, it returns its number. Alternatively, if the name is NULL, it
1109 returns when it reaches a given numbered subpattern. Recursion is used to keep
1110 track of subpatterns that reset the capturing group numbers - the (?| feature.
1111
1112 This function was originally called only from the second pass, in which we know
1113 that if (?< or (?' or (?P< is encountered, the name will be correctly
1114 terminated because that is checked in the first pass. There is now one call to
1115 this function in the first pass, to check for a recursive back reference by
1116 name (so that we can make the whole group atomic). In this case, we need check
1117 only up to the current position in the pattern, and that is still OK because
1118 and previous occurrences will have been checked. To make this work, the test
1119 for "end of pattern" is a check against cd->end_pattern in the main loop,
1120 instead of looking for a binary zero. This means that the special first-pass
1121 call can adjust cd->end_pattern temporarily. (Checks for binary zero while
1122 processing items within the loop are OK, because afterwards the main loop will
1123 terminate.)
1124
1125 Arguments:
1126 ptrptr address of the current character pointer (updated)
1127 cd compile background data
1128 name name to seek, or NULL if seeking a numbered subpattern
1129 lorn name length, or subpattern number if name is NULL
1130 xmode TRUE if we are in /x mode
1131 utf8 TRUE if we are in UTF-8 mode
1132 count pointer to the current capturing subpattern number (updated)
1133
1134 Returns: the number of the named subpattern, or -1 if not found
1135 */
1136
1137 static int
1138 find_parens_sub(uschar **ptrptr, compile_data *cd, const uschar *name, int lorn,
1139 BOOL xmode, BOOL utf8, int *count)
1140 {
1141 uschar *ptr = *ptrptr;
1142 int start_count = *count;
1143 int hwm_count = start_count;
1144 BOOL dup_parens = FALSE;
1145
1146 /* If the first character is a parenthesis, check on the type of group we are
1147 dealing with. The very first call may not start with a parenthesis. */
1148
1149 if (ptr[0] == CHAR_LEFT_PARENTHESIS)
1150 {
1151 /* Handle specials such as (*SKIP) or (*UTF8) etc. */
1152
1153 if (ptr[1] == CHAR_ASTERISK) ptr += 2;
1154
1155 /* Handle a normal, unnamed capturing parenthesis. */
1156
1157 else if (ptr[1] != CHAR_QUESTION_MARK)
1158 {
1159 *count += 1;
1160 if (name == NULL && *count == lorn) return *count;
1161 ptr++;
1162 }
1163
1164 /* All cases now have (? at the start. Remember when we are in a group
1165 where the parenthesis numbers are duplicated. */
1166
1167 else if (ptr[2] == CHAR_VERTICAL_LINE)
1168 {
1169 ptr += 3;
1170 dup_parens = TRUE;
1171 }
1172
1173 /* Handle comments; all characters are allowed until a ket is reached. */
1174
1175 else if (ptr[2] == CHAR_NUMBER_SIGN)
1176 {
1177 for (ptr += 3; *ptr != 0; ptr++) if (*ptr == CHAR_RIGHT_PARENTHESIS) break;
1178 goto FAIL_EXIT;
1179 }
1180
1181 /* Handle a condition. If it is an assertion, just carry on so that it
1182 is processed as normal. If not, skip to the closing parenthesis of the
1183 condition (there can't be any nested parens). */
1184
1185 else if (ptr[2] == CHAR_LEFT_PARENTHESIS)
1186 {
1187 ptr += 2;
1188 if (ptr[1] != CHAR_QUESTION_MARK)
1189 {
1190 while (*ptr != 0 && *ptr != CHAR_RIGHT_PARENTHESIS) ptr++;
1191 if (*ptr != 0) ptr++;
1192 }
1193 }
1194
1195 /* Start with (? but not a condition. */
1196
1197 else
1198 {
1199 ptr += 2;
1200 if (*ptr == CHAR_P) ptr++; /* Allow optional P */
1201
1202 /* We have to disambiguate (?<! and (?<= from (?<name> for named groups */
1203
1204 if ((*ptr == CHAR_LESS_THAN_SIGN && ptr[1] != CHAR_EXCLAMATION_MARK &&
1205 ptr[1] != CHAR_EQUALS_SIGN) || *ptr == CHAR_APOSTROPHE)
1206 {
1207 int term;
1208 const uschar *thisname;
1209 *count += 1;
1210 if (name == NULL && *count == lorn) return *count;
1211 term = *ptr++;
1212 if (term == CHAR_LESS_THAN_SIGN) term = CHAR_GREATER_THAN_SIGN;
1213 thisname = ptr;
1214 while (*ptr != term) ptr++;
1215 if (name != NULL && lorn == ptr - thisname &&
1216 strncmp((const char *)name, (const char *)thisname, lorn) == 0)
1217 return *count;
1218 term++;
1219 }
1220 }
1221 }
1222
1223 /* Past any initial parenthesis handling, scan for parentheses or vertical
1224 bars. Stop if we get to cd->end_pattern. Note that this is important for the
1225 first-pass call when this value is temporarily adjusted to stop at the current
1226 position. So DO NOT change this to a test for binary zero. */
1227
1228 for (; ptr < cd->end_pattern; ptr++)
1229 {
1230 /* Skip over backslashed characters and also entire \Q...\E */
1231
1232 if (*ptr == CHAR_BACKSLASH)
1233 {
1234 if (*(++ptr) == 0) goto FAIL_EXIT;
1235 if (*ptr == CHAR_Q) for (;;)
1236 {
1237 while (*(++ptr) != 0 && *ptr != CHAR_BACKSLASH) {};
1238 if (*ptr == 0) goto FAIL_EXIT;
1239 if (*(++ptr) == CHAR_E) break;
1240 }
1241 continue;
1242 }
1243
1244 /* Skip over character classes; this logic must be similar to the way they
1245 are handled for real. If the first character is '^', skip it. Also, if the
1246 first few characters (either before or after ^) are \Q\E or \E we skip them
1247 too. This makes for compatibility with Perl. Note the use of STR macros to
1248 encode "Q\\E" so that it works in UTF-8 on EBCDIC platforms. */
1249
1250 if (*ptr == CHAR_LEFT_SQUARE_BRACKET)
1251 {
1252 BOOL negate_class = FALSE;
1253 for (;;)
1254 {
1255 if (ptr[1] == CHAR_BACKSLASH)
1256 {
1257 if (ptr[2] == CHAR_E)
1258 ptr+= 2;
1259 else if (strncmp((const char *)ptr+2,
1260 STR_Q STR_BACKSLASH STR_E, 3) == 0)
1261 ptr += 4;
1262 else
1263 break;
1264 }
1265 else if (!negate_class && ptr[1] == CHAR_CIRCUMFLEX_ACCENT)
1266 {
1267 negate_class = TRUE;
1268 ptr++;
1269 }
1270 else break;
1271 }
1272
1273 /* If the next character is ']', it is a data character that must be
1274 skipped, except in JavaScript compatibility mode. */
1275
1276 if (ptr[1] == CHAR_RIGHT_SQUARE_BRACKET &&
1277 (cd->external_options & PCRE_JAVASCRIPT_COMPAT) == 0)
1278 ptr++;
1279
1280 while (*(++ptr) != CHAR_RIGHT_SQUARE_BRACKET)
1281 {
1282 if (*ptr == 0) return -1;
1283 if (*ptr == CHAR_BACKSLASH)
1284 {
1285 if (*(++ptr) == 0) goto FAIL_EXIT;
1286 if (*ptr == CHAR_Q) for (;;)
1287 {
1288 while (*(++ptr) != 0 && *ptr != CHAR_BACKSLASH) {};
1289 if (*ptr == 0) goto FAIL_EXIT;
1290 if (*(++ptr) == CHAR_E) break;
1291 }
1292 continue;
1293 }
1294 }
1295 continue;
1296 }
1297
1298 /* Skip comments in /x mode */
1299
1300 if (xmode && *ptr == CHAR_NUMBER_SIGN)
1301 {
1302 ptr++;
1303 while (*ptr != 0)
1304 {
1305 if (IS_NEWLINE(ptr)) { ptr += cd->nllen - 1; break; }
1306 ptr++;
1307 #ifdef SUPPORT_UTF8
1308 if (utf8) while ((*ptr & 0xc0) == 0x80) ptr++;
1309 #endif
1310 }
1311 if (*ptr == 0) goto FAIL_EXIT;
1312 continue;
1313 }
1314
1315 /* Check for the special metacharacters */
1316
1317 if (*ptr == CHAR_LEFT_PARENTHESIS)
1318 {
1319 int rc = find_parens_sub(&ptr, cd, name, lorn, xmode, utf8, count);
1320 if (rc > 0) return rc;
1321 if (*ptr == 0) goto FAIL_EXIT;
1322 }
1323
1324 else if (*ptr == CHAR_RIGHT_PARENTHESIS)
1325 {
1326 if (dup_parens && *count < hwm_count) *count = hwm_count;
1327 goto FAIL_EXIT;
1328 }
1329
1330 else if (*ptr == CHAR_VERTICAL_LINE && dup_parens)
1331 {
1332 if (*count > hwm_count) hwm_count = *count;
1333 *count = start_count;
1334 }
1335 }
1336
1337 FAIL_EXIT:
1338 *ptrptr = ptr;
1339 return -1;
1340 }
1341
1342
1343
1344
1345 /*************************************************
1346 * Find forward referenced subpattern *
1347 *************************************************/
1348
1349 /* This function scans along a pattern's text looking for capturing
1350 subpatterns, and counting them. If it finds a named pattern that matches the
1351 name it is given, it returns its number. Alternatively, if the name is NULL, it
1352 returns when it reaches a given numbered subpattern. This is used for forward
1353 references to subpatterns. We used to be able to start this scan from the
1354 current compiling point, using the current count value from cd->bracount, and
1355 do it all in a single loop, but the addition of the possibility of duplicate
1356 subpattern numbers means that we have to scan from the very start, in order to
1357 take account of such duplicates, and to use a recursive function to keep track
1358 of the different types of group.
1359
1360 Arguments:
1361 cd compile background data
1362 name name to seek, or NULL if seeking a numbered subpattern
1363 lorn name length, or subpattern number if name is NULL
1364 xmode TRUE if we are in /x mode
1365 utf8 TRUE if we are in UTF-8 mode
1366
1367 Returns: the number of the found subpattern, or -1 if not found
1368 */
1369
1370 static int
1371 find_parens(compile_data *cd, const uschar *name, int lorn, BOOL xmode,
1372 BOOL utf8)
1373 {
1374 uschar *ptr = (uschar *)cd->start_pattern;
1375 int count = 0;
1376 int rc;
1377
1378 /* If the pattern does not start with an opening parenthesis, the first call
1379 to find_parens_sub() will scan right to the end (if necessary). However, if it
1380 does start with a parenthesis, find_parens_sub() will return when it hits the
1381 matching closing parens. That is why we have to have a loop. */
1382
1383 for (;;)
1384 {
1385 rc = find_parens_sub(&ptr, cd, name, lorn, xmode, utf8, &count);
1386 if (rc > 0 || *ptr++ == 0) break;
1387 }
1388
1389 return rc;
1390 }
1391
1392
1393
1394
1395 /*************************************************
1396 * Find first significant op code *
1397 *************************************************/
1398
1399 /* This is called by several functions that scan a compiled expression looking
1400 for a fixed first character, or an anchoring op code etc. It skips over things
1401 that do not influence this. For some calls, it makes sense to skip negative
1402 forward and all backward assertions, and also the \b assertion; for others it
1403 does not.
1404
1405 Arguments:
1406 code pointer to the start of the group
1407 skipassert TRUE if certain assertions are to be skipped
1408
1409 Returns: pointer to the first significant opcode
1410 */
1411
1412 static const uschar*
1413 first_significant_code(const uschar *code, BOOL skipassert)
1414 {
1415 for (;;)
1416 {
1417 switch ((int)*code)
1418 {
1419 case OP_ASSERT_NOT:
1420 case OP_ASSERTBACK:
1421 case OP_ASSERTBACK_NOT:
1422 if (!skipassert) return code;
1423 do code += GET(code, 1); while (*code == OP_ALT);
1424 code += _pcre_OP_lengths[*code];
1425 break;
1426
1427 case OP_WORD_BOUNDARY:
1428 case OP_NOT_WORD_BOUNDARY:
1429 if (!skipassert) return code;
1430 /* Fall through */
1431
1432 case OP_CALLOUT:
1433 case OP_CREF:
1434 case OP_NCREF:
1435 case OP_RREF:
1436 case OP_NRREF:
1437 case OP_DEF:
1438 code += _pcre_OP_lengths[*code];
1439 break;
1440
1441 default:
1442 return code;
1443 }
1444 }
1445 /* Control never reaches here */
1446 }
1447
1448
1449
1450
1451 /*************************************************
1452 * Find the fixed length of a branch *
1453 *************************************************/
1454
1455 /* Scan a branch and compute the fixed length of subject that will match it,
1456 if the length is fixed. This is needed for dealing with backward assertions.
1457 In UTF8 mode, the result is in characters rather than bytes. The branch is
1458 temporarily terminated with OP_END when this function is called.
1459
1460 This function is called when a backward assertion is encountered, so that if it
1461 fails, the error message can point to the correct place in the pattern.
1462 However, we cannot do this when the assertion contains subroutine calls,
1463 because they can be forward references. We solve this by remembering this case
1464 and doing the check at the end; a flag specifies which mode we are running in.
1465
1466 Arguments:
1467 code points to the start of the pattern (the bracket)
1468 utf8 TRUE in UTF-8 mode
1469 atend TRUE if called when the pattern is complete
1470 cd the "compile data" structure
1471
1472 Returns: the fixed length,
1473 or -1 if there is no fixed length,
1474 or -2 if \C was encountered
1475 or -3 if an OP_RECURSE item was encountered and atend is FALSE
1476 */
1477
1478 static int
1479 find_fixedlength(uschar *code, BOOL utf8, BOOL atend, compile_data *cd)
1480 {
1481 int length = -1;
1482
1483 register int branchlength = 0;
1484 register uschar *cc = code + 1 + LINK_SIZE;
1485
1486 /* Scan along the opcodes for this branch. If we get to the end of the
1487 branch, check the length against that of the other branches. */
1488
1489 for (;;)
1490 {
1491 int d;
1492 uschar *ce, *cs;
1493 register int op = *cc;
1494 switch (op)
1495 {
1496 /* We only need to continue for OP_CBRA (normal capturing bracket) and
1497 OP_BRA (normal non-capturing bracket) because the other variants of these
1498 opcodes are all concerned with unlimited repeated groups, which of course
1499 are not of fixed length. They will cause a -1 response from the default
1500 case of this switch. */
1501
1502 case OP_CBRA:
1503 case OP_BRA:
1504 case OP_ONCE:
1505 case OP_COND:
1506 d = find_fixedlength(cc + ((op == OP_CBRA)? 2:0), utf8, atend, cd);
1507 if (d < 0) return d;
1508 branchlength += d;
1509 do cc += GET(cc, 1); while (*cc == OP_ALT);
1510 cc += 1 + LINK_SIZE;
1511 break;
1512
1513 /* Reached end of a branch; if it's a ket it is the end of a nested
1514 call. If it's ALT it is an alternation in a nested call. If it is
1515 END it's the end of the outer call. All can be handled by the same code.
1516 Note that we must not include the OP_KETRxxx opcodes here, because they
1517 all imply an unlimited repeat. */
1518
1519 case OP_ALT:
1520 case OP_KET:
1521 case OP_END:
1522 if (length < 0) length = branchlength;
1523 else if (length != branchlength) return -1;
1524 if (*cc != OP_ALT) return length;
1525 cc += 1 + LINK_SIZE;
1526 branchlength = 0;
1527 break;
1528
1529 /* A true recursion implies not fixed length, but a subroutine call may
1530 be OK. If the subroutine is a forward reference, we can't deal with
1531 it until the end of the pattern, so return -3. */
1532
1533 case OP_RECURSE:
1534 if (!atend) return -3;
1535 cs = ce = (uschar *)cd->start_code + GET(cc, 1); /* Start subpattern */
1536 do ce += GET(ce, 1); while (*ce == OP_ALT); /* End subpattern */
1537 if (cc > cs && cc < ce) return -1; /* Recursion */
1538 d = find_fixedlength(cs + 2, utf8, atend, cd);
1539 if (d < 0) return d;
1540 branchlength += d;
1541 cc += 1 + LINK_SIZE;
1542 break;
1543
1544 /* Skip over assertive subpatterns */
1545
1546 case OP_ASSERT:
1547 case OP_ASSERT_NOT:
1548 case OP_ASSERTBACK:
1549 case OP_ASSERTBACK_NOT:
1550 do cc += GET(cc, 1); while (*cc == OP_ALT);
1551 /* Fall through */
1552
1553 /* Skip over things that don't match chars */
1554
1555 case OP_REVERSE:
1556 case OP_CREF:
1557 case OP_NCREF:
1558 case OP_RREF:
1559 case OP_NRREF:
1560 case OP_DEF:
1561 case OP_CALLOUT:
1562 case OP_SOD:
1563 case OP_SOM:
1564 case OP_SET_SOM:
1565 case OP_EOD:
1566 case OP_EODN:
1567 case OP_CIRC:
1568 case OP_CIRCM:
1569 case OP_DOLL:
1570 case OP_DOLLM:
1571 case OP_NOT_WORD_BOUNDARY:
1572 case OP_WORD_BOUNDARY:
1573 cc += _pcre_OP_lengths[*cc];
1574 break;
1575
1576 /* Handle literal characters */
1577
1578 case OP_CHAR:
1579 case OP_CHARI:
1580 case OP_NOT:
1581 case OP_NOTI:
1582 branchlength++;
1583 cc += 2;
1584 #ifdef SUPPORT_UTF8
1585 if (utf8 && cc[-1] >= 0xc0) cc += _pcre_utf8_table4[cc[-1] & 0x3f];
1586 #endif
1587 break;
1588
1589 /* Handle exact repetitions. The count is already in characters, but we
1590 need to skip over a multibyte character in UTF8 mode. */
1591
1592 case OP_EXACT:
1593 branchlength += GET2(cc,1);
1594 cc += 4;
1595 #ifdef SUPPORT_UTF8
1596 if (utf8 && cc[-1] >= 0xc0) cc += _pcre_utf8_table4[cc[-1] & 0x3f];
1597 #endif
1598 break;
1599
1600 case OP_TYPEEXACT:
1601 branchlength += GET2(cc,1);
1602 if (cc[3] == OP_PROP || cc[3] == OP_NOTPROP) cc += 2;
1603 cc += 4;
1604 break;
1605
1606 /* Handle single-char matchers */
1607
1608 case OP_PROP:
1609 case OP_NOTPROP:
1610 cc += 2;
1611 /* Fall through */
1612
1613 case OP_NOT_DIGIT:
1614 case OP_DIGIT:
1615 case OP_NOT_WHITESPACE:
1616 case OP_WHITESPACE:
1617 case OP_NOT_WORDCHAR:
1618 case OP_WORDCHAR:
1619 case OP_ANY:
1620 case OP_ALLANY:
1621 branchlength++;
1622 cc++;
1623 break;
1624
1625 /* The single-byte matcher isn't allowed */
1626
1627 case OP_ANYBYTE:
1628 return -2;
1629
1630 /* Check a class for variable quantification */
1631
1632 #ifdef SUPPORT_UTF8
1633 case OP_XCLASS:
1634 cc += GET(cc, 1) - 33;
1635 /* Fall through */
1636 #endif
1637
1638 case OP_CLASS:
1639 case OP_NCLASS:
1640 cc += 33;
1641
1642 switch (*cc)
1643 {
1644 case OP_CRSTAR:
1645 case OP_CRMINSTAR:
1646 case OP_CRQUERY:
1647 case OP_CRMINQUERY:
1648 return -1;
1649
1650 case OP_CRRANGE:
1651 case OP_CRMINRANGE:
1652 if (GET2(cc,1) != GET2(cc,3)) return -1;
1653 branchlength += GET2(cc,1);
1654 cc += 5;
1655 break;
1656
1657 default:
1658 branchlength++;
1659 }
1660 break;
1661
1662 /* Anything else is variable length */
1663
1664 default:
1665 return -1;
1666 }
1667 }
1668 /* Control never gets here */
1669 }
1670
1671
1672
1673
1674 /*************************************************
1675 * Scan compiled regex for specific bracket *
1676 *************************************************/
1677
1678 /* This little function scans through a compiled pattern until it finds a
1679 capturing bracket with the given number, or, if the number is negative, an
1680 instance of OP_REVERSE for a lookbehind. The function is global in the C sense
1681 so that it can be called from pcre_study() when finding the minimum matching
1682 length.
1683
1684 Arguments:
1685 code points to start of expression
1686 utf8 TRUE in UTF-8 mode
1687 number the required bracket number or negative to find a lookbehind
1688
1689 Returns: pointer to the opcode for the bracket, or NULL if not found
1690 */
1691
1692 const uschar *
1693 _pcre_find_bracket(const uschar *code, BOOL utf8, int number)
1694 {
1695 for (;;)
1696 {
1697 register int c = *code;
1698
1699 if (c == OP_END) return NULL;
1700
1701 /* XCLASS is used for classes that cannot be represented just by a bit
1702 map. This includes negated single high-valued characters. The length in
1703 the table is zero; the actual length is stored in the compiled code. */
1704
1705 if (c == OP_XCLASS) code += GET(code, 1);
1706
1707 /* Handle recursion */
1708
1709 else if (c == OP_REVERSE)
1710 {
1711 if (number < 0) return (uschar *)code;
1712 code += _pcre_OP_lengths[c];
1713 }
1714
1715 /* Handle capturing bracket */
1716
1717 else if (c == OP_CBRA || c == OP_SCBRA ||
1718 c == OP_CBRAPOS || c == OP_SCBRAPOS)
1719 {
1720 int n = GET2(code, 1+LINK_SIZE);
1721 if (n == number) return (uschar *)code;
1722 code += _pcre_OP_lengths[c];
1723 }
1724
1725 /* Otherwise, we can get the item's length from the table, except that for
1726 repeated character types, we have to test for \p and \P, which have an extra
1727 two bytes of parameters, and for MARK/PRUNE/SKIP/THEN with an argument, we
1728 must add in its length. */
1729
1730 else
1731 {
1732 switch(c)
1733 {
1734 case OP_TYPESTAR:
1735 case OP_TYPEMINSTAR:
1736 case OP_TYPEPLUS:
1737 case OP_TYPEMINPLUS:
1738 case OP_TYPEQUERY:
1739 case OP_TYPEMINQUERY:
1740 case OP_TYPEPOSSTAR:
1741 case OP_TYPEPOSPLUS:
1742 case OP_TYPEPOSQUERY:
1743 if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2;
1744 break;
1745
1746 case OP_TYPEUPTO:
1747 case OP_TYPEMINUPTO:
1748 case OP_TYPEEXACT:
1749 case OP_TYPEPOSUPTO:
1750 if (code[3] == OP_PROP || code[3] == OP_NOTPROP) code += 2;
1751 break;
1752
1753 case OP_MARK:
1754 case OP_PRUNE_ARG:
1755 case OP_SKIP_ARG:
1756 code += code[1];
1757 break;
1758
1759 case OP_THEN_ARG:
1760 code += code[1+LINK_SIZE];
1761 break;
1762 }
1763
1764 /* Add in the fixed length from the table */
1765
1766 code += _pcre_OP_lengths[c];
1767
1768 /* In UTF-8 mode, opcodes that are followed by a character may be followed by
1769 a multi-byte character. The length in the table is a minimum, so we have to
1770 arrange to skip the extra bytes. */
1771
1772 #ifdef SUPPORT_UTF8
1773 if (utf8) switch(c)
1774 {
1775 case OP_CHAR:
1776 case OP_CHARI:
1777 case OP_EXACT:
1778 case OP_EXACTI:
1779 case OP_UPTO:
1780 case OP_UPTOI:
1781 case OP_MINUPTO:
1782 case OP_MINUPTOI:
1783 case OP_POSUPTO:
1784 case OP_POSUPTOI:
1785 case OP_STAR:
1786 case OP_STARI:
1787 case OP_MINSTAR:
1788 case OP_MINSTARI:
1789 case OP_POSSTAR:
1790 case OP_POSSTARI:
1791 case OP_PLUS:
1792 case OP_PLUSI:
1793 case OP_MINPLUS:
1794 case OP_MINPLUSI:
1795 case OP_POSPLUS:
1796 case OP_POSPLUSI:
1797 case OP_QUERY:
1798 case OP_QUERYI:
1799 case OP_MINQUERY:
1800 case OP_MINQUERYI:
1801 case OP_POSQUERY:
1802 case OP_POSQUERYI:
1803 if (code[-1] >= 0xc0) code += _pcre_utf8_table4[code[-1] & 0x3f];
1804 break;
1805 }
1806 #else
1807 (void)(utf8); /* Keep compiler happy by referencing function argument */
1808 #endif
1809 }
1810 }
1811 }
1812
1813
1814
1815 /*************************************************
1816 * Scan compiled regex for recursion reference *
1817 *************************************************/
1818
1819 /* This little function scans through a compiled pattern until it finds an
1820 instance of OP_RECURSE.
1821
1822 Arguments:
1823 code points to start of expression
1824 utf8 TRUE in UTF-8 mode
1825
1826 Returns: pointer to the opcode for OP_RECURSE, or NULL if not found
1827 */
1828
1829 static const uschar *
1830 find_recurse(const uschar *code, BOOL utf8)
1831 {
1832 for (;;)
1833 {
1834 register int c = *code;
1835 if (c == OP_END) return NULL;
1836 if (c == OP_RECURSE) return code;
1837
1838 /* XCLASS is used for classes that cannot be represented just by a bit
1839 map. This includes negated single high-valued characters. The length in
1840 the table is zero; the actual length is stored in the compiled code. */
1841
1842 if (c == OP_XCLASS) code += GET(code, 1);
1843
1844 /* Otherwise, we can get the item's length from the table, except that for
1845 repeated character types, we have to test for \p and \P, which have an extra
1846 two bytes of parameters, and for MARK/PRUNE/SKIP/THEN with an argument, we
1847 must add in its length. */
1848
1849 else
1850 {
1851 switch(c)
1852 {
1853 case OP_TYPESTAR:
1854 case OP_TYPEMINSTAR:
1855 case OP_TYPEPLUS:
1856 case OP_TYPEMINPLUS:
1857 case OP_TYPEQUERY:
1858 case OP_TYPEMINQUERY:
1859 case OP_TYPEPOSSTAR:
1860 case OP_TYPEPOSPLUS:
1861 case OP_TYPEPOSQUERY:
1862 if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2;
1863 break;
1864
1865 case OP_TYPEPOSUPTO:
1866 case OP_TYPEUPTO:
1867 case OP_TYPEMINUPTO:
1868 case OP_TYPEEXACT:
1869 if (code[3] == OP_PROP || code[3] == OP_NOTPROP) code += 2;
1870 break;
1871
1872 case OP_MARK:
1873 case OP_PRUNE_ARG:
1874 case OP_SKIP_ARG:
1875 code += code[1];
1876 break;
1877
1878 case OP_THEN_ARG:
1879 code += code[1+LINK_SIZE];
1880 break;
1881 }
1882
1883 /* Add in the fixed length from the table */
1884
1885 code += _pcre_OP_lengths[c];
1886
1887 /* In UTF-8 mode, opcodes that are followed by a character may be followed
1888 by a multi-byte character. The length in the table is a minimum, so we have
1889 to arrange to skip the extra bytes. */
1890
1891 #ifdef SUPPORT_UTF8
1892 if (utf8) switch(c)
1893 {
1894 case OP_CHAR:
1895 case OP_CHARI:
1896 case OP_EXACT:
1897 case OP_EXACTI:
1898 case OP_UPTO:
1899 case OP_UPTOI:
1900 case OP_MINUPTO:
1901 case OP_MINUPTOI:
1902 case OP_POSUPTO:
1903 case OP_POSUPTOI:
1904 case OP_STAR:
1905 case OP_STARI:
1906 case OP_MINSTAR:
1907 case OP_MINSTARI:
1908 case OP_POSSTAR:
1909 case OP_POSSTARI:
1910 case OP_PLUS:
1911 case OP_PLUSI:
1912 case OP_MINPLUS:
1913 case OP_MINPLUSI:
1914 case OP_POSPLUS:
1915 case OP_POSPLUSI:
1916 case OP_QUERY:
1917 case OP_QUERYI:
1918 case OP_MINQUERY:
1919 case OP_MINQUERYI:
1920 case OP_POSQUERY:
1921 case OP_POSQUERYI:
1922 if (code[-1] >= 0xc0) code += _pcre_utf8_table4[code[-1] & 0x3f];
1923 break;
1924 }
1925 #else
1926 (void)(utf8); /* Keep compiler happy by referencing function argument */
1927 #endif
1928 }
1929 }
1930 }
1931
1932
1933
1934 /*************************************************
1935 * Scan compiled branch for non-emptiness *
1936 *************************************************/
1937
1938 /* This function scans through a branch of a compiled pattern to see whether it
1939 can match the empty string or not. It is called from could_be_empty()
1940 below and from compile_branch() when checking for an unlimited repeat of a
1941 group that can match nothing. Note that first_significant_code() skips over
1942 backward and negative forward assertions when its final argument is TRUE. If we
1943 hit an unclosed bracket, we return "empty" - this means we've struck an inner
1944 bracket whose current branch will already have been scanned.
1945
1946 Arguments:
1947 code points to start of search
1948 endcode points to where to stop
1949 utf8 TRUE if in UTF8 mode
1950 cd contains pointers to tables etc.
1951
1952 Returns: TRUE if what is matched could be empty
1953 */
1954
1955 static BOOL
1956 could_be_empty_branch(const uschar *code, const uschar *endcode, BOOL utf8,
1957 compile_data *cd)
1958 {
1959 register int c;
1960 for (code = first_significant_code(code + _pcre_OP_lengths[*code], TRUE);
1961 code < endcode;
1962 code = first_significant_code(code + _pcre_OP_lengths[c], TRUE))
1963 {
1964 const uschar *ccode;
1965
1966 c = *code;
1967
1968 /* Skip over forward assertions; the other assertions are skipped by
1969 first_significant_code() with a TRUE final argument. */
1970
1971 if (c == OP_ASSERT)
1972 {
1973 do code += GET(code, 1); while (*code == OP_ALT);
1974 c = *code;
1975 continue;
1976 }
1977
1978 /* For a recursion/subroutine call, if its end has been reached, which
1979 implies a backward reference subroutine call, we can scan it. If it's a
1980 forward reference subroutine call, we can't. To detect forward reference
1981 we have to scan up the list that is kept in the workspace. This function is
1982 called only when doing the real compile, not during the pre-compile that
1983 measures the size of the compiled pattern. */
1984
1985 if (c == OP_RECURSE)
1986 {
1987 const uschar *scode;
1988 BOOL empty_branch;
1989
1990 /* Test for forward reference */
1991
1992 for (scode = cd->start_workspace; scode < cd->hwm; scode += LINK_SIZE)
1993 if (GET(scode, 0) == code + 1 - cd->start_code) return TRUE;
1994
1995 /* Not a forward reference, test for completed backward reference */
1996
1997 empty_branch = FALSE;
1998 scode = cd->start_code + GET(code, 1);
1999 if (GET(scode, 1) == 0) return TRUE; /* Unclosed */
2000
2001 /* Completed backwards reference */
2002
2003 do
2004 {
2005 if (could_be_empty_branch(scode, endcode, utf8, cd))
2006 {
2007 empty_branch = TRUE;
2008 break;
2009 }
2010 scode += GET(scode, 1);
2011 }
2012 while (*scode == OP_ALT);
2013
2014 if (!empty_branch) return FALSE; /* All branches are non-empty */
2015 continue;
2016 }
2017
2018 /* Groups with zero repeats can of course be empty; skip them. */
2019
2020 if (c == OP_BRAZERO || c == OP_BRAMINZERO || c == OP_SKIPZERO ||
2021 c == OP_BRAPOSZERO)
2022 {
2023 code += _pcre_OP_lengths[c];
2024 do code += GET(code, 1); while (*code == OP_ALT);
2025 c = *code;
2026 continue;
2027 }
2028
2029 /* A nested group that is already marked as "could be empty" can just be
2030 skipped. */
2031
2032 if (c == OP_SBRA || c == OP_SBRAPOS ||
2033 c == OP_SCBRA || c == OP_SCBRAPOS)
2034 {
2035 do code += GET(code, 1); while (*code == OP_ALT);
2036 c = *code;
2037 continue;
2038 }
2039
2040 /* For other groups, scan the branches. */
2041
2042 if (c == OP_BRA || c == OP_BRAPOS ||
2043 c == OP_CBRA || c == OP_CBRAPOS ||
2044 c == OP_ONCE || c == OP_COND)
2045 {
2046 BOOL empty_branch;
2047 if (GET(code, 1) == 0) return TRUE; /* Hit unclosed bracket */
2048
2049 /* If a conditional group has only one branch, there is a second, implied,
2050 empty branch, so just skip over the conditional, because it could be empty.
2051 Otherwise, scan the individual branches of the group. */
2052
2053 if (c == OP_COND && code[GET(code, 1)] != OP_ALT)
2054 code += GET(code, 1);
2055 else
2056 {
2057 empty_branch = FALSE;
2058 do
2059 {
2060 if (!empty_branch && could_be_empty_branch(code, endcode, utf8, cd))
2061 empty_branch = TRUE;
2062 code += GET(code, 1);
2063 }
2064 while (*code == OP_ALT);
2065 if (!empty_branch) return FALSE; /* All branches are non-empty */
2066 }
2067
2068 c = *code;
2069 continue;
2070 }
2071
2072 /* Handle the other opcodes */
2073
2074 switch (c)
2075 {
2076 /* Check for quantifiers after a class. XCLASS is used for classes that
2077 cannot be represented just by a bit map. This includes negated single
2078 high-valued characters. The length in _pcre_OP_lengths[] is zero; the
2079 actual length is stored in the compiled code, so we must update "code"
2080 here. */
2081
2082 #ifdef SUPPORT_UTF8
2083 case OP_XCLASS:
2084 ccode = code += GET(code, 1);
2085 goto CHECK_CLASS_REPEAT;
2086 #endif
2087
2088 case OP_CLASS:
2089 case OP_NCLASS:
2090 ccode = code + 33;
2091
2092 #ifdef SUPPORT_UTF8
2093 CHECK_CLASS_REPEAT:
2094 #endif
2095
2096 switch (*ccode)
2097 {
2098 case OP_CRSTAR: /* These could be empty; continue */
2099 case OP_CRMINSTAR:
2100 case OP_CRQUERY:
2101 case OP_CRMINQUERY:
2102 break;
2103
2104 default: /* Non-repeat => class must match */
2105 case OP_CRPLUS: /* These repeats aren't empty */
2106 case OP_CRMINPLUS:
2107 return FALSE;
2108
2109 case OP_CRRANGE:
2110 case OP_CRMINRANGE:
2111 if (GET2(ccode, 1) > 0) return FALSE; /* Minimum > 0 */
2112 break;
2113 }
2114 break;
2115
2116 /* Opcodes that must match a character */
2117
2118 case OP_PROP:
2119 case OP_NOTPROP:
2120 case OP_EXTUNI:
2121 case OP_NOT_DIGIT:
2122 case OP_DIGIT:
2123 case OP_NOT_WHITESPACE:
2124 case OP_WHITESPACE:
2125 case OP_NOT_WORDCHAR:
2126 case OP_WORDCHAR:
2127 case OP_ANY:
2128 case OP_ALLANY:
2129 case OP_ANYBYTE:
2130 case OP_CHAR:
2131 case OP_CHARI:
2132 case OP_NOT:
2133 case OP_NOTI:
2134 case OP_PLUS:
2135 case OP_MINPLUS:
2136 case OP_POSPLUS:
2137 case OP_EXACT:
2138 case OP_NOTPLUS:
2139 case OP_NOTMINPLUS:
2140 case OP_NOTPOSPLUS:
2141 case OP_NOTEXACT:
2142 case OP_TYPEPLUS:
2143 case OP_TYPEMINPLUS:
2144 case OP_TYPEPOSPLUS:
2145 case OP_TYPEEXACT:
2146 return FALSE;
2147
2148 /* These are going to continue, as they may be empty, but we have to
2149 fudge the length for the \p and \P cases. */
2150
2151 case OP_TYPESTAR:
2152 case OP_TYPEMINSTAR:
2153 case OP_TYPEPOSSTAR:
2154 case OP_TYPEQUERY:
2155 case OP_TYPEMINQUERY:
2156 case OP_TYPEPOSQUERY:
2157 if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2;
2158 break;
2159
2160 /* Same for these */
2161
2162 case OP_TYPEUPTO:
2163 case OP_TYPEMINUPTO:
2164 case OP_TYPEPOSUPTO:
2165 if (code[3] == OP_PROP || code[3] == OP_NOTPROP) code += 2;
2166 break;
2167
2168 /* End of branch */
2169
2170 case OP_KET:
2171 case OP_KETRMAX:
2172 case OP_KETRMIN:
2173 case OP_KETRPOS:
2174 case OP_ALT:
2175 return TRUE;
2176
2177 /* In UTF-8 mode, STAR, MINSTAR, POSSTAR, QUERY, MINQUERY, POSQUERY, UPTO,
2178 MINUPTO, and POSUPTO may be followed by a multibyte character */
2179
2180 #ifdef SUPPORT_UTF8
2181 case OP_STAR:
2182 case OP_STARI:
2183 case OP_MINSTAR:
2184 case OP_MINSTARI:
2185 case OP_POSSTAR:
2186 case OP_POSSTARI:
2187 case OP_QUERY:
2188 case OP_QUERYI:
2189 case OP_MINQUERY:
2190 case OP_MINQUERYI:
2191 case OP_POSQUERY:
2192 case OP_POSQUERYI:
2193 if (utf8 && code[1] >= 0xc0) code += _pcre_utf8_table4[code[1] & 0x3f];
2194 break;
2195
2196 case OP_UPTO:
2197 case OP_UPTOI:
2198 case OP_MINUPTO:
2199 case OP_MINUPTOI:
2200 case OP_POSUPTO:
2201 case OP_POSUPTOI:
2202 if (utf8 && code[3] >= 0xc0) code += _pcre_utf8_table4[code[3] & 0x3f];
2203 break;
2204 #endif
2205
2206 /* MARK, and PRUNE/SKIP/THEN with an argument must skip over the argument
2207 string. */
2208
2209 case OP_MARK:
2210 case OP_PRUNE_ARG:
2211 case OP_SKIP_ARG:
2212 code += code[1];
2213 break;
2214
2215 case OP_THEN_ARG:
2216 code += code[1+LINK_SIZE];
2217 break;
2218
2219 /* None of the remaining opcodes are required to match a character. */
2220
2221 default:
2222 break;
2223 }
2224 }
2225
2226 return TRUE;
2227 }
2228
2229
2230
2231 /*************************************************
2232 * Scan compiled regex for non-emptiness *
2233 *************************************************/
2234
2235 /* This function is called to check for left recursive calls. We want to check
2236 the current branch of the current pattern to see if it could match the empty
2237 string. If it could, we must look outwards for branches at other levels,
2238 stopping when we pass beyond the bracket which is the subject of the recursion.
2239 This function is called only during the real compile, not during the
2240 pre-compile.
2241
2242 Arguments:
2243 code points to start of the recursion
2244 endcode points to where to stop (current RECURSE item)
2245 bcptr points to the chain of current (unclosed) branch starts
2246 utf8 TRUE if in UTF-8 mode
2247 cd pointers to tables etc
2248
2249 Returns: TRUE if what is matched could be empty
2250 */
2251
2252 static BOOL
2253 could_be_empty(const uschar *code, const uschar *endcode, branch_chain *bcptr,
2254 BOOL utf8, compile_data *cd)
2255 {
2256 while (bcptr != NULL && bcptr->current_branch >= code)
2257 {
2258 if (!could_be_empty_branch(bcptr->current_branch, endcode, utf8, cd))
2259 return FALSE;
2260 bcptr = bcptr->outer;
2261 }
2262 return TRUE;
2263 }
2264
2265
2266
2267 /*************************************************
2268 * Check for POSIX class syntax *
2269 *************************************************/
2270
2271 /* This function is called when the sequence "[:" or "[." or "[=" is
2272 encountered in a character class. It checks whether this is followed by a
2273 sequence of characters terminated by a matching ":]" or ".]" or "=]". If we
2274 reach an unescaped ']' without the special preceding character, return FALSE.
2275
2276 Originally, this function only recognized a sequence of letters between the
2277 terminators, but it seems that Perl recognizes any sequence of characters,
2278 though of course unknown POSIX names are subsequently rejected. Perl gives an
2279 "Unknown POSIX class" error for [:f\oo:] for example, where previously PCRE
2280 didn't consider this to be a POSIX class. Likewise for [:1234:].
2281
2282 The problem in trying to be exactly like Perl is in the handling of escapes. We
2283 have to be sure that [abc[:x\]pqr] is *not* treated as containing a POSIX
2284 class, but [abc[:x\]pqr:]] is (so that an error can be generated). The code
2285 below handles the special case of \], but does not try to do any other escape
2286 processing. This makes it different from Perl for cases such as [:l\ower:]
2287 where Perl recognizes it as the POSIX class "lower" but PCRE does not recognize
2288 "l\ower". This is a lesser evil that not diagnosing bad classes when Perl does,
2289 I think.
2290
2291 Arguments:
2292 ptr pointer to the initial [
2293 endptr where to return the end pointer
2294
2295 Returns: TRUE or FALSE
2296 */
2297
2298 static BOOL
2299 check_posix_syntax(const uschar *ptr, const uschar **endptr)
2300 {
2301 int terminator; /* Don't combine these lines; the Solaris cc */
2302 terminator = *(++ptr); /* compiler warns about "non-constant" initializer. */
2303 for (++ptr; *ptr != 0; ptr++)
2304 {
2305 if (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_RIGHT_SQUARE_BRACKET) ptr++; else
2306 {
2307 if (*ptr == CHAR_RIGHT_SQUARE_BRACKET) return FALSE;
2308 if (*ptr == terminator && ptr[1] == CHAR_RIGHT_SQUARE_BRACKET)
2309 {
2310 *endptr = ptr;
2311 return TRUE;
2312 }
2313 }
2314 }
2315 return FALSE;
2316 }
2317
2318
2319
2320
2321 /*************************************************
2322 * Check POSIX class name *
2323 *************************************************/
2324
2325 /* This function is called to check the name given in a POSIX-style class entry
2326 such as [:alnum:].
2327
2328 Arguments:
2329 ptr points to the first letter
2330 len the length of the name
2331
2332 Returns: a value representing the name, or -1 if unknown
2333 */
2334
2335 static int
2336 check_posix_name(const uschar *ptr, int len)
2337 {
2338 const char *pn = posix_names;
2339 register int yield = 0;
2340 while (posix_name_lengths[yield] != 0)
2341 {
2342 if (len == posix_name_lengths[yield] &&
2343 strncmp((const char *)ptr, pn, len) == 0) return yield;
2344 pn += posix_name_lengths[yield] + 1;
2345 yield++;
2346 }
2347 return -1;
2348 }
2349
2350
2351 /*************************************************
2352 * Adjust OP_RECURSE items in repeated group *
2353 *************************************************/
2354
2355 /* OP_RECURSE items contain an offset from the start of the regex to the group
2356 that is referenced. This means that groups can be replicated for fixed
2357 repetition simply by copying (because the recursion is allowed to refer to
2358 earlier groups that are outside the current group). However, when a group is
2359 optional (i.e. the minimum quantifier is zero), OP_BRAZERO or OP_SKIPZERO is
2360 inserted before it, after it has been compiled. This means that any OP_RECURSE
2361 items within it that refer to the group itself or any contained groups have to
2362 have their offsets adjusted. That one of the jobs of this function. Before it
2363 is called, the partially compiled regex must be temporarily terminated with
2364 OP_END.
2365
2366 This function has been extended with the possibility of forward references for
2367 recursions and subroutine calls. It must also check the list of such references
2368 for the group we are dealing with. If it finds that one of the recursions in
2369 the current group is on this list, it adjusts the offset in the list, not the
2370 value in the reference (which is a group number).
2371
2372 Arguments:
2373 group points to the start of the group
2374 adjust the amount by which the group is to be moved
2375 utf8 TRUE in UTF-8 mode
2376 cd contains pointers to tables etc.
2377 save_hwm the hwm forward reference pointer at the start of the group
2378
2379 Returns: nothing
2380 */
2381
2382 static void
2383 adjust_recurse(uschar *group, int adjust, BOOL utf8, compile_data *cd,
2384 uschar *save_hwm)
2385 {
2386 uschar *ptr = group;
2387
2388 while ((ptr = (uschar *)find_recurse(ptr, utf8)) != NULL)
2389 {
2390 int offset;
2391 uschar *hc;
2392
2393 /* See if this recursion is on the forward reference list. If so, adjust the
2394 reference. */
2395
2396 for (hc = save_hwm; hc < cd->hwm; hc += LINK_SIZE)
2397 {
2398 offset = GET(hc, 0);
2399 if (cd->start_code + offset == ptr + 1)
2400 {
2401 PUT(hc, 0, offset + adjust);
2402 break;
2403 }
2404 }
2405
2406 /* Otherwise, adjust the recursion offset if it's after the start of this
2407 group. */
2408
2409 if (hc >= cd->hwm)
2410 {
2411 offset = GET(ptr, 1);
2412 if (cd->start_code + offset >= group) PUT(ptr, 1, offset + adjust);
2413 }
2414
2415 ptr += 1 + LINK_SIZE;
2416 }
2417 }
2418
2419
2420
2421 /*************************************************
2422 * Insert an automatic callout point *
2423 *************************************************/
2424
2425 /* This function is called when the PCRE_AUTO_CALLOUT option is set, to insert
2426 callout points before each pattern item.
2427
2428 Arguments:
2429 code current code pointer
2430 ptr current pattern pointer
2431 cd pointers to tables etc
2432
2433 Returns: new code pointer
2434 */
2435
2436 static uschar *
2437 auto_callout(uschar *code, const uschar *ptr, compile_data *cd)
2438 {
2439 *code++ = OP_CALLOUT;
2440 *code++ = 255;
2441 PUT(code, 0, (int)(ptr - cd->start_pattern)); /* Pattern offset */
2442 PUT(code, LINK_SIZE, 0); /* Default length */
2443 return code + 2*LINK_SIZE;
2444 }
2445
2446
2447
2448 /*************************************************
2449 * Complete a callout item *
2450 *************************************************/
2451
2452 /* A callout item contains the length of the next item in the pattern, which
2453 we can't fill in till after we have reached the relevant point. This is used
2454 for both automatic and manual callouts.
2455
2456 Arguments:
2457 previous_callout points to previous callout item
2458 ptr current pattern pointer
2459 cd pointers to tables etc
2460
2461 Returns: nothing
2462 */
2463
2464 static void
2465 complete_callout(uschar *previous_callout, const uschar *ptr, compile_data *cd)
2466 {
2467 int length = (int)(ptr - cd->start_pattern - GET(previous_callout, 2));
2468 PUT(previous_callout, 2 + LINK_SIZE, length);
2469 }
2470
2471
2472
2473 #ifdef SUPPORT_UCP
2474 /*************************************************
2475 * Get othercase range *
2476 *************************************************/
2477
2478 /* This function is passed the start and end of a class range, in UTF-8 mode
2479 with UCP support. It searches up the characters, looking for internal ranges of
2480 characters in the "other" case. Each call returns the next one, updating the
2481 start address.
2482
2483 Arguments:
2484 cptr points to starting character value; updated
2485 d end value
2486 ocptr where to put start of othercase range
2487 odptr where to put end of othercase range
2488
2489 Yield: TRUE when range returned; FALSE when no more
2490 */
2491
2492 static BOOL
2493 get_othercase_range(unsigned int *cptr, unsigned int d, unsigned int *ocptr,
2494 unsigned int *odptr)
2495 {
2496 unsigned int c, othercase, next;
2497
2498 for (c = *cptr; c <= d; c++)
2499 { if ((othercase = UCD_OTHERCASE(c)) != c) break; }
2500
2501 if (c > d) return FALSE;
2502
2503 *ocptr = othercase;
2504 next = othercase + 1;
2505
2506 for (++c; c <= d; c++)
2507 {
2508 if (UCD_OTHERCASE(c) != next) break;
2509 next++;
2510 }
2511
2512 *odptr = next - 1;
2513 *cptr = c;
2514
2515 return TRUE;
2516 }
2517
2518
2519
2520 /*************************************************
2521 * Check a character and a property *
2522 *************************************************/
2523
2524 /* This function is called by check_auto_possessive() when a property item
2525 is adjacent to a fixed character.
2526
2527 Arguments:
2528 c the character
2529 ptype the property type
2530 pdata the data for the type
2531 negated TRUE if it's a negated property (\P or \p{^)
2532
2533 Returns: TRUE if auto-possessifying is OK
2534 */
2535
2536 static BOOL
2537 check_char_prop(int c, int ptype, int pdata, BOOL negated)
2538 {
2539 const ucd_record *prop = GET_UCD(c);
2540 switch(ptype)
2541 {
2542 case PT_LAMP:
2543 return (prop->chartype == ucp_Lu ||
2544 prop->chartype == ucp_Ll ||
2545 prop->chartype == ucp_Lt) == negated;
2546
2547 case PT_GC:
2548 return (pdata == _pcre_ucp_gentype[prop->chartype]) == negated;
2549
2550 case PT_PC:
2551 return (pdata == prop->chartype) == negated;
2552
2553 case PT_SC:
2554 return (pdata == prop->script) == negated;
2555
2556 /* These are specials */
2557
2558 case PT_ALNUM:
2559 return (_pcre_ucp_gentype[prop->chartype] == ucp_L ||
2560 _pcre_ucp_gentype[prop->chartype] == ucp_N) == negated;
2561
2562 case PT_SPACE: /* Perl space */
2563 return (_pcre_ucp_gentype[prop->chartype] == ucp_Z ||
2564 c == CHAR_HT || c == CHAR_NL || c == CHAR_FF || c == CHAR_CR)
2565 == negated;
2566
2567 case PT_PXSPACE: /* POSIX space */
2568 return (_pcre_ucp_gentype[prop->chartype] == ucp_Z ||
2569 c == CHAR_HT || c == CHAR_NL || c == CHAR_VT ||
2570 c == CHAR_FF || c == CHAR_CR)
2571 == negated;
2572
2573 case PT_WORD:
2574 return (_pcre_ucp_gentype[prop->chartype] == ucp_L ||
2575 _pcre_ucp_gentype[prop->chartype] == ucp_N ||
2576 c == CHAR_UNDERSCORE) == negated;
2577 }
2578 return FALSE;
2579 }
2580 #endif /* SUPPORT_UCP */
2581
2582
2583
2584 /*************************************************
2585 * Check if auto-possessifying is possible *
2586 *************************************************/
2587
2588 /* This function is called for unlimited repeats of certain items, to see
2589 whether the next thing could possibly match the repeated item. If not, it makes
2590 sense to automatically possessify the repeated item.
2591
2592 Arguments:
2593 previous pointer to the repeated opcode
2594 utf8 TRUE in UTF-8 mode
2595 ptr next character in pattern
2596 options options bits
2597 cd contains pointers to tables etc.
2598
2599 Returns: TRUE if possessifying is wanted
2600 */
2601
2602 static BOOL
2603 check_auto_possessive(const uschar *previous, BOOL utf8, const uschar *ptr,
2604 int options, compile_data *cd)
2605 {
2606 int c, next;
2607 int op_code = *previous++;
2608
2609 /* Skip whitespace and comments in extended mode */
2610
2611 if ((options & PCRE_EXTENDED) != 0)
2612 {
2613 for (;;)
2614 {
2615 while ((cd->ctypes[*ptr] & ctype_space) != 0) ptr++;
2616 if (*ptr == CHAR_NUMBER_SIGN)
2617 {
2618 ptr++;
2619 while (*ptr != 0)
2620 {
2621 if (IS_NEWLINE(ptr)) { ptr += cd->nllen; break; }
2622 ptr++;
2623 #ifdef SUPPORT_UTF8
2624 if (utf8) while ((*ptr & 0xc0) == 0x80) ptr++;
2625 #endif
2626 }
2627 }
2628 else break;
2629 }
2630 }
2631
2632 /* If the next item is one that we can handle, get its value. A non-negative
2633 value is a character, a negative value is an escape value. */
2634
2635 if (*ptr == CHAR_BACKSLASH)
2636 {
2637 int temperrorcode = 0;
2638 next = check_escape(&ptr, &temperrorcode, cd->bracount, options, FALSE);
2639 if (temperrorcode != 0) return FALSE;
2640 ptr++; /* Point after the escape sequence */
2641 }
2642
2643 else if ((cd->ctypes[*ptr] & ctype_meta) == 0)
2644 {
2645 #ifdef SUPPORT_UTF8
2646 if (utf8) { GETCHARINC(next, ptr); } else
2647 #endif
2648 next = *ptr++;
2649 }
2650
2651 else return FALSE;
2652
2653 /* Skip whitespace and comments in extended mode */
2654
2655 if ((options & PCRE_EXTENDED) != 0)
2656 {
2657 for (;;)
2658 {
2659 while ((cd->ctypes[*ptr] & ctype_space) != 0) ptr++;
2660 if (*ptr == CHAR_NUMBER_SIGN)
2661 {
2662 ptr++;
2663 while (*ptr != 0)
2664 {
2665 if (IS_NEWLINE(ptr)) { ptr += cd->nllen; break; }
2666 ptr++;
2667 #ifdef SUPPORT_UTF8
2668 if (utf8) while ((*ptr & 0xc0) == 0x80) ptr++;
2669 #endif
2670 }
2671 }
2672 else break;
2673 }
2674 }
2675
2676 /* If the next thing is itself optional, we have to give up. */
2677
2678 if (*ptr == CHAR_ASTERISK || *ptr == CHAR_QUESTION_MARK ||
2679 strncmp((char *)ptr, STR_LEFT_CURLY_BRACKET STR_0 STR_COMMA, 3) == 0)
2680 return FALSE;
2681
2682 /* Now compare the next item with the previous opcode. First, handle cases when
2683 the next item is a character. */
2684
2685 if (next >= 0) switch(op_code)
2686 {
2687 case OP_CHAR:
2688 #ifdef SUPPORT_UTF8
2689 GETCHARTEST(c, previous);
2690 #else
2691 c = *previous;
2692 #endif
2693 return c != next;
2694
2695 /* For CHARI (caseless character) we must check the other case. If we have
2696 Unicode property support, we can use it to test the other case of
2697 high-valued characters. */
2698
2699 case OP_CHARI:
2700 #ifdef SUPPORT_UTF8
2701 GETCHARTEST(c, previous);
2702 #else
2703 c = *previous;
2704 #endif
2705 if (c == next) return FALSE;
2706 #ifdef SUPPORT_UTF8
2707 if (utf8)
2708 {
2709 unsigned int othercase;
2710 if (next < 128) othercase = cd->fcc[next]; else
2711 #ifdef SUPPORT_UCP
2712 othercase = UCD_OTHERCASE((unsigned int)next);
2713 #else
2714 othercase = NOTACHAR;
2715 #endif
2716 return (unsigned int)c != othercase;
2717 }
2718 else
2719 #endif /* SUPPORT_UTF8 */
2720 return (c != cd->fcc[next]); /* Non-UTF-8 mode */
2721
2722 /* For OP_NOT and OP_NOTI, the data is always a single-byte character. These
2723 opcodes are not used for multi-byte characters, because they are coded using
2724 an XCLASS instead. */
2725
2726 case OP_NOT:
2727 return (c = *previous) == next;
2728
2729 case OP_NOTI:
2730 if ((c = *previous) == next) return TRUE;
2731 #ifdef SUPPORT_UTF8
2732 if (utf8)
2733 {
2734 unsigned int othercase;
2735 if (next < 128) othercase = cd->fcc[next]; else
2736 #ifdef SUPPORT_UCP
2737 othercase = UCD_OTHERCASE(next);
2738 #else
2739 othercase = NOTACHAR;
2740 #endif
2741 return (unsigned int)c == othercase;
2742 }
2743 else
2744 #endif /* SUPPORT_UTF8 */
2745 return (c == cd->fcc[next]); /* Non-UTF-8 mode */
2746
2747 /* Note that OP_DIGIT etc. are generated only when PCRE_UCP is *not* set.
2748 When it is set, \d etc. are converted into OP_(NOT_)PROP codes. */
2749
2750 case OP_DIGIT:
2751 return next > 127 || (cd->ctypes[next] & ctype_digit) == 0;
2752
2753 case OP_NOT_DIGIT:
2754 return next <= 127 && (cd->ctypes[next] & ctype_digit) != 0;
2755
2756 case OP_WHITESPACE:
2757 return next > 127 || (cd->ctypes[next] & ctype_space) == 0;
2758
2759 case OP_NOT_WHITESPACE:
2760 return next <= 127 && (cd->ctypes[next] & ctype_space) != 0;
2761
2762 case OP_WORDCHAR:
2763 return next > 127 || (cd->ctypes[next] & ctype_word) == 0;
2764
2765 case OP_NOT_WORDCHAR:
2766 return next <= 127 && (cd->ctypes[next] & ctype_word) != 0;
2767
2768 case OP_HSPACE:
2769 case OP_NOT_HSPACE:
2770 switch(next)
2771 {
2772 case 0x09:
2773 case 0x20:
2774 case 0xa0:
2775 case 0x1680:
2776 case 0x180e:
2777 case 0x2000:
2778 case 0x2001:
2779 case 0x2002:
2780 case 0x2003:
2781 case 0x2004:
2782 case 0x2005:
2783 case 0x2006:
2784 case 0x2007:
2785 case 0x2008:
2786 case 0x2009:
2787 case 0x200A:
2788 case 0x202f:
2789 case 0x205f:
2790 case 0x3000:
2791 return op_code == OP_NOT_HSPACE;
2792 default:
2793 return op_code != OP_NOT_HSPACE;
2794 }
2795
2796 case OP_ANYNL:
2797 case OP_VSPACE:
2798 case OP_NOT_VSPACE:
2799 switch(next)
2800 {
2801 case 0x0a:
2802 case 0x0b:
2803 case 0x0c:
2804 case 0x0d:
2805 case 0x85:
2806 case 0x2028:
2807 case 0x2029:
2808 return op_code == OP_NOT_VSPACE;
2809 default:
2810 return op_code != OP_NOT_VSPACE;
2811 }
2812
2813 #ifdef SUPPORT_UCP
2814 case OP_PROP:
2815 return check_char_prop(next, previous[0], previous[1], FALSE);
2816
2817 case OP_NOTPROP:
2818 return check_char_prop(next, previous[0], previous[1], TRUE);
2819 #endif
2820
2821 default:
2822 return FALSE;
2823 }
2824
2825
2826 /* Handle the case when the next item is \d, \s, etc. Note that when PCRE_UCP
2827 is set, \d turns into ESC_du rather than ESC_d, etc., so ESC_d etc. are
2828 generated only when PCRE_UCP is *not* set, that is, when only ASCII
2829 characteristics are recognized. Similarly, the opcodes OP_DIGIT etc. are
2830 replaced by OP_PROP codes when PCRE_UCP is set. */
2831
2832 switch(op_code)
2833 {
2834 case OP_CHAR:
2835 case OP_CHARI:
2836 #ifdef SUPPORT_UTF8
2837 GETCHARTEST(c, previous);
2838 #else
2839 c = *previous;
2840 #endif
2841 switch(-next)
2842 {
2843 case ESC_d:
2844 return c > 127 || (cd->ctypes[c] & ctype_digit) == 0;
2845
2846 case ESC_D:
2847 return c <= 127 && (cd->ctypes[c] & ctype_digit) != 0;
2848
2849 case ESC_s:
2850 return c > 127 || (cd->ctypes[c] & ctype_space) == 0;
2851
2852 case ESC_S:
2853 return c <= 127 && (cd->ctypes[c] & ctype_space) != 0;
2854
2855 case ESC_w:
2856 return c > 127 || (cd->ctypes[c] & ctype_word) == 0;
2857
2858 case ESC_W:
2859 return c <= 127 && (cd->ctypes[c] & ctype_word) != 0;
2860
2861 case ESC_h:
2862 case ESC_H:
2863 switch(c)
2864 {
2865 case 0x09:
2866 case 0x20:
2867 case 0xa0:
2868 case 0x1680:
2869 case 0x180e:
2870 case 0x2000:
2871 case 0x2001:
2872 case 0x2002:
2873 case 0x2003:
2874 case 0x2004:
2875 case 0x2005:
2876 case 0x2006:
2877 case 0x2007:
2878 case 0x2008:
2879 case 0x2009:
2880 case 0x200A:
2881 case 0x202f:
2882 case 0x205f:
2883 case 0x3000:
2884 return -next != ESC_h;
2885 default:
2886 return -next == ESC_h;
2887 }
2888
2889 case ESC_v:
2890 case ESC_V:
2891 switch(c)
2892 {
2893 case 0x0a:
2894 case 0x0b:
2895 case 0x0c:
2896 case 0x0d:
2897 case 0x85:
2898 case 0x2028:
2899 case 0x2029:
2900 return -next != ESC_v;
2901 default:
2902 return -next == ESC_v;
2903 }
2904
2905 /* When PCRE_UCP is set, these values get generated for \d etc. Find
2906 their substitutions and process them. The result will always be either
2907 -ESC_p or -ESC_P. Then fall through to process those values. */
2908
2909 #ifdef SUPPORT_UCP
2910 case ESC_du:
2911 case ESC_DU:
2912 case ESC_wu:
2913 case ESC_WU:
2914 case ESC_su:
2915 case ESC_SU:
2916 {
2917 int temperrorcode = 0;
2918 ptr = substitutes[-next - ESC_DU];
2919 next = check_escape(&ptr, &temperrorcode, 0, options, FALSE);
2920 if (temperrorcode != 0) return FALSE;
2921 ptr++; /* For compatibility */
2922 }
2923 /* Fall through */
2924
2925 case ESC_p:
2926 case ESC_P:
2927 {
2928 int ptype, pdata, errorcodeptr;
2929 BOOL negated;
2930
2931 ptr--; /* Make ptr point at the p or P */
2932 ptype = get_ucp(&ptr, &negated, &pdata, &errorcodeptr);
2933 if (ptype < 0) return FALSE;
2934 ptr++; /* Point past the final curly ket */
2935
2936 /* If the property item is optional, we have to give up. (When generated
2937 from \d etc by PCRE_UCP, this test will have been applied much earlier,
2938 to the original \d etc. At this point, ptr will point to a zero byte. */
2939
2940 if (*ptr == CHAR_ASTERISK || *ptr == CHAR_QUESTION_MARK ||
2941 strncmp((char *)ptr, STR_LEFT_CURLY_BRACKET STR_0 STR_COMMA, 3) == 0)
2942 return FALSE;
2943
2944 /* Do the property check. */
2945
2946 return check_char_prop(c, ptype, pdata, (next == -ESC_P) != negated);
2947 }
2948 #endif
2949
2950 default:
2951 return FALSE;
2952 }
2953
2954 /* In principle, support for Unicode properties should be integrated here as
2955 well. It means re-organizing the above code so as to get hold of the property
2956 values before switching on the op-code. However, I wonder how many patterns
2957 combine ASCII \d etc with Unicode properties? (Note that if PCRE_UCP is set,
2958 these op-codes are never generated.) */
2959
2960 case OP_DIGIT:
2961 return next == -ESC_D || next == -ESC_s || next == -ESC_W ||
2962 next == -ESC_h || next == -ESC_v || next == -ESC_R;
2963
2964 case OP_NOT_DIGIT:
2965 return next == -ESC_d;
2966
2967 case OP_WHITESPACE:
2968 return next == -ESC_S || next == -ESC_d || next == -ESC_w || next == -ESC_R;
2969
2970 case OP_NOT_WHITESPACE:
2971 return next == -ESC_s || next == -ESC_h || next == -ESC_v;
2972
2973 case OP_HSPACE:
2974 return next == -ESC_S || next == -ESC_H || next == -ESC_d ||
2975 next == -ESC_w || next == -ESC_v || next == -ESC_R;
2976
2977 case OP_NOT_HSPACE:
2978 return next == -ESC_h;
2979
2980 /* Can't have \S in here because VT matches \S (Perl anomaly) */
2981 case OP_ANYNL:
2982 case OP_VSPACE:
2983 return next == -ESC_V || next == -ESC_d || next == -ESC_w;
2984
2985 case OP_NOT_VSPACE:
2986 return next == -ESC_v || next == -ESC_R;
2987
2988 case OP_WORDCHAR:
2989 return next == -ESC_W || next == -ESC_s || next == -ESC_h ||
2990 next == -ESC_v || next == -ESC_R;
2991
2992 case OP_NOT_WORDCHAR:
2993 return next == -ESC_w || next == -ESC_d;
2994
2995 default:
2996 return FALSE;
2997 }
2998
2999 /* Control does not reach here */
3000 }
3001
3002
3003
3004 /*************************************************
3005 * Compile one branch *
3006 *************************************************/
3007
3008 /* Scan the pattern, compiling it into the a vector. If the options are
3009 changed during the branch, the pointer is used to change the external options
3010 bits. This function is used during the pre-compile phase when we are trying
3011 to find out the amount of memory needed, as well as during the real compile
3012 phase. The value of lengthptr distinguishes the two phases.
3013
3014 Arguments:
3015 optionsptr pointer to the option bits
3016 codeptr points to the pointer to the current code point
3017 ptrptr points to the current pattern pointer
3018 errorcodeptr points to error code variable
3019 firstbyteptr set to initial literal character, or < 0 (REQ_UNSET, REQ_NONE)
3020 reqbyteptr set to the last literal character required, else < 0
3021 bcptr points to current branch chain
3022 cd contains pointers to tables etc.
3023 lengthptr NULL during the real compile phase
3024 points to length accumulator during pre-compile phase
3025
3026 Returns: TRUE on success
3027 FALSE, with *errorcodeptr set non-zero on error
3028 */
3029
3030 static BOOL
3031 compile_branch(int *optionsptr, uschar **codeptr, const uschar **ptrptr,
3032 int *errorcodeptr, int *firstbyteptr, int *reqbyteptr, branch_chain *bcptr,
3033 compile_data *cd, int *lengthptr)
3034 {
3035 int repeat_type, op_type;
3036 int repeat_min = 0, repeat_max = 0; /* To please picky compilers */
3037 int bravalue = 0;
3038 int greedy_default, greedy_non_default;
3039 int firstbyte, reqbyte;
3040 int zeroreqbyte, zerofirstbyte;
3041 int req_caseopt, reqvary, tempreqvary;
3042 int options = *optionsptr;
3043 int after_manual_callout = 0;
3044 int length_prevgroup = 0;
3045 register int c;
3046 register uschar *code = *codeptr;
3047 uschar *last_code = code;
3048 uschar *orig_code = code;
3049 uschar *tempcode;
3050 BOOL inescq = FALSE;
3051 BOOL groupsetfirstbyte = FALSE;
3052 const uschar *ptr = *ptrptr;
3053 const uschar *tempptr;
3054 const uschar *nestptr = NULL;
3055 uschar *previous = NULL;
3056 uschar *previous_callout = NULL;
3057 uschar *save_hwm = NULL;
3058 uschar classbits[32];
3059
3060 #ifdef SUPPORT_UTF8
3061 BOOL class_utf8;
3062 BOOL utf8 = (options & PCRE_UTF8) != 0;
3063 uschar *class_utf8data;
3064 uschar *class_utf8data_base;
3065 uschar utf8_char[6];
3066 #else
3067 BOOL utf8 = FALSE;
3068 uschar *utf8_char = NULL;
3069 #endif
3070
3071 #ifdef PCRE_DEBUG
3072 if (lengthptr != NULL) DPRINTF((">> start branch\n"));
3073 #endif
3074
3075 /* Set up the default and non-default settings for greediness */
3076
3077 greedy_default = ((options & PCRE_UNGREEDY) != 0);
3078 greedy_non_default = greedy_default ^ 1;
3079
3080 /* Initialize no first byte, no required byte. REQ_UNSET means "no char
3081 matching encountered yet". It gets changed to REQ_NONE if we hit something that
3082 matches a non-fixed char first char; reqbyte just remains unset if we never
3083 find one.
3084
3085 When we hit a repeat whose minimum is zero, we may have to adjust these values
3086 to take the zero repeat into account. This is implemented by setting them to
3087 zerofirstbyte and zeroreqbyte when such a repeat is encountered. The individual
3088 item types that can be repeated set these backoff variables appropriately. */
3089
3090 firstbyte = reqbyte = zerofirstbyte = zeroreqbyte = REQ_UNSET;
3091
3092 /* The variable req_caseopt contains either the REQ_CASELESS value or zero,
3093 according to the current setting of the caseless flag. REQ_CASELESS is a bit
3094 value > 255. It is added into the firstbyte or reqbyte variables to record the
3095 case status of the value. This is used only for ASCII characters. */
3096
3097 req_caseopt = ((options & PCRE_CASELESS) != 0)? REQ_CASELESS : 0;
3098
3099 /* Switch on next character until the end of the branch */
3100
3101 for (;; ptr++)
3102 {
3103 BOOL negate_class;
3104 BOOL should_flip_negation;
3105 BOOL possessive_quantifier;
3106 BOOL is_quantifier;
3107 BOOL is_recurse;
3108 BOOL reset_bracount;
3109 int class_charcount;
3110 int class_lastchar;
3111 int newoptions;
3112 int recno;
3113 int refsign;
3114 int skipbytes;
3115 int subreqbyte;
3116 int subfirstbyte;
3117 int terminator;
3118 int mclength;
3119 uschar mcbuffer[8];
3120
3121 /* Get next byte in the pattern */
3122
3123 c = *ptr;
3124
3125 /* If we are at the end of a nested substitution, revert to the outer level
3126 string. Nesting only happens one level deep. */
3127
3128 if (c == 0 && nestptr != NULL)
3129 {
3130 ptr = nestptr;
3131 nestptr = NULL;
3132 c = *ptr;
3133 }
3134
3135 /* If we are in the pre-compile phase, accumulate the length used for the
3136 previous cycle of this loop. */
3137
3138 if (lengthptr != NULL)
3139 {
3140 #ifdef PCRE_DEBUG
3141 if (code > cd->hwm) cd->hwm = code; /* High water info */
3142 #endif
3143 if (code > cd->start_workspace + WORK_SIZE_CHECK) /* Check for overrun */
3144 {
3145 *errorcodeptr = ERR52;
3146 goto FAILED;
3147 }
3148
3149 /* There is at least one situation where code goes backwards: this is the
3150 case of a zero quantifier after a class (e.g. [ab]{0}). At compile time,
3151 the class is simply eliminated. However, it is created first, so we have to
3152 allow memory for it. Therefore, don't ever reduce the length at this point.
3153 */
3154
3155 if (code < last_code) code = last_code;
3156
3157 /* Paranoid check for integer overflow */
3158
3159 if (OFLOW_MAX - *lengthptr < code - last_code)
3160 {
3161 *errorcodeptr = ERR20;
3162 goto FAILED;
3163 }
3164
3165 *lengthptr += (int)(code - last_code);
3166 DPRINTF(("length=%d added %d c=%c\n", *lengthptr, code - last_code, c));
3167
3168 /* If "previous" is set and it is not at the start of the work space, move
3169 it back to there, in order to avoid filling up the work space. Otherwise,
3170 if "previous" is NULL, reset the current code pointer to the start. */
3171
3172 if (previous != NULL)
3173 {
3174 if (previous > orig_code)
3175 {
3176 memmove(orig_code, previous, code - previous);
3177 code -= previous - orig_code;
3178 previous = orig_code;
3179 }
3180 }
3181 else code = orig_code;
3182
3183 /* Remember where this code item starts so we can pick up the length
3184 next time round. */
3185
3186 last_code = code;
3187 }
3188
3189 /* In the real compile phase, just check the workspace used by the forward
3190 reference list. */
3191
3192 else if (cd->hwm > cd->start_workspace + WORK_SIZE_CHECK)
3193 {
3194 *errorcodeptr = ERR52;
3195 goto FAILED;
3196 }
3197
3198 /* If in \Q...\E, check for the end; if not, we have a literal */
3199
3200 if (inescq && c != 0)
3201 {
3202 if (c == CHAR_BACKSLASH && ptr[1] == CHAR_E)
3203 {
3204 inescq = FALSE;
3205 ptr++;
3206 continue;
3207 }
3208 else
3209 {
3210 if (previous_callout != NULL)
3211 {
3212 if (lengthptr == NULL) /* Don't attempt in pre-compile phase */
3213 complete_callout(previous_callout, ptr, cd);
3214 previous_callout = NULL;
3215 }
3216 if ((options & PCRE_AUTO_CALLOUT) != 0)
3217 {
3218 previous_callout = code;
3219 code = auto_callout(code, ptr, cd);
3220 }
3221 goto NORMAL_CHAR;
3222 }
3223 }
3224
3225 /* Fill in length of a previous callout, except when the next thing is
3226 a quantifier. */
3227
3228 is_quantifier =
3229 c == CHAR_ASTERISK || c == CHAR_PLUS || c == CHAR_QUESTION_MARK ||
3230 (c == CHAR_LEFT_CURLY_BRACKET && is_counted_repeat(ptr+1));
3231
3232 if (!is_quantifier && previous_callout != NULL &&
3233 after_manual_callout-- <= 0)
3234 {
3235 if (lengthptr == NULL) /* Don't attempt in pre-compile phase */
3236 complete_callout(previous_callout, ptr, cd);
3237 previous_callout = NULL;
3238 }
3239
3240 /* In extended mode, skip white space and comments */
3241
3242 if ((options & PCRE_EXTENDED) != 0)
3243 {
3244 if ((cd->ctypes[c] & ctype_space) != 0) continue;
3245 if (c == CHAR_NUMBER_SIGN)
3246 {
3247 ptr++;
3248 while (*ptr != 0)
3249 {
3250 if (IS_NEWLINE(ptr)) { ptr += cd->nllen - 1; break; }
3251 ptr++;
3252 #ifdef SUPPORT_UTF8
3253 if (utf8) while ((*ptr & 0xc0) == 0x80) ptr++;
3254 #endif
3255 }
3256 if (*ptr != 0) continue;
3257
3258 /* Else fall through to handle end of string */
3259 c = 0;
3260 }
3261 }
3262
3263 /* No auto callout for quantifiers. */
3264
3265 if ((options & PCRE_AUTO_CALLOUT) != 0 && !is_quantifier)
3266 {
3267 previous_callout = code;
3268 code = auto_callout(code, ptr, cd);
3269 }
3270
3271 switch(c)
3272 {
3273 /* ===================================================================*/
3274 case 0: /* The branch terminates at string end */
3275 case CHAR_VERTICAL_LINE: /* or | or ) */
3276 case CHAR_RIGHT_PARENTHESIS:
3277 *firstbyteptr = firstbyte;
3278 *reqbyteptr = reqbyte;
3279 *codeptr = code;
3280 *ptrptr = ptr;
3281 if (lengthptr != NULL)
3282 {
3283 if (OFLOW_MAX - *lengthptr < code - last_code)
3284 {
3285 *errorcodeptr = ERR20;
3286 goto FAILED;
3287 }
3288 *lengthptr += (int)(code - last_code); /* To include callout length */
3289 DPRINTF((">> end branch\n"));
3290 }
3291 return TRUE;
3292
3293
3294 /* ===================================================================*/
3295 /* Handle single-character metacharacters. In multiline mode, ^ disables
3296 the setting of any following char as a first character. */
3297
3298 case CHAR_CIRCUMFLEX_ACCENT:
3299 previous = NULL;
3300 if ((options & PCRE_MULTILINE) != 0)
3301 {
3302 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
3303 *code++ = OP_CIRCM;
3304 }
3305 else *code++ = OP_CIRC;
3306 break;
3307
3308 case CHAR_DOLLAR_SIGN:
3309 previous = NULL;
3310 *code++ = ((options & PCRE_MULTILINE) != 0)? OP_DOLLM : OP_DOLL;
3311 break;
3312
3313 /* There can never be a first char if '.' is first, whatever happens about
3314 repeats. The value of reqbyte doesn't change either. */
3315
3316 case CHAR_DOT:
3317 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
3318 zerofirstbyte = firstbyte;
3319 zeroreqbyte = reqbyte;
3320 previous = code;
3321 *code++ = ((options & PCRE_DOTALL) != 0)? OP_ALLANY: OP_ANY;
3322 break;
3323
3324
3325 /* ===================================================================*/
3326 /* Character classes. If the included characters are all < 256, we build a
3327 32-byte bitmap of the permitted characters, except in the special case
3328 where there is only one such character. For negated classes, we build the
3329 map as usual, then invert it at the end. However, we use a different opcode
3330 so that data characters > 255 can be handled correctly.
3331
3332 If the class contains characters outside the 0-255 range, a different
3333 opcode is compiled. It may optionally have a bit map for characters < 256,
3334 but those above are are explicitly listed afterwards. A flag byte tells
3335 whether the bitmap is present, and whether this is a negated class or not.
3336
3337 In JavaScript compatibility mode, an isolated ']' causes an error. In
3338 default (Perl) mode, it is treated as a data character. */
3339
3340 case CHAR_RIGHT_SQUARE_BRACKET:
3341 if ((cd->external_options & PCRE_JAVASCRIPT_COMPAT) != 0)
3342 {
3343 *errorcodeptr = ERR64;
3344 goto FAILED;
3345 }
3346 goto NORMAL_CHAR;
3347
3348 case CHAR_LEFT_SQUARE_BRACKET:
3349 previous = code;
3350
3351 /* PCRE supports POSIX class stuff inside a class. Perl gives an error if
3352 they are encountered at the top level, so we'll do that too. */
3353
3354 if ((ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT ||
3355 ptr[1] == CHAR_EQUALS_SIGN) &&
3356 check_posix_syntax(ptr, &tempptr))
3357 {
3358 *errorcodeptr = (ptr[1] == CHAR_COLON)? ERR13 : ERR31;
3359 goto FAILED;
3360 }
3361
3362 /* If the first character is '^', set the negation flag and skip it. Also,
3363 if the first few characters (either before or after ^) are \Q\E or \E we
3364 skip them too. This makes for compatibility with Perl. */
3365
3366 negate_class = FALSE;
3367 for (;;)
3368 {
3369 c = *(++ptr);
3370 if (c == CHAR_BACKSLASH)
3371 {
3372 if (ptr[1] == CHAR_E)
3373 ptr++;
3374 else if (strncmp((const char *)ptr+1,
3375 STR_Q STR_BACKSLASH STR_E, 3) == 0)
3376 ptr += 3;
3377 else
3378 break;
3379 }
3380 else if (!negate_class && c == CHAR_CIRCUMFLEX_ACCENT)
3381 negate_class = TRUE;
3382 else break;
3383 }
3384
3385 /* Empty classes are allowed in JavaScript compatibility mode. Otherwise,
3386 an initial ']' is taken as a data character -- the code below handles
3387 that. In JS mode, [] must always fail, so generate OP_FAIL, whereas
3388 [^] must match any character, so generate OP_ALLANY. */
3389
3390 if (c == CHAR_RIGHT_SQUARE_BRACKET &&
3391 (cd->external_options & PCRE_JAVASCRIPT_COMPAT) != 0)
3392 {
3393 *code++ = negate_class? OP_ALLANY : OP_FAIL;
3394 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
3395 zerofirstbyte = firstbyte;
3396 break;
3397 }
3398
3399 /* If a class contains a negative special such as \S, we need to flip the
3400 negation flag at the end, so that support for characters > 255 works
3401 correctly (they are all included in the class). */
3402
3403 should_flip_negation = FALSE;
3404
3405 /* Keep a count of chars with values < 256 so that we can optimize the case
3406 of just a single character (as long as it's < 256). However, For higher
3407 valued UTF-8 characters, we don't yet do any optimization. */
3408
3409 class_charcount = 0;
3410 class_lastchar = -1;
3411
3412 /* Initialize the 32-char bit map to all zeros. We build the map in a
3413 temporary bit of memory, in case the class contains only 1 character (less
3414 than 256), because in that case the compiled code doesn't use the bit map.
3415 */
3416
3417 memset(classbits, 0, 32 * sizeof(uschar));
3418
3419 #ifdef SUPPORT_UTF8
3420 class_utf8 = FALSE; /* No chars >= 256 */
3421 class_utf8data = code + LINK_SIZE + 2; /* For UTF-8 items */
3422 class_utf8data_base = class_utf8data; /* For resetting in pass 1 */
3423 #endif
3424
3425 /* Process characters until ] is reached. By writing this as a "do" it
3426 means that an initial ] is taken as a data character. At the start of the
3427 loop, c contains the first byte of the character. */
3428
3429 if (c != 0) do
3430 {
3431 const uschar *oldptr;
3432
3433 #ifdef SUPPORT_UTF8
3434 if (utf8 && c > 127)
3435 { /* Braces are required because the */
3436 GETCHARLEN(c, ptr, ptr); /* macro generates multiple statements */
3437 }
3438
3439 /* In the pre-compile phase, accumulate the length of any UTF-8 extra
3440 data and reset the pointer. This is so that very large classes that
3441 contain a zillion UTF-8 characters no longer overwrite the work space
3442 (which is on the stack). */
3443
3444 if (lengthptr != NULL)
3445 {
3446 *lengthptr += class_utf8data - class_utf8data_base;
3447 class_utf8data = class_utf8data_base;
3448 }
3449
3450 #endif
3451
3452 /* Inside \Q...\E everything is literal except \E */
3453
3454 if (inescq)
3455 {
3456 if (c == CHAR_BACKSLASH && ptr[1] == CHAR_E) /* If we are at \E */
3457 {
3458 inescq = FALSE; /* Reset literal state */
3459 ptr++; /* Skip the 'E' */
3460 continue; /* Carry on with next */
3461 }
3462 goto CHECK_RANGE; /* Could be range if \E follows */
3463 }
3464
3465 /* Handle POSIX class names. Perl allows a negation extension of the
3466 form [:^name:]. A square bracket that doesn't match the syntax is
3467 treated as a literal. We also recognize the POSIX constructions
3468 [.ch.] and [=ch=] ("collating elements") and fault them, as Perl
3469 5.6 and 5.8 do. */
3470
3471 if (c == CHAR_LEFT_SQUARE_BRACKET &&
3472 (ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT ||
3473 ptr[1] == CHAR_EQUALS_SIGN) && check_posix_syntax(ptr, &tempptr))
3474 {
3475 BOOL local_negate = FALSE;
3476 int posix_class, taboffset, tabopt;
3477 register const uschar *cbits = cd->cbits;
3478 uschar pbits[32];
3479
3480 if (ptr[1] != CHAR_COLON)
3481 {
3482 *errorcodeptr = ERR31;
3483 goto FAILED;
3484 }
3485
3486 ptr += 2;
3487 if (*ptr == CHAR_CIRCUMFLEX_ACCENT)
3488 {
3489 local_negate = TRUE;
3490 should_flip_negation = TRUE; /* Note negative special */
3491 ptr++;
3492 }
3493
3494 posix_class = check_posix_name(ptr, (int)(tempptr - ptr));
3495 if (posix_class < 0)
3496 {
3497 *errorcodeptr = ERR30;
3498 goto FAILED;
3499 }
3500
3501 /* If matching is caseless, upper and lower are converted to
3502 alpha. This relies on the fact that the class table starts with
3503 alpha, lower, upper as the first 3 entries. */
3504
3505 if ((options & PCRE_CASELESS) != 0 && posix_class <= 2)
3506 posix_class = 0;
3507
3508 /* When PCRE_UCP is set, some of the POSIX classes are converted to
3509 different escape sequences that use Unicode properties. */
3510
3511 #ifdef SUPPORT_UCP
3512 if ((options & PCRE_UCP) != 0)
3513 {
3514 int pc = posix_class + ((local_negate)? POSIX_SUBSIZE/2 : 0);
3515 if (posix_substitutes[pc] != NULL)
3516 {
3517 nestptr = tempptr + 1;
3518 ptr = posix_substitutes[pc] - 1;
3519 continue;
3520 }
3521 }
3522 #endif
3523 /* In the non-UCP case, we build the bit map for the POSIX class in a
3524 chunk of local store because we may be adding and subtracting from it,
3525 and we don't want to subtract bits that may be in the main map already.
3526 At the end we or the result into the bit map that is being built. */
3527
3528 posix_class *= 3;
3529
3530 /* Copy in the first table (always present) */
3531
3532 memcpy(pbits, cbits + posix_class_maps[posix_class],
3533 32 * sizeof(uschar));
3534
3535 /* If there is a second table, add or remove it as required. */
3536
3537 taboffset = posix_class_maps[posix_class + 1];
3538 tabopt = posix_class_maps[posix_class + 2];
3539
3540 if (taboffset >= 0)
3541 {
3542 if (tabopt >= 0)
3543 for (c = 0; c < 32; c++) pbits[c] |= cbits[c + taboffset];
3544 else
3545 for (c = 0; c < 32; c++) pbits[c] &= ~cbits[c + taboffset];
3546 }
3547
3548 /* Not see if we need to remove any special characters. An option
3549 value of 1 removes vertical space and 2 removes underscore. */
3550
3551 if (tabopt < 0) tabopt = -tabopt;
3552 if (tabopt == 1) pbits[1] &= ~0x3c;
3553 else if (tabopt == 2) pbits[11] &= 0x7f;
3554
3555 /* Add the POSIX table or its complement into the main table that is
3556 being built and we are done. */
3557
3558 if (local_negate)
3559 for (c = 0; c < 32; c++) classbits[c] |= ~pbits[c];
3560 else
3561 for (c = 0; c < 32; c++) classbits[c] |= pbits[c];
3562
3563 ptr = tempptr + 1;
3564 class_charcount = 10; /* Set > 1; assumes more than 1 per class */
3565 continue; /* End of POSIX syntax handling */
3566 }
3567
3568 /* Backslash may introduce a single character, or it may introduce one
3569 of the specials, which just set a flag. The sequence \b is a special
3570 case. Inside a class (and only there) it is treated as backspace. We
3571 assume that other escapes have more than one character in them, so set
3572 class_charcount bigger than one. Unrecognized escapes fall through and
3573 are either treated as literal characters (by default), or are faulted if
3574 PCRE_EXTRA is set. */
3575
3576 if (c == CHAR_BACKSLASH)
3577 {
3578 c = check_escape(&ptr, errorcodeptr, cd->bracount, options, TRUE);
3579 if (*errorcodeptr != 0) goto FAILED;
3580
3581 if (-c == ESC_b) c = CHAR_BS; /* \b is backspace in a class */
3582 else if (-c == ESC_Q) /* Handle start of quoted string */
3583 {
3584 if (ptr[1] == CHAR_BACKSLASH && ptr[2] == CHAR_E)
3585 {
3586 ptr += 2; /* avoid empty string */
3587 }
3588 else inescq = TRUE;
3589 continue;
3590 }
3591 else if (-c == ESC_E) continue; /* Ignore orphan \E */
3592
3593 if (c < 0)
3594 {
3595 register const uschar *cbits = cd->cbits;
3596 class_charcount += 2; /* Greater than 1 is what matters */
3597
3598 switch (-c)
3599 {
3600 #ifdef SUPPORT_UCP
3601 case ESC_du: /* These are the values given for \d etc */
3602 case ESC_DU: /* when PCRE_UCP is set. We replace the */
3603 case ESC_wu: /* escape sequence with an appropriate \p */
3604 case ESC_WU: /* or \P to test Unicode properties instead */
3605 case ESC_su: /* of the default ASCII testing. */
3606 case ESC_SU:
3607 nestptr = ptr;
3608 ptr = substitutes[-c - ESC_DU] - 1; /* Just before substitute */
3609 class_charcount -= 2; /* Undo! */
3610 continue;
3611 #endif
3612 case ESC_d:
3613 for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_digit];
3614 continue;
3615
3616 case ESC_D:
3617 should_flip_negation = TRUE;
3618 for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_digit];
3619 continue;
3620
3621 case ESC_w:
3622 for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_word];
3623 continue;
3624
3625 case ESC_W:
3626 should_flip_negation = TRUE;
3627 for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_word];
3628 continue;
3629
3630 /* Perl 5.004 onwards omits VT from \s, but we must preserve it
3631 if it was previously set by something earlier in the character
3632 class. */
3633
3634 case ESC_s:
3635 classbits[0] |= cbits[cbit_space];
3636 classbits[1] |= cbits[cbit_space+1] & ~0x08;
3637 for (c = 2; c < 32; c++) classbits[c] |= cbits[c+cbit_space];
3638 continue;
3639
3640 case ESC_S:
3641 should_flip_negation = TRUE;
3642 for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_space];
3643 classbits[1] |= 0x08; /* Perl 5.004 onwards omits VT from \s */
3644 continue;
3645
3646 case ESC_h:
3647 SETBIT(classbits, 0x09); /* VT */
3648 SETBIT(classbits, 0x20); /* SPACE */
3649 SETBIT(classbits, 0xa0); /* NSBP */
3650 #ifdef SUPPORT_UTF8
3651 if (utf8)
3652 {
3653 class_utf8 = TRUE;
3654 *class_utf8data++ = XCL_SINGLE;
3655 class_utf8data += _pcre_ord2utf8(0x1680, class_utf8data);
3656 *class_utf8data++ = XCL_SINGLE;
3657 class_utf8data += _pcre_ord2utf8(0x180e, class_utf8data);
3658 *class_utf8data++ = XCL_RANGE;
3659 class_utf8data += _pcre_ord2utf8(0x2000, class_utf8data);
3660 class_utf8data += _pcre_ord2utf8(0x200A, class_utf8data);
3661 *class_utf8data++ = XCL_SINGLE;
3662 class_utf8data += _pcre_ord2utf8(0x202f, class_utf8data);
3663 *class_utf8data++ = XCL_SINGLE;
3664 class_utf8data += _pcre_ord2utf8(0x205f, class_utf8data);
3665 *class_utf8data++ = XCL_SINGLE;
3666 class_utf8data += _pcre_ord2utf8(0x3000, class_utf8data);
3667 }
3668 #endif
3669 continue;
3670
3671 case ESC_H:
3672 for (c = 0; c < 32; c++)
3673 {
3674 int x = 0xff;
3675 switch (c)
3676 {
3677 case 0x09/8: x ^= 1 << (0x09%8); break;
3678 case 0x20/8: x ^= 1 << (0x20%8); break;
3679 case 0xa0/8: x ^= 1 << (0xa0%8); break;
3680 default: break;
3681 }
3682 classbits[c] |= x;
3683 }
3684
3685 #ifdef SUPPORT_UTF8
3686 if (utf8)
3687 {
3688 class_utf8 = TRUE;
3689 *class_utf8data++ = XCL_RANGE;
3690 class_utf8data += _pcre_ord2utf8(0x0100, class_utf8data);
3691 class_utf8data += _pcre_ord2utf8(0x167f, class_utf8data);
3692 *class_utf8data++ = XCL_RANGE;
3693 class_utf8data += _pcre_ord2utf8(0x1681, class_utf8data);
3694 class_utf8data += _pcre_ord2utf8(0x180d, class_utf8data);
3695 *class_utf8data++ = XCL_RANGE;
3696 class_utf8data += _pcre_ord2utf8(0x180f, class_utf8data);
3697 class_utf8data += _pcre_ord2utf8(0x1fff, class_utf8data);
3698 *class_utf8data++ = XCL_RANGE;
3699 class_utf8data += _pcre_ord2utf8(0x200B, class_utf8data);
3700 class_utf8data += _pcre_ord2utf8(0x202e, class_utf8data);
3701 *class_utf8data++ = XCL_RANGE;
3702 class_utf8data += _pcre_ord2utf8(0x2030, class_utf8data);
3703 class_utf8data += _pcre_ord2utf8(0x205e, class_utf8data);
3704 *class_utf8data++ = XCL_RANGE;
3705 class_utf8data += _pcre_ord2utf8(0x2060, class_utf8data);
3706 class_utf8data += _pcre_ord2utf8(0x2fff, class_utf8data);
3707 *class_utf8data++ = XCL_RANGE;
3708 class_utf8data += _pcre_ord2utf8(0x3001, class_utf8data);
3709 class_utf8data += _pcre_ord2utf8(0x7fffffff, class_utf8data);
3710 }
3711 #endif
3712 continue;
3713
3714 case ESC_v:
3715 SETBIT(classbits, 0x0a); /* LF */
3716 SETBIT(classbits, 0x0b); /* VT */
3717 SETBIT(classbits, 0x0c); /* FF */
3718 SETBIT(classbits, 0x0d); /* CR */
3719 SETBIT(classbits, 0x85); /* NEL */
3720 #ifdef SUPPORT_UTF8
3721 if (utf8)
3722 {
3723 class_utf8 = TRUE;
3724 *class_utf8data++ = XCL_RANGE;
3725 class_utf8data += _pcre_ord2utf8(0x2028, class_utf8data);
3726 class_utf8data += _pcre_ord2utf8(0x2029, class_utf8data);
3727 }
3728 #endif
3729 continue;
3730
3731 case ESC_V:
3732 for (c = 0; c < 32; c++)
3733 {
3734 int x = 0xff;
3735 switch (c)
3736 {
3737 case 0x0a/8: x ^= 1 << (0x0a%8);
3738 x ^= 1 << (0x0b%8);
3739 x ^= 1 << (0x0c%8);
3740 x ^= 1 << (0x0d%8);
3741 break;
3742 case 0x85/8: x ^= 1 << (0x85%8); break;
3743 default: break;
3744 }
3745 classbits[c] |= x;
3746 }
3747
3748 #ifdef SUPPORT_UTF8
3749 if (utf8)
3750 {
3751 class_utf8 = TRUE;
3752 *class_utf8data++ = XCL_RANGE;
3753 class_utf8data += _pcre_ord2utf8(0x0100, class_utf8data);
3754 class_utf8data += _pcre_ord2utf8(0x2027, class_utf8data);
3755 *class_utf8data++ = XCL_RANGE;
3756 class_utf8data += _pcre_ord2utf8(0x2029, class_utf8data);
3757 class_utf8data += _pcre_ord2utf8(0x7fffffff, class_utf8data);
3758 }
3759 #endif
3760 continue;
3761
3762 #ifdef SUPPORT_UCP
3763 case ESC_p:
3764 case ESC_P:
3765 {
3766 BOOL negated;
3767 int pdata;
3768 int ptype = get_ucp(&ptr, &negated, &pdata, errorcodeptr);
3769 if (ptype < 0) goto FAILED;
3770 class_utf8 = TRUE;
3771 *class_utf8data++ = ((-c == ESC_p) != negated)?
3772 XCL_PROP : XCL_NOTPROP;
3773 *class_utf8data++ = ptype;
3774 *class_utf8data++ = pdata;
3775 class_charcount -= 2; /* Not a < 256 character */
3776 continue;
3777 }
3778 #endif
3779 /* Unrecognized escapes are faulted if PCRE is running in its
3780 strict mode. By default, for compatibility with Perl, they are
3781 treated as literals. */
3782
3783 default:
3784 if ((options & PCRE_EXTRA) != 0)
3785 {
3786 *errorcodeptr = ERR7;
3787 goto FAILED;
3788 }
3789 class_charcount -= 2; /* Undo the default count from above */
3790 c = *ptr; /* Get the final character and fall through */
3791 break;
3792 }
3793 }
3794
3795 /* Fall through if we have a single character (c >= 0). This may be
3796 greater than 256 in UTF-8 mode. */
3797
3798 } /* End of backslash handling */
3799
3800 /* A single character may be followed by '-' to form a range. However,
3801 Perl does not permit ']' to be the end of the range. A '-' character
3802 at the end is treated as a literal. Perl ignores orphaned \E sequences
3803 entirely. The code for handling \Q and \E is messy. */
3804
3805 CHECK_RANGE:
3806 while (ptr[1] == CHAR_BACKSLASH && ptr[2] == CHAR_E)
3807 {
3808 inescq = FALSE;
3809 ptr += 2;
3810 }
3811
3812 oldptr = ptr;
3813
3814 /* Remember \r or \n */
3815
3816 if (c == CHAR_CR || c == CHAR_NL) cd->external_flags |= PCRE_HASCRORLF;
3817
3818 /* Check for range */
3819
3820 if (!inescq && ptr[1] == CHAR_MINUS)
3821 {
3822 int d;
3823 ptr += 2;
3824 while (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_E) ptr += 2;
3825
3826 /* If we hit \Q (not followed by \E) at this point, go into escaped
3827 mode. */
3828
3829 while (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_Q)
3830 {
3831 ptr += 2;
3832 if (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_E)
3833 { ptr += 2; continue; }
3834 inescq = TRUE;
3835 break;
3836 }
3837
3838 if (*ptr == 0 || (!inescq && *ptr == CHAR_RIGHT_SQUARE_BRACKET))
3839 {
3840 ptr = oldptr;
3841 goto LONE_SINGLE_CHARACTER;
3842 }
3843
3844 #ifdef SUPPORT_UTF8
3845 if (utf8)
3846 { /* Braces are required because the */
3847 GETCHARLEN(d, ptr, ptr); /* macro generates multiple statements */
3848 }
3849 else
3850 #endif
3851 d = *ptr; /* Not UTF-8 mode */
3852
3853 /* The second part of a range can be a single-character escape, but
3854 not any of the other escapes. Perl 5.6 treats a hyphen as a literal
3855 in such circumstances. */
3856
3857 if (!inescq && d == CHAR_BACKSLASH)
3858 {
3859 d = check_escape(&ptr, errorcodeptr, cd->bracount, options, TRUE);
3860 if (*errorcodeptr != 0) goto FAILED;
3861
3862 /* \b is backspace; any other special means the '-' was literal */
3863
3864 if (d < 0)
3865 {
3866 if (d == -ESC_b) d = CHAR_BS; else
3867 {
3868 ptr = oldptr;
3869 goto LONE_SINGLE_CHARACTER; /* A few lines below */
3870 }
3871 }
3872 }
3873
3874 /* Check that the two values are in the correct order. Optimize
3875 one-character ranges */
3876
3877 if (d < c)
3878 {
3879 *errorcodeptr = ERR8;
3880 goto FAILED;
3881 }
3882
3883 if (d == c) goto LONE_SINGLE_CHARACTER; /* A few lines below */
3884
3885 /* Remember \r or \n */
3886
3887 if (d == CHAR_CR || d == CHAR_NL) cd->external_flags |= PCRE_HASCRORLF;
3888
3889 /* In UTF-8 mode, if the upper limit is > 255, or > 127 for caseless
3890 matching, we have to use an XCLASS with extra data items. Caseless
3891 matching for characters > 127 is available only if UCP support is
3892 available. */
3893
3894 #ifdef SUPPORT_UTF8
3895 if (utf8 && (d > 255 || ((options & PCRE_CASELESS) != 0 && d > 127)))
3896 {
3897 class_utf8 = TRUE;
3898
3899 /* With UCP support, we can find the other case equivalents of
3900 the relevant characters. There may be several ranges. Optimize how
3901 they fit with the basic range. */
3902
3903 #ifdef SUPPORT_UCP
3904 if ((options & PCRE_CASELESS) != 0)
3905 {
3906 unsigned int occ, ocd;
3907 unsigned int cc = c;
3908 unsigned int origd = d;
3909 while (get_othercase_range(&cc, origd, &occ, &ocd))
3910 {
3911 if (occ >= (unsigned int)c &&
3912 ocd <= (unsigned int)d)
3913 continue; /* Skip embedded ranges */
3914
3915 if (occ < (unsigned int)c &&
3916 ocd >= (unsigned int)c - 1) /* Extend the basic range */
3917 { /* if there is overlap, */
3918 c = occ; /* noting that if occ < c */
3919 continue; /* we can't have ocd > d */
3920 } /* because a subrange is */
3921 if (ocd > (unsigned int)d &&
3922 occ <= (unsigned int)d + 1) /* always shorter than */
3923 { /* the basic range. */
3924 d = ocd;
3925 continue;
3926 }
3927
3928 if (occ == ocd)
3929 {
3930 *class_utf8data++ = XCL_SINGLE;
3931 }
3932 else
3933 {
3934 *class_utf8data++ = XCL_RANGE;
3935 class_utf8data += _pcre_ord2utf8(occ, class_utf8data);
3936 }
3937 class_utf8data += _pcre_ord2utf8(ocd, class_utf8data);
3938 }
3939 }
3940 #endif /* SUPPORT_UCP */
3941
3942 /* Now record the original range, possibly modified for UCP caseless
3943 overlapping ranges. */
3944
3945 *class_utf8data++ = XCL_RANGE;
3946 class_utf8data += _pcre_ord2utf8(c, class_utf8data);
3947 class_utf8data += _pcre_ord2utf8(d, class_utf8data);
3948
3949 /* With UCP support, we are done. Without UCP support, there is no
3950 caseless matching for UTF-8 characters > 127; we can use the bit map
3951 for the smaller ones. */
3952
3953 #ifdef SUPPORT_UCP
3954 continue; /* With next character in the class */
3955 #else
3956 if ((options & PCRE_CASELESS) == 0 || c > 127) continue;
3957
3958 /* Adjust upper limit and fall through to set up the map */
3959
3960 d = 127;
3961
3962 #endif /* SUPPORT_UCP */
3963 }
3964 #endif /* SUPPORT_UTF8 */
3965
3966 /* We use the bit map for all cases when not in UTF-8 mode; else
3967 ranges that lie entirely within 0-127 when there is UCP support; else
3968 for partial ranges without UCP support. */
3969
3970 class_charcount += d - c + 1;
3971 class_lastchar = d;
3972
3973 /* We can save a bit of time by skipping this in the pre-compile. */
3974
3975 if (lengthptr == NULL) for (; c <= d; c++)
3976 {
3977 classbits[c/8] |= (1 << (c&7));
3978 if ((options & PCRE_CASELESS) != 0)
3979 {
3980 int uc = cd->fcc[c]; /* flip case */
3981 classbits[uc/8] |= (1 << (uc&7));
3982 }
3983 }
3984
3985 continue; /* Go get the next char in the class */
3986 }
3987
3988 /* Handle a lone single character - we can get here for a normal
3989 non-escape char, or after \ that introduces a single character or for an
3990 apparent range that isn't. */
3991
3992 LONE_SINGLE_CHARACTER:
3993
3994 /* Handle a character that cannot go in the bit map */
3995
3996 #ifdef SUPPORT_UTF8
3997 if (utf8 && (c > 255 || ((options & PCRE_CASELESS) != 0 && c > 127)))
3998 {
3999 class_utf8 = TRUE;
4000 *class_utf8data++ = XCL_SINGLE;
4001 class_utf8data += _pcre_ord2utf8(c, class_utf8data);
4002
4003 #ifdef SUPPORT_UCP
4004 if ((options & PCRE_CASELESS) != 0)
4005 {
4006 unsigned int othercase;
4007 if ((othercase = UCD_OTHERCASE(c)) != c)
4008 {
4009 *class_utf8data++ = XCL_SINGLE;
4010 class_utf8data += _pcre_ord2utf8(othercase, class_utf8data);
4011 }
4012 }
4013 #endif /* SUPPORT_UCP */
4014
4015 }
4016 else
4017 #endif /* SUPPORT_UTF8 */
4018
4019 /* Handle a single-byte character */
4020 {
4021 classbits[c/8] |= (1 << (c&7));
4022 if ((options & PCRE_CASELESS) != 0)
4023 {
4024 c = cd->fcc[c]; /* flip case */
4025 classbits[c/8] |= (1 << (c&7));
4026 }
4027 class_charcount++;
4028 class_lastchar = c;
4029 }
4030 }
4031
4032 /* Loop until ']' reached. This "while" is the end of the "do" far above.
4033 If we are at the end of an internal nested string, revert to the outer
4034 string. */
4035
4036 while (((c = *(++ptr)) != 0 ||
4037 (nestptr != NULL &&
4038 (ptr = nestptr, nestptr = NULL, c = *(++ptr)) != 0)) &&
4039 (c != CHAR_RIGHT_SQUARE_BRACKET || inescq));
4040
4041 /* Check for missing terminating ']' */
4042
4043 if (c == 0)
4044 {
4045 *errorcodeptr = ERR6;
4046 goto FAILED;
4047 }
4048
4049 /* If class_charcount is 1, we saw precisely one character whose value is
4050 less than 256. As long as there were no characters >= 128 and there was no
4051 use of \p or \P, in other words, no use of any XCLASS features, we can
4052 optimize.
4053
4054 In UTF-8 mode, we can optimize the negative case only if there were no
4055 characters >= 128 because OP_NOT and the related opcodes like OP_NOTSTAR
4056 operate on single-bytes characters only. This is an historical hangover.
4057 Maybe one day we can tidy these opcodes to handle multi-byte characters.
4058
4059 The optimization throws away the bit map. We turn the item into a
4060 1-character OP_CHAR[I] if it's positive, or OP_NOT[I] if it's negative.
4061 Note that OP_NOT[I] does not support multibyte characters. In the positive
4062 case, it can cause firstbyte to be set. Otherwise, there can be no first
4063 char if this item is first, whatever repeat count may follow. In the case
4064 of reqbyte, save the previous value for reinstating. */
4065
4066 #ifdef SUPPORT_UTF8
4067 if (class_charcount == 1 && !class_utf8 &&
4068 (!utf8 || !negate_class || class_lastchar < 128))
4069 #else
4070 if (class_charcount == 1)
4071 #endif
4072 {
4073 zeroreqbyte = reqbyte;
4074
4075 /* The OP_NOT[I] opcodes work on one-byte characters only. */
4076
4077 if (negate_class)
4078 {
4079 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
4080 zerofirstbyte = firstbyte;
4081 *code++ = ((options & PCRE_CASELESS) != 0)? OP_NOTI: OP_NOT;
4082 *code++ = class_lastchar;
4083 break;
4084 }
4085
4086 /* For a single, positive character, get the value into mcbuffer, and
4087 then we can handle this with the normal one-character code. */
4088
4089 #ifdef SUPPORT_UTF8
4090 if (utf8 && class_lastchar > 127)
4091 mclength = _pcre_ord2utf8(class_lastchar, mcbuffer);
4092 else
4093 #endif
4094 {
4095 mcbuffer[0] = class_lastchar;
4096 mclength = 1;
4097 }
4098 goto ONE_CHAR;
4099 } /* End of 1-char optimization */
4100
4101 /* The general case - not the one-char optimization. If this is the first
4102 thing in the branch, there can be no first char setting, whatever the
4103 repeat count. Any reqbyte setting must remain unchanged after any kind of
4104 repeat. */
4105
4106 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
4107 zerofirstbyte = firstbyte;
4108 zeroreqbyte = reqbyte;
4109
4110 /* If there are characters with values > 255, we have to compile an
4111 extended class, with its own opcode, unless there was a negated special
4112 such as \S in the class, and PCRE_UCP is not set, because in that case all
4113 characters > 255 are in the class, so any that were explicitly given as
4114 well can be ignored. If (when there are explicit characters > 255 that must
4115 be listed) there are no characters < 256, we can omit the bitmap in the
4116 actual compiled code. */
4117
4118 #ifdef SUPPORT_UTF8
4119 if (class_utf8 && (!should_flip_negation || (options & PCRE_UCP) != 0))
4120 {
4121 *class_utf8data++ = XCL_END; /* Marks the end of extra data */
4122 *code++ = OP_XCLASS;
4123 code += LINK_SIZE;
4124 *code = negate_class? XCL_NOT : 0;
4125
4126 /* If the map is required, move up the extra data to make room for it;
4127 otherwise just move the code pointer to the end of the extra data. */
4128
4129 if (class_charcount > 0)
4130 {
4131 *code++ |= XCL_MAP;
4132 memmove(code + 32, code, class_utf8data - code);
4133 memcpy(code, classbits, 32);
4134 code = class_utf8data + 32;
4135 }
4136 else code = class_utf8data;
4137
4138 /* Now fill in the complete length of the item */
4139
4140 PUT(previous, 1, code - previous);
4141 break; /* End of class handling */
4142 }
4143 #endif
4144
4145 /* If there are no characters > 255, or they are all to be included or
4146 excluded, set the opcode to OP_CLASS or OP_NCLASS, depending on whether the
4147 whole class was negated and whether there were negative specials such as \S
4148 (non-UCP) in the class. Then copy the 32-byte map into the code vector,
4149 negating it if necessary. */
4150
4151 *code++ = (negate_class == should_flip_negation) ? OP_CLASS : OP_NCLASS;
4152 if (negate_class)
4153 {
4154 if (lengthptr == NULL) /* Save time in the pre-compile phase */
4155 for (c = 0; c < 32; c++) code[c] = ~classbits[c];
4156 }
4157 else
4158 {
4159 memcpy(code, classbits, 32);
4160 }
4161 code += 32;
4162 break;
4163
4164
4165 /* ===================================================================*/
4166 /* Various kinds of repeat; '{' is not necessarily a quantifier, but this
4167 has been tested above. */
4168
4169 case CHAR_LEFT_CURLY_BRACKET:
4170 if (!is_quantifier) goto NORMAL_CHAR;
4171 ptr = read_repeat_counts(ptr+1, &repeat_min, &repeat_max, errorcodeptr);
4172 if (*errorcodeptr != 0) goto FAILED;
4173 goto REPEAT;
4174
4175 case CHAR_ASTERISK:
4176 repeat_min = 0;
4177 repeat_max = -1;
4178 goto REPEAT;
4179
4180 case CHAR_PLUS:
4181 repeat_min = 1;
4182 repeat_max = -1;
4183 goto REPEAT;
4184
4185 case CHAR_QUESTION_MARK:
4186 repeat_min = 0;
4187 repeat_max = 1;
4188
4189 REPEAT:
4190 if (previous == NULL)
4191 {
4192 *errorcodeptr = ERR9;
4193 goto FAILED;
4194 }
4195
4196 if (repeat_min == 0)
4197 {
4198 firstbyte = zerofirstbyte; /* Adjust for zero repeat */
4199 reqbyte = zeroreqbyte; /* Ditto */
4200 }
4201
4202 /* Remember whether this is a variable length repeat */
4203
4204 reqvary = (repeat_min == repeat_max)? 0 : REQ_VARY;
4205
4206 op_type = 0; /* Default single-char op codes */
4207 possessive_quantifier = FALSE; /* Default not possessive quantifier */
4208
4209 /* Save start of previous item, in case we have to move it up to make space
4210 for an inserted OP_ONCE for the additional '+' extension. */
4211
4212 tempcode = previous;
4213
4214 /* If the next character is '+', we have a possessive quantifier. This
4215 implies greediness, whatever the setting of the PCRE_UNGREEDY option.
4216 If the next character is '?' this is a minimizing repeat, by default,
4217 but if PCRE_UNGREEDY is set, it works the other way round. We change the
4218 repeat type to the non-default. */
4219
4220 if (ptr[1] == CHAR_PLUS)
4221 {
4222 repeat_type = 0; /* Force greedy */
4223 possessive_quantifier = TRUE;
4224 ptr++;
4225 }
4226 else if (ptr[1] == CHAR_QUESTION_MARK)
4227 {
4228 repeat_type = greedy_non_default;
4229 ptr++;
4230 }
4231 else repeat_type = greedy_default;
4232
4233 /* If previous was a recursion call, wrap it in atomic brackets so that
4234 previous becomes the atomic group. All recursions were so wrapped in the
4235 past, but it no longer happens for non-repeated recursions. In fact, the
4236 repeated ones could be re-implemented independently so as not to need this,
4237 but for the moment we rely on the code for repeating groups. */
4238
4239 if (*previous == OP_RECURSE)
4240 {
4241 memmove(previous + 1 + LINK_SIZE, previous, 1 + LINK_SIZE);
4242 *previous = OP_ONCE;
4243 PUT(previous, 1, 2 + 2*LINK_SIZE);
4244 previous[2 + 2*LINK_SIZE] = OP_KET;
4245 PUT(previous, 3 + 2*LINK_SIZE, 2 + 2*LINK_SIZE);
4246 code += 2 + 2 * LINK_SIZE;
4247 length_prevgroup = 3 + 3*LINK_SIZE;
4248
4249 /* When actually compiling, we need to check whether this was a forward
4250 reference, and if so, adjust the offset. */
4251
4252 if (lengthptr == NULL && cd->hwm >= cd->start_workspace + LINK_SIZE)
4253 {
4254 int offset = GET(cd->hwm, -LINK_SIZE);
4255 if (offset == previous + 1 - cd->start_code)
4256 PUT(cd->hwm, -LINK_SIZE, offset + 1 + LINK_SIZE);
4257 }
4258 }
4259
4260 /* Now handle repetition for the different types of item. */
4261
4262 /* If previous was a character match, abolish the item and generate a
4263 repeat item instead. If a char item has a minumum of more than one, ensure
4264 that it is set in reqbyte - it might not be if a sequence such as x{3} is
4265 the first thing in a branch because the x will have gone into firstbyte
4266 instead. */
4267
4268 if (*previous == OP_CHAR || *previous == OP_CHARI)
4269 {
4270 op_type = (*previous == OP_CHAR)? 0 : OP_STARI - OP_STAR;
4271
4272 /* Deal with UTF-8 characters that take up more than one byte. It's
4273 easier to write this out separately than try to macrify it. Use c to
4274 hold the length of the character in bytes, plus 0x80 to flag that it's a
4275 length rather than a small character. */
4276
4277 #ifdef SUPPORT_UTF8
4278 if (utf8 && (code[-1] & 0x80) != 0)
4279 {
4280 uschar *lastchar = code - 1;
4281 while((*lastchar & 0xc0) == 0x80) lastchar--;
4282 c = code - lastchar; /* Length of UTF-8 character */
4283 memcpy(utf8_char, lastchar, c); /* Save the char */
4284 c |= 0x80; /* Flag c as a length */
4285 }
4286 else
4287 #endif
4288
4289 /* Handle the case of a single byte - either with no UTF8 support, or
4290 with UTF-8 disabled, or for a UTF-8 character < 128. */
4291
4292 {
4293 c = code[-1];
4294 if (repeat_min > 1) reqbyte = c | req_caseopt | cd->req_varyopt;
4295 }
4296
4297 /* If the repetition is unlimited, it pays to see if the next thing on
4298 the line is something that cannot possibly match this character. If so,
4299 automatically possessifying this item gains some performance in the case
4300 where the match fails. */
4301
4302 if (!possessive_quantifier &&
4303 repeat_max < 0 &&
4304 check_auto_possessive(previous, utf8, ptr + 1, options, cd))
4305 {
4306 repeat_type = 0; /* Force greedy */
4307 possessive_quantifier = TRUE;
4308 }
4309
4310 goto OUTPUT_SINGLE_REPEAT; /* Code shared with single character types */
4311 }
4312
4313 /* If previous was a single negated character ([^a] or similar), we use
4314 one of the special opcodes, replacing it. The code is shared with single-
4315 character repeats by setting opt_type to add a suitable offset into
4316 repeat_type. We can also test for auto-possessification. OP_NOT and OP_NOTI
4317 are currently used only for single-byte chars. */
4318
4319 else if (*previous == OP_NOT || *previous == OP_NOTI)
4320 {
4321 op_type = ((*previous == OP_NOT)? OP_NOTSTAR : OP_NOTSTARI) - OP_STAR;
4322 c = previous[1];
4323 if (!possessive_quantifier &&
4324 repeat_max < 0 &&
4325 check_auto_possessive(previous, utf8, ptr + 1, options, cd))
4326 {
4327 repeat_type = 0; /* Force greedy */
4328 possessive_quantifier = TRUE;
4329 }
4330 goto OUTPUT_SINGLE_REPEAT;
4331 }
4332
4333 /* If previous was a character type match (\d or similar), abolish it and
4334 create a suitable repeat item. The code is shared with single-character
4335 repeats by setting op_type to add a suitable offset into repeat_type. Note
4336 the the Unicode property types will be present only when SUPPORT_UCP is
4337 defined, but we don't wrap the little bits of code here because it just
4338 makes it horribly messy. */
4339
4340 else if (*previous < OP_EODN)
4341 {
4342 uschar *oldcode;
4343 int prop_type, prop_value;
4344 op_type = OP_TYPESTAR - OP_STAR; /* Use type opcodes */
4345 c = *previous;
4346
4347 if (!possessive_quantifier &&
4348 repeat_max < 0 &&
4349 check_auto_possessive(previous, utf8, ptr + 1, options, cd))
4350 {
4351 repeat_type = 0; /* Force greedy */
4352 possessive_quantifier = TRUE;
4353 }
4354
4355 OUTPUT_SINGLE_REPEAT:
4356 if (*previous == OP_PROP || *previous == OP_NOTPROP)
4357 {
4358 prop_type = previous[1];
4359 prop_value = previous[2];
4360 }
4361 else prop_type = prop_value = -1;
4362
4363 oldcode = code;
4364 code = previous; /* Usually overwrite previous item */
4365
4366 /* If the maximum is zero then the minimum must also be zero; Perl allows
4367 this case, so we do too - by simply omitting the item altogether. */
4368
4369 if (repeat_max == 0) goto END_REPEAT;
4370
4371 /*--------------------------------------------------------------------*/
4372 /* This code is obsolete from release 8.00; the restriction was finally
4373 removed: */
4374
4375 /* All real repeats make it impossible to handle partial matching (maybe
4376 one day we will be able to remove this restriction). */
4377
4378 /* if (repeat_max != 1) cd->external_flags |= PCRE_NOPARTIAL; */
4379 /*--------------------------------------------------------------------*/
4380
4381 /* Combine the op_type with the repeat_type */
4382
4383 repeat_type += op_type;
4384
4385 /* A minimum of zero is handled either as the special case * or ?, or as
4386 an UPTO, with the maximum given. */
4387
4388 if (repeat_min == 0)
4389 {
4390 if (repeat_max == -1) *code++ = OP_STAR + repeat_type;
4391 else if (repeat_max == 1) *code++ = OP_QUERY + repeat_type;
4392 else
4393 {
4394 *code++ = OP_UPTO + repeat_type;
4395 PUT2INC(code, 0, repeat_max);
4396 }
4397 }
4398
4399 /* A repeat minimum of 1 is optimized into some special cases. If the
4400 maximum is unlimited, we use OP_PLUS. Otherwise, the original item is
4401 left in place and, if the maximum is greater than 1, we use OP_UPTO with
4402 one less than the maximum. */
4403
4404 else if (repeat_min == 1)
4405 {
4406 if (repeat_max == -1)
4407 *code++ = OP_PLUS + repeat_type;
4408 else
4409 {
4410 code = oldcode; /* leave previous item in place */
4411 if (repeat_max == 1) goto END_REPEAT;
4412 *code++ = OP_UPTO + repeat_type;
4413 PUT2INC(code, 0, repeat_max - 1);
4414 }
4415 }
4416
4417 /* The case {n,n} is just an EXACT, while the general case {n,m} is
4418 handled as an EXACT followed by an UPTO. */
4419
4420 else
4421 {
4422 *code++ = OP_EXACT + op_type; /* NB EXACT doesn't have repeat_type */
4423 PUT2INC(code, 0, repeat_min);
4424
4425 /* If the maximum is unlimited, insert an OP_STAR. Before doing so,
4426 we have to insert the character for the previous code. For a repeated
4427 Unicode property match, there are two extra bytes that define the
4428 required property. In UTF-8 mode, long characters have their length in
4429 c, with the 0x80 bit as a flag. */
4430
4431 if (repeat_max < 0)
4432 {
4433 #ifdef SUPPORT_UTF8
4434 if (utf8 && c >= 128)
4435 {
4436 memcpy(code, utf8_char, c & 7);
4437 code += c & 7;
4438 }
4439 else
4440 #endif
4441 {
4442 *code++ = c;
4443 if (prop_type >= 0)
4444 {
4445 *code++ = prop_type;
4446 *code++ = prop_value;
4447 }
4448 }
4449 *code++ = OP_STAR + repeat_type;
4450 }
4451
4452 /* Else insert an UPTO if the max is greater than the min, again
4453 preceded by the character, for the previously inserted code. If the
4454 UPTO is just for 1 instance, we can use QUERY instead. */
4455
4456 else if (repeat_max != repeat_min)
4457 {
4458 #ifdef SUPPORT_UTF8
4459 if (utf8 && c >= 128)
4460 {
4461 memcpy(code, utf8_char, c & 7);
4462 code += c & 7;
4463 }
4464 else
4465 #endif
4466 *code++ = c;
4467 if (prop_type >= 0)
4468 {
4469 *code++ = prop_type;
4470 *code++ = prop_value;
4471 }
4472 repeat_max -= repeat_min;
4473
4474 if (repeat_max == 1)
4475 {
4476 *code++ = OP_QUERY + repeat_type;
4477 }
4478 else
4479 {
4480 *code++ = OP_UPTO + repeat_type;
4481 PUT2INC(code, 0, repeat_max);
4482 }
4483 }
4484 }
4485
4486 /* The character or character type itself comes last in all cases. */
4487
4488 #ifdef SUPPORT_UTF8
4489 if (utf8 && c >= 128)
4490 {
4491 memcpy(code, utf8_char, c & 7);
4492 code += c & 7;
4493 }
4494 else
4495 #endif
4496 *code++ = c;
4497
4498 /* For a repeated Unicode property match, there are two extra bytes that
4499 define the required property. */
4500
4501 #ifdef SUPPORT_UCP
4502 if (prop_type >= 0)
4503 {
4504 *code++ = prop_type;
4505 *code++ = prop_value;
4506 }
4507 #endif
4508 }
4509
4510 /* If previous was a character class or a back reference, we put the repeat
4511 stuff after it, but just skip the item if the repeat was {0,0}. */
4512
4513 else if (*previous == OP_CLASS ||
4514 *previous == OP_NCLASS ||
4515 #ifdef SUPPORT_UTF8
4516 *previous == OP_XCLASS ||
4517 #endif
4518 *previous == OP_REF ||
4519 *previous == OP_REFI)
4520 {
4521 if (repeat_max == 0)
4522 {
4523 code = previous;
4524 goto END_REPEAT;
4525 }
4526
4527 /*--------------------------------------------------------------------*/
4528 /* This code is obsolete from release 8.00; the restriction was finally
4529 removed: */
4530
4531 /* All real repeats make it impossible to handle partial matching (maybe
4532 one day we will be able to remove this restriction). */
4533
4534 /* if (repeat_max != 1) cd->external_flags |= PCRE_NOPARTIAL; */
4535 /*--------------------------------------------------------------------*/
4536
4537 if (repeat_min == 0 && repeat_max == -1)
4538 *code++ = OP_CRSTAR + repeat_type;
4539 else if (repeat_min == 1 && repeat_max == -1)
4540 *code++ = OP_CRPLUS + repeat_type;
4541 else if (repeat_min == 0 && repeat_max == 1)
4542 *code++ = OP_CRQUERY + repeat_type;
4543 else
4544 {
4545 *code++ = OP_CRRANGE + repeat_type;
4546 PUT2INC(code, 0, repeat_min);
4547 if (repeat_max == -1) repeat_max = 0; /* 2-byte encoding for max */
4548 PUT2INC(code, 0, repeat_max);
4549 }
4550 }
4551
4552 /* If previous was a bracket group, we may have to replicate it in certain
4553 cases. Note that at this point we can encounter only the "basic" BRA and
4554 KET opcodes, as this is the place where they get converted into the more
4555 special varieties. */
4556
4557 else if (*previous == OP_BRA || *previous == OP_CBRA ||
4558 *previous == OP_ONCE || *previous == OP_COND)
4559 {
4560 register int i;
4561 int len = (int)(code - previous);
4562 uschar *bralink = NULL;
4563 uschar *brazeroptr = NULL;
4564
4565 /* Repeating a DEFINE group is pointless */
4566
4567 if (*previous == OP_COND && previous[LINK_SIZE+1] == OP_DEF)
4568 {
4569 *errorcodeptr = ERR55;
4570 goto FAILED;
4571 }
4572
4573 /* The case of a zero minimum is special because of the need to stick
4574 OP_BRAZERO in front of it, and because the group appears once in the
4575 data, whereas in other cases it appears the minimum number of times. For
4576 this reason, it is simplest to treat this case separately, as otherwise
4577 the code gets far too messy. There are several special subcases when the
4578 minimum is zero. */
4579
4580 if (repeat_min == 0)
4581 {
4582 /* If the maximum is also zero, we used to just omit the group from the
4583 output altogether, like this:
4584
4585 ** if (repeat_max == 0)
4586 ** {
4587 ** code = previous;
4588 ** goto END_REPEAT;
4589 ** }
4590
4591 However, that fails when a group is referenced as a subroutine from
4592 elsewhere in the pattern, so now we stick in OP_SKIPZERO in front of it
4593 so that it is skipped on execution. As we don't have a list of which
4594 groups are referenced, we cannot do this selectively.
4595
4596 If the maximum is 1 or unlimited, we just have to stick in the BRAZERO
4597 and do no more at this point. However, we do need to adjust any
4598 OP_RECURSE calls inside the group that refer to the group itself or any
4599 internal or forward referenced group, because the offset is from the
4600 start of the whole regex. Temporarily terminate the pattern while doing
4601 this. */
4602
4603 if (repeat_max <= 1) /* Covers 0, 1, and unlimited */
4604 {
4605 *code = OP_END;
4606 adjust_recurse(previous, 1, utf8, cd, save_hwm);
4607 memmove(previous+1, previous, len);
4608 code++;
4609 if (repeat_max == 0)
4610 {
4611 *previous++ = OP_SKIPZERO;
4612 goto END_REPEAT;
4613 }
4614 brazeroptr = previous; /* Save for possessive optimizing */
4615 *previous++ = OP_BRAZERO + repeat_type;
4616 }
4617
4618 /* If the maximum is greater than 1 and limited, we have to replicate
4619 in a nested fashion, sticking OP_BRAZERO before each set of brackets.
4620 The first one has to be handled carefully because it's the original
4621 copy, which has to be moved up. The remainder can be handled by code
4622 that is common with the non-zero minimum case below. We have to
4623 adjust the value or repeat_max, since one less copy is required. Once
4624 again, we may have to adjust any OP_RECURSE calls inside the group. */
4625
4626 else
4627 {
4628 int offset;
4629 *code = OP_END;
4630 adjust_recurse(previous, 2 + LINK_SIZE, utf8, cd, save_hwm);
4631 memmove(previous + 2 + LINK_SIZE, previous, len);
4632 code += 2 + LINK_SIZE;
4633 *previous++ = OP_BRAZERO + repeat_type;
4634 *previous++ = OP_BRA;
4635
4636 /* We chain together the bracket offset fields that have to be
4637 filled in later when the ends of the brackets are reached. */
4638
4639 offset = (bralink == NULL)? 0 : (int)(previous - bralink);
4640 bralink = previous;
4641 PUTINC(previous, 0, offset);
4642 }
4643
4644 repeat_max--;
4645 }
4646
4647 /* If the minimum is greater than zero, replicate the group as many
4648 times as necessary, and adjust the maximum to the number of subsequent
4649 copies that we need. If we set a first char from the group, and didn't
4650 set a required char, copy the latter from the former. If there are any
4651 forward reference subroutine calls in the group, there will be entries on
4652 the workspace list; replicate these with an appropriate increment. */
4653
4654 else
4655 {
4656 if (repeat_min > 1)
4657 {
4658 /* In the pre-compile phase, we don't actually do the replication. We
4659 just adjust the length as if we had. Do some paranoid checks for
4660 potential integer overflow. The INT64_OR_DOUBLE type is a 64-bit
4661 integer type when available, otherwise double. */
4662
4663 if (lengthptr != NULL)
4664 {
4665 int delta = (repeat_min - 1)*length_prevgroup;
4666 if ((INT64_OR_DOUBLE)(repeat_min - 1)*
4667 (INT64_OR_DOUBLE)length_prevgroup >
4668 (INT64_OR_DOUBLE)INT_MAX ||
4669 OFLOW_MAX - *lengthptr < delta)
4670 {
4671 *errorcodeptr = ERR20;
4672 goto FAILED;
4673 }
4674 *lengthptr += delta;
4675 }
4676
4677 /* This is compiling for real */
4678
4679 else
4680 {
4681 if (groupsetfirstbyte && reqbyte < 0) reqbyte = firstbyte;
4682 for (i = 1; i < repeat_min; i++)
4683 {
4684 uschar *hc;
4685 uschar *this_hwm = cd->hwm;
4686 memcpy(code, previous, len);
4687 for (hc = save_hwm; hc < this_hwm; hc += LINK_SIZE)
4688 {
4689 PUT(cd->hwm, 0, GET(hc, 0) + len);
4690 cd->hwm += LINK_SIZE;
4691 }
4692 save_hwm = this_hwm;
4693 code += len;
4694 }
4695 }
4696 }
4697
4698 if (repeat_max > 0) repeat_max -= repeat_min;
4699 }
4700
4701 /* This code is common to both the zero and non-zero minimum cases. If
4702 the maximum is limited, it replicates the group in a nested fashion,
4703 remembering the bracket starts on a stack. In the case of a zero minimum,
4704 the first one was set up above. In all cases the repeat_max now specifies
4705 the number of additional copies needed. Again, we must remember to
4706 replicate entries on the forward reference list. */
4707
4708 if (repeat_max >= 0)
4709 {
4710 /* In the pre-compile phase, we don't actually do the replication. We
4711 just adjust the length as if we had. For each repetition we must add 1
4712 to the length for BRAZERO and for all but the last repetition we must
4713 add 2 + 2*LINKSIZE to allow for the nesting that occurs. Do some
4714 paranoid checks to avoid integer overflow. The INT64_OR_DOUBLE type is
4715 a 64-bit integer type when available, otherwise double. */
4716
4717 if (lengthptr != NULL && repeat_max > 0)
4718 {
4719 int delta = repeat_max * (length_prevgroup + 1 + 2 + 2*LINK_SIZE) -
4720 2 - 2*LINK_SIZE; /* Last one doesn't nest */
4721 if ((INT64_OR_DOUBLE)repeat_max *
4722 (INT64_OR_DOUBLE)(length_prevgroup + 1 + 2 + 2*LINK_SIZE)
4723 > (INT64_OR_DOUBLE)INT_MAX ||
4724 OFLOW_MAX - *lengthptr < delta)
4725 {
4726 *errorcodeptr = ERR20;
4727 goto FAILED;
4728 }
4729 *lengthptr += delta;
4730 }
4731
4732 /* This is compiling for real */
4733
4734 else for (i = repeat_max - 1; i >= 0; i--)
4735 {
4736 uschar *hc;
4737 uschar *this_hwm = cd->hwm;
4738
4739 *code++ = OP_BRAZERO + repeat_type;
4740
4741 /* All but the final copy start a new nesting, maintaining the
4742 chain of brackets outstanding. */
4743
4744 if (i != 0)
4745 {
4746 int offset;
4747 *code++ = OP_BRA;
4748 offset = (bralink == NULL)? 0 : (int)(code - bralink);
4749 bralink = code;
4750 PUTINC(code, 0, offset);
4751 }
4752
4753 memcpy(code, previous, len);
4754 for (hc = save_hwm; hc < this_hwm; hc += LINK_SIZE)
4755 {
4756 PUT(cd->hwm, 0, GET(hc, 0) + len + ((i != 0)? 2+LINK_SIZE : 1));
4757 cd->hwm += LINK_SIZE;
4758 }
4759 save_hwm = this_hwm;
4760 code += len;
4761 }
4762
4763 /* Now chain through the pending brackets, and fill in their length
4764 fields (which are holding the chain links pro tem). */
4765
4766 while (bralink != NULL)
4767 {
4768 int oldlinkoffset;
4769 int offset = (int)(code - bralink + 1);
4770 uschar *bra = code - offset;
4771 oldlinkoffset = GET(bra, 1);
4772 bralink = (oldlinkoffset == 0)? NULL : bralink - oldlinkoffset;
4773 *code++ = OP_KET;
4774 PUTINC(code, 0, offset);
4775 PUT(bra, 1, offset);
4776 }
4777 }
4778
4779 /* If the maximum is unlimited, set a repeater in the final copy. For
4780 ONCE brackets, that's all we need to do. However, possessively repeated
4781 ONCE brackets can be converted into non-capturing brackets, as the
4782 behaviour of (?:xx)++ is the same as (?>xx)++ and this saves having to
4783 deal with possessive ONCEs specially.
4784
4785 Otherwise, if the quantifier was possessive, we convert the BRA code to
4786 the POS form, and the KET code to KETRPOS. (It turns out to be convenient
4787 at runtime to detect this kind of subpattern at both the start and at the
4788 end.) The use of special opcodes makes it possible to reduce greatly the
4789 stack usage in pcre_exec(). If the group is preceded by OP_BRAZERO,
4790 convert this to OP_BRAPOSZERO. Then cancel the possessive flag so that
4791 the default action below, of wrapping everything inside atomic brackets,
4792 does not happen.
4793
4794 Then, when we are doing the actual compile phase, check to see whether
4795 this group is one that could match an empty string. If so, convert the
4796 initial operator to the S form (e.g. OP_BRA -> OP_SBRA) so that runtime
4797 checking can be done. [This check is also applied to ONCE groups at
4798 runtime, but in a different way.] */
4799
4800 else
4801 {
4802 uschar *ketcode = code - 1 - LINK_SIZE;
4803 uschar *bracode = ketcode - GET(ketcode, 1);
4804
4805 if (*bracode == OP_ONCE && possessive_quantifier) *bracode = OP_BRA;
4806 if (*bracode == OP_ONCE)
4807 *ketcode = OP_KETRMAX + repeat_type;
4808 else
4809 {
4810 if (possessive_quantifier)
4811 {
4812 *bracode += 1; /* Switch to xxxPOS opcodes */
4813 *ketcode = OP_KETRPOS;
4814 if (brazeroptr != NULL) *brazeroptr = OP_BRAPOSZERO;
4815 possessive_quantifier = FALSE;
4816 }
4817 else *ketcode = OP_KETRMAX + repeat_type;
4818
4819 if (lengthptr == NULL)
4820 {
4821 uschar *scode = bracode;
4822 do
4823 {
4824 if (could_be_empty_branch(scode, ketcode, utf8, cd))
4825 {
4826 *bracode += OP_SBRA - OP_BRA;
4827 break;
4828 }
4829 scode += GET(scode, 1);
4830 }
4831 while (*scode == OP_ALT);
4832 }
4833 }
4834 }
4835 }
4836
4837 /* If previous is OP_FAIL, it was generated by an empty class [] in
4838 JavaScript mode. The other ways in which OP_FAIL can be generated, that is
4839 by (*FAIL) or (?!) set previous to NULL, which gives a "nothing to repeat"
4840 error above. We can just ignore the repeat in JS case. */
4841
4842 else if (*previous == OP_FAIL) goto END_REPEAT;
4843
4844 /* Else there's some kind of shambles */
4845
4846 else
4847 {
4848 *errorcodeptr = ERR11;
4849 goto FAILED;
4850 }
4851
4852 /* If the character following a repeat is '+', or if certain optimization
4853 tests above succeeded, possessive_quantifier is TRUE. For some opcodes,
4854 there are special alternative opcodes for this case. For anything else, we
4855 wrap the entire repeated item inside OP_ONCE brackets. Logically, the '+'
4856 notation is just syntactic sugar, taken from Sun's Java package, but the
4857 special opcodes can optimize it.
4858
4859 Possessively repeated subpatterns have already been handled in the code
4860 just above, so possessive_quantifier is always FALSE for them at this
4861 stage.
4862
4863 Note that the repeated item starts at tempcode, not at previous, which
4864 might be the first part of a string whose (former) last char we repeated.
4865
4866 Possessifying an 'exact' quantifier has no effect, so we can ignore it. But
4867 an 'upto' may follow. We skip over an 'exact' item, and then test the
4868 length of what remains before proceeding. */
4869
4870 if (possessive_quantifier)
4871 {
4872 int len;
4873
4874 if (*tempcode == OP_TYPEEXACT)
4875 tempcode += _pcre_OP_lengths[*tempcode] +
4876 ((tempcode[3] == OP_PROP || tempcode[3] == OP_NOTPROP)? 2 : 0);
4877
4878 else if (*tempcode == OP_EXACT || *tempcode == OP_NOTEXACT)
4879 {
4880 tempcode += _pcre_OP_lengths[*tempcode];
4881 #ifdef SUPPORT_UTF8
4882 if (utf8 && tempcode[-1] >= 0xc0)
4883 tempcode += _pcre_utf8_table4[tempcode[-1] & 0x3f];
4884 #endif
4885 }
4886
4887 len = (int)(code - tempcode);
4888 if (len > 0) switch (*tempcode)
4889 {
4890 case OP_STAR: *tempcode = OP_POSSTAR; break;
4891 case OP_PLUS: *tempcode = OP_POSPLUS; break;
4892 case OP_QUERY: *tempcode = OP_POSQUERY; break;
4893 case OP_UPTO: *tempcode = OP_POSUPTO; break;
4894
4895 case OP_STARI: *tempcode = OP_POSSTARI; break;
4896 case OP_PLUSI: *tempcode = OP_POSPLUSI; break;
4897 case OP_QUERYI: *tempcode = OP_POSQUERYI; break;
4898 case OP_UPTOI: *tempcode = OP_POSUPTOI; break;
4899
4900 case OP_NOTSTAR: *tempcode = OP_NOTPOSSTAR; break;
4901 case OP_NOTPLUS: *tempcode = OP_NOTPOSPLUS; break;
4902 case OP_NOTQUERY: *tempcode = OP_NOTPOSQUERY; break;
4903 case OP_NOTUPTO: *tempcode = OP_NOTPOSUPTO; break;
4904
4905 case OP_NOTSTARI: *tempcode = OP_NOTPOSSTARI; break;
4906 case OP_NOTPLUSI: *tempcode = OP_NOTPOSPLUSI; break;
4907 case OP_NOTQUERYI: *tempcode = OP_NOTPOSQUERYI; break;
4908 case OP_NOTUPTOI: *tempcode = OP_NOTPOSUPTOI; break;
4909
4910 case OP_TYPESTAR: *tempcode = OP_TYPEPOSSTAR; break;
4911 case OP_TYPEPLUS: *tempcode = OP_TYPEPOSPLUS; break;
4912 case OP_TYPEQUERY: *tempcode = OP_TYPEPOSQUERY; break;
4913 case OP_TYPEUPTO: *tempcode = OP_TYPEPOSUPTO; break;
4914
4915 /* Because we are moving code along, we must ensure that any
4916 pending recursive references are updated. */
4917
4918 default:
4919 *code = OP_END;
4920 adjust_recurse(tempcode, 1 + LINK_SIZE, utf8, cd, save_hwm);
4921 memmove(tempcode + 1+LINK_SIZE, tempcode, len);
4922 code += 1 + LINK_SIZE;
4923 len += 1 + LINK_SIZE;
4924 tempcode[0] = OP_ONCE;
4925 *code++ = OP_KET;
4926 PUTINC(code, 0, len);
4927 PUT(tempcode, 1, len);
4928 break;
4929 }
4930 }
4931
4932 /* In all case we no longer have a previous item. We also set the
4933 "follows varying string" flag for subsequently encountered reqbytes if
4934 it isn't already set and we have just passed a varying length item. */
4935
4936 END_REPEAT:
4937 previous = NULL;
4938 cd->req_varyopt |= reqvary;
4939 break;
4940
4941
4942 /* ===================================================================*/
4943 /* Start of nested parenthesized sub-expression, or comment or lookahead or
4944 lookbehind or option setting or condition or all the other extended
4945 parenthesis forms. */
4946
4947 case CHAR_LEFT_PARENTHESIS:
4948 newoptions = options;
4949 skipbytes = 0;
4950 bravalue = OP_CBRA;
4951 save_hwm = cd->hwm;
4952 reset_bracount = FALSE;
4953
4954 /* First deal with various "verbs" that can be introduced by '*'. */
4955
4956 if (*(++ptr) == CHAR_ASTERISK &&
4957 ((cd->ctypes[ptr[1]] & ctype_letter) != 0 || ptr[1] == ':'))
4958 {
4959 int i, namelen;
4960 int arglen = 0;
4961 const char *vn = verbnames;
4962 const uschar *name = ptr + 1;
4963 const uschar *arg = NULL;
4964 previous = NULL;
4965 while ((cd->ctypes[*++ptr] & ctype_letter) != 0) {};
4966 namelen = (int)(ptr - name);
4967
4968 if (*ptr == CHAR_COLON)
4969 {
4970 arg = ++ptr;
4971 while ((cd->ctypes[*ptr] & (ctype_letter|ctype_digit)) != 0
4972 || *ptr == '_') ptr++;
4973 arglen = (int)(ptr - arg);
4974 }
4975
4976 if (*ptr != CHAR_RIGHT_PARENTHESIS)
4977 {
4978 *errorcodeptr = ERR60;
4979 goto FAILED;
4980 }
4981
4982 /* Scan the table of verb names */
4983
4984 for (i = 0; i < verbcount; i++)
4985 {
4986 if (namelen == verbs[i].len &&
4987 strncmp((char *)name, vn, namelen) == 0)
4988 {
4989 /* Check for open captures before ACCEPT and convert it to
4990 ASSERT_ACCEPT if in an assertion. */
4991
4992 if (verbs[i].op == OP_ACCEPT)
4993 {
4994 open_capitem *oc;
4995 if (arglen != 0)
4996 {
4997 *errorcodeptr = ERR59;
4998 goto FAILED;
4999 }
5000 cd->had_accept = TRUE;
5001 for (oc = cd->open_caps; oc != NULL; oc = oc->next)
5002 {
5003 *code++ = OP_CLOSE;
5004 PUT2INC(code, 0, oc->number);
5005 }
5006 *code++ = (cd->assert_depth > 0)? OP_ASSERT_ACCEPT : OP_ACCEPT;
5007 }
5008
5009 /* Handle other cases with/without an argument */
5010
5011 else if (arglen == 0)
5012 {
5013 if (verbs[i].op < 0) /* Argument is mandatory */
5014 {
5015 *errorcodeptr = ERR66;
5016 goto FAILED;
5017 }
5018 *code = verbs[i].op;
5019 if (*code++ == OP_THEN)
5020 {
5021 PUT(code, 0, code - bcptr->current_branch - 1);
5022 code += LINK_SIZE;
5023 }
5024 }
5025
5026 else
5027 {
5028 if (verbs[i].op_arg < 0) /* Argument is forbidden */
5029 {
5030 *errorcodeptr = ERR59;
5031 goto FAILED;
5032 }
5033 *code = verbs[i].op_arg;
5034 if (*code++ == OP_THEN_ARG)
5035 {
5036 PUT(code, 0, code - bcptr->current_branch - 1);
5037 code += LINK_SIZE;
5038 }
5039 *code++ = arglen;
5040 memcpy(code, arg, arglen);
5041 code += arglen;
5042 *code++ = 0;
5043 }
5044
5045 break; /* Found verb, exit loop */
5046 }
5047
5048 vn += verbs[i].len + 1;
5049 }
5050
5051 if (i < verbcount) continue; /* Successfully handled a verb */
5052 *errorcodeptr = ERR60; /* Verb not recognized */
5053 goto FAILED;
5054 }
5055
5056 /* Deal with the extended parentheses; all are introduced by '?', and the
5057 appearance of any of them means that this is not a capturing group. */
5058
5059 else if (*ptr == CHAR_QUESTION_MARK)
5060 {
5061 int i, set, unset, namelen;
5062 int *optset;
5063 const uschar *name;
5064 uschar *slot;
5065
5066 switch (*(++ptr))
5067 {
5068 case CHAR_NUMBER_SIGN: /* Comment; skip to ket */
5069 ptr++;
5070 while (*ptr != 0 && *ptr != CHAR_RIGHT_PARENTHESIS) ptr++;
5071 if (*ptr == 0)
5072 {
5073 *errorcodeptr = ERR18;
5074 goto FAILED;
5075 }
5076 continue;
5077
5078
5079 /* ------------------------------------------------------------ */
5080 case CHAR_VERTICAL_LINE: /* Reset capture count for each branch */
5081 reset_bracount = TRUE;
5082 /* Fall through */
5083
5084 /* ------------------------------------------------------------ */
5085 case CHAR_COLON: /* Non-capturing bracket */
5086 bravalue = OP_BRA;
5087 ptr++;
5088 break;
5089
5090
5091 /* ------------------------------------------------------------ */
5092 case CHAR_LEFT_PARENTHESIS:
5093 bravalue = OP_COND; /* Conditional group */
5094
5095 /* A condition can be an assertion, a number (referring to a numbered
5096 group), a name (referring to a named group), or 'R', referring to
5097 recursion. R<digits> and R&name are also permitted for recursion tests.
5098
5099 There are several syntaxes for testing a named group: (?(name)) is used
5100 by Python; Perl 5.10 onwards uses (?(<name>) or (?('name')).
5101
5102 There are two unfortunate ambiguities, caused by history. (a) 'R' can
5103 be the recursive thing or the name 'R' (and similarly for 'R' followed
5104 by digits), and (b) a number could be a name that consists of digits.
5105 In both cases, we look for a name first; if not found, we try the other
5106 cases. */
5107
5108 /* For conditions that are assertions, check the syntax, and then exit
5109 the switch. This will take control down to where bracketed groups,
5110 including assertions, are processed. */
5111
5112 if (ptr[1] == CHAR_QUESTION_MARK && (ptr[2] == CHAR_EQUALS_SIGN ||
5113 ptr[2] == CHAR_EXCLAMATION_MARK || ptr[2] == CHAR_LESS_THAN_SIGN))
5114 break;
5115
5116 /* Most other conditions use OP_CREF (a couple change to OP_RREF
5117 below), and all need to skip 3 bytes at the start of the group. */
5118
5119 code[1+LINK_SIZE] = OP_CREF;
5120 skipbytes = 3;
5121 refsign = -1;
5122
5123 /* Check for a test for recursion in a named group. */
5124
5125 if (ptr[1] == CHAR_R && ptr[2] == CHAR_AMPERSAND)
5126 {
5127 terminator = -1;
5128 ptr += 2;
5129 code[1+LINK_SIZE] = OP_RREF; /* Change the type of test */
5130 }
5131
5132 /* Check for a test for a named group's having been set, using the Perl
5133 syntax (?(<name>) or (?('name') */
5134
5135 else if (ptr[1] == CHAR_LESS_THAN_SIGN)
5136 {
5137 terminator = CHAR_GREATER_THAN_SIGN;
5138 ptr++;
5139 }
5140 else if (ptr[1] == CHAR_APOSTROPHE)
5141 {
5142 terminator = CHAR_APOSTROPHE;
5143 ptr++;
5144 }
5145 else
5146 {
5147 terminator = 0;
5148 if (ptr[1] == CHAR_MINUS || ptr[1] == CHAR_PLUS) refsign = *(++ptr);
5149 }
5150
5151 /* We now expect to read a name; any thing else is an error */
5152
5153 if ((cd->ctypes[ptr[1]] & ctype_word) == 0)
5154 {
5155 ptr += 1; /* To get the right offset */
5156 *errorcodeptr = ERR28;
5157 goto FAILED;
5158 }
5159
5160 /* Read the name, but also get it as a number if it's all digits */
5161
5162 recno = 0;
5163 name = ++ptr;
5164 while ((cd->ctypes[*ptr] & ctype_word) != 0)
5165 {
5166 if (recno >= 0)
5167 recno = ((digitab[*ptr] & ctype_digit) != 0)?
5168 recno * 10 + *ptr - CHAR_0 : -1;
5169 ptr++;
5170 }
5171 namelen = (int)(ptr - name);
5172
5173 if ((terminator > 0 && *ptr++ != terminator) ||
5174 *ptr++ != CHAR_RIGHT_PARENTHESIS)
5175 {
5176 ptr--; /* Error offset */
5177 *errorcodeptr = ERR26;
5178 goto FAILED;
5179 }
5180
5181 /* Do no further checking in the pre-compile phase. */
5182
5183 if (lengthptr != NULL) break;
5184
5185 /* In the real compile we do the work of looking for the actual
5186 reference. If the string started with "+" or "-" we require the rest to
5187 be digits, in which case recno will be set. */
5188
5189 if (refsign > 0)
5190 {
5191 if (recno <= 0)
5192 {
5193 *errorcodeptr = ERR58;
5194 goto FAILED;
5195 }
5196 recno = (refsign == CHAR_MINUS)?
5197 cd->bracount - recno + 1 : recno +cd->bracount;
5198 if (recno <= 0 || recno > cd->final_bracount)
5199 {
5200 *errorcodeptr = ERR15;
5201 goto FAILED;
5202 }
5203 PUT2(code, 2+LINK_SIZE, recno);
5204 break;
5205 }
5206
5207 /* Otherwise (did not start with "+" or "-"), start by looking for the
5208 name. If we find a name, add one to the opcode to change OP_CREF or
5209 OP_RREF into OP_NCREF or OP_NRREF. These behave exactly the same,
5210 except they record that the reference was originally to a name. The
5211 information is used to check duplicate names. */
5212
5213 slot = cd->name_table;
5214 for (i = 0; i < cd->names_found; i++)
5215 {
5216 if (strncmp((char *)name, (char *)slot+2, namelen) == 0) break;
5217 slot += cd->name_entry_size;
5218 }
5219
5220 /* Found a previous named subpattern */
5221
5222 if (i < cd->names_found)
5223 {
5224 recno = GET2(slot, 0);
5225 PUT2(code, 2+LINK_SIZE, recno);
5226 code[1+LINK_SIZE]++;
5227 }
5228
5229 /* Search the pattern for a forward reference */
5230
5231 else if ((i = find_parens(cd, name, namelen,
5232 (options & PCRE_EXTENDED) != 0, utf8)) > 0)
5233 {
5234 PUT2(code, 2+LINK_SIZE, i);
5235 code[1+LINK_SIZE]++;
5236 }
5237
5238 /* If terminator == 0 it means that the name followed directly after
5239 the opening parenthesis [e.g. (?(abc)...] and in this case there are
5240 some further alternatives to try. For the cases where terminator != 0
5241 [things like (?(<name>... or (?('name')... or (?(R&name)... ] we have
5242 now checked all the possibilities, so give an error. */
5243
5244 else if (terminator != 0)
5245 {
5246 *errorcodeptr = ERR15;
5247 goto FAILED;
5248 }
5249
5250 /* Check for (?(R) for recursion. Allow digits after R to specify a
5251 specific group number. */
5252
5253 else if (*name == CHAR_R)
5254 {
5255 recno = 0;
5256 for (i = 1; i < namelen; i++)
5257 {
5258 if ((digitab[name[i]] & ctype_digit) == 0)
5259 {
5260 *errorcodeptr = ERR15;
5261 goto FAILED;
5262 }
5263 recno = recno * 10 + name[i] - CHAR_0;
5264 }
5265 if (recno == 0) recno = RREF_ANY;
5266 code[1+LINK_SIZE] = OP_RREF; /* Change test type */
5267 PUT2(code, 2+LINK_SIZE, recno);
5268 }
5269
5270 /* Similarly, check for the (?(DEFINE) "condition", which is always
5271 false. */
5272
5273 else if (namelen == 6 && strncmp((char *)name, STRING_DEFINE, 6) == 0)
5274 {
5275 code[1+LINK_SIZE] = OP_DEF;
5276 skipbytes = 1;
5277 }
5278
5279 /* Check for the "name" actually being a subpattern number. We are
5280 in the second pass here, so final_bracount is set. */
5281
5282 else if (recno > 0 && recno <= cd->final_bracount)
5283 {
5284 PUT2(code, 2+LINK_SIZE, recno);
5285 }
5286
5287 /* Either an unidentified subpattern, or a reference to (?(0) */
5288
5289 else
5290 {
5291 *errorcodeptr = (recno == 0)? ERR35: ERR15;
5292 goto FAILED;
5293 }
5294 break;
5295
5296
5297 /* ------------------------------------------------------------ */
5298 case CHAR_EQUALS_SIGN: /* Positive lookahead */
5299 bravalue = OP_ASSERT;
5300 cd->assert_depth += 1;
5301 ptr++;
5302 break;
5303
5304
5305 /* ------------------------------------------------------------ */
5306 case CHAR_EXCLAMATION_MARK: /* Negative lookahead */
5307 ptr++;
5308 if (*ptr == CHAR_RIGHT_PARENTHESIS) /* Optimize (?!) */
5309 {
5310 *code++ = OP_FAIL;
5311 previous = NULL;
5312 continue;
5313 }
5314 bravalue = OP_ASSERT_NOT;
5315 cd->assert_depth += 1;
5316 break;
5317
5318
5319 /* ------------------------------------------------------------ */
5320 case CHAR_LESS_THAN_SIGN: /* Lookbehind or named define */
5321 switch (ptr[1])
5322 {
5323 case CHAR_EQUALS_SIGN: /* Positive lookbehind */
5324 bravalue = OP_ASSERTBACK;
5325 cd->assert_depth += 1;
5326 ptr += 2;
5327 break;
5328
5329 case CHAR_EXCLAMATION_MARK: /* Negative lookbehind */
5330 bravalue = OP_ASSERTBACK_NOT;
5331 cd->assert_depth += 1;
5332 ptr += 2;
5333 break;
5334
5335 default: /* Could be name define, else bad */
5336 if ((cd->ctypes[ptr[1]] & ctype_word) != 0) goto DEFINE_NAME;
5337 ptr++; /* Correct offset for error */
5338 *errorcodeptr = ERR24;
5339 goto FAILED;
5340 }
5341 break;
5342
5343
5344 /* ------------------------------------------------------------ */
5345 case CHAR_GREATER_THAN_SIGN: /* One-time brackets */
5346 bravalue = OP_ONCE;
5347 ptr++;
5348 break;
5349
5350
5351 /* ------------------------------------------------------------ */
5352 case CHAR_C: /* Callout - may be followed by digits; */
5353 previous_callout = code; /* Save for later completion */
5354 after_manual_callout = 1; /* Skip one item before completing */
5355 *code++ = OP_CALLOUT;
5356 {
5357 int n = 0;
5358 while ((digitab[*(++ptr)] & ctype_digit) != 0)
5359 n = n * 10 + *ptr - CHAR_0;
5360 if (*ptr != CHAR_RIGHT_PARENTHESIS)
5361 {
5362 *errorcodeptr = ERR39;
5363 goto FAILED;
5364 }
5365 if (n > 255)
5366 {
5367 *errorcodeptr = ERR38;
5368 goto FAILED;
5369 }
5370 *code++ = n;
5371 PUT(code, 0, (int)(ptr - cd->start_pattern + 1)); /* Pattern offset */
5372 PUT(code, LINK_SIZE, 0); /* Default length */
5373 code += 2 * LINK_SIZE;
5374 }
5375 previous = NULL;
5376 continue;
5377
5378
5379 /* ------------------------------------------------------------ */
5380 case CHAR_P: /* Python-style named subpattern handling */
5381 if (*(++ptr) == CHAR_EQUALS_SIGN ||
5382 *ptr == CHAR_GREATER_THAN_SIGN) /* Reference or recursion */
5383 {
5384 is_recurse = *ptr == CHAR_GREATER_THAN_SIGN;
5385 terminator = CHAR_RIGHT_PARENTHESIS;
5386 goto NAMED_REF_OR_RECURSE;
5387 }
5388 else if (*ptr != CHAR_LESS_THAN_SIGN) /* Test for Python-style defn */
5389 {
5390 *errorcodeptr = ERR41;
5391 goto FAILED;
5392 }
5393 /* Fall through to handle (?P< as (?< is handled */
5394
5395
5396 /* ------------------------------------------------------------ */
5397 DEFINE_NAME: /* Come here from (?< handling */
5398 case CHAR_APOSTROPHE:
5399 {
5400 terminator = (*ptr == CHAR_LESS_THAN_SIGN)?
5401 CHAR_GREATER_THAN_SIGN : CHAR_APOSTROPHE;
5402 name = ++ptr;
5403
5404 while ((cd->ctypes[*ptr] & ctype_word) != 0) ptr++;
5405 namelen = (int)(ptr - name);
5406
5407 /* In the pre-compile phase, just do a syntax check. */
5408
5409 if (lengthptr != NULL)
5410 {
5411 if (*ptr != terminator)
5412 {
5413 *errorcodeptr = ERR42;
5414 goto FAILED;
5415 }
5416 if (cd->names_found >= MAX_NAME_COUNT)
5417 {
5418 *errorcodeptr = ERR49;
5419 goto FAILED;
5420 }
5421 if (namelen + 3 > cd->name_entry_size)
5422 {
5423 cd->name_entry_size = namelen + 3;
5424 if (namelen > MAX_NAME_SIZE)
5425 {
5426 *errorcodeptr = ERR48;
5427 goto FAILED;
5428 }
5429 }
5430 }
5431
5432 /* In the real compile, create the entry in the table, maintaining
5433 alphabetical order. Duplicate names for different numbers are
5434 permitted only if PCRE_DUPNAMES is set. Duplicate names for the same
5435 number are always OK. (An existing number can be re-used if (?|
5436 appears in the pattern.) In either event, a duplicate name results in
5437 a duplicate entry in the table, even if the number is the same. This
5438 is because the number of names, and hence the table size, is computed
5439 in the pre-compile, and it affects various numbers and pointers which
5440 would all have to be modified, and the compiled code moved down, if
5441 duplicates with the same number were omitted from the table. This
5442 doesn't seem worth the hassle. However, *different* names for the
5443 same number are not permitted. */
5444
5445 else
5446 {
5447 BOOL dupname = FALSE;
5448 slot = cd->name_table;
5449
5450 for (i = 0; i < cd->names_found; i++)
5451 {
5452 int crc = memcmp(name, slot+2, namelen);
5453 if (crc == 0)
5454 {
5455 if (slot[2+namelen] == 0)
5456 {
5457 if (GET2(slot, 0) != cd->bracount + 1 &&
5458 (options & PCRE_DUPNAMES) == 0)
5459 {
5460 *errorcodeptr = ERR43;
5461 goto FAILED;
5462 }
5463 else dupname = TRUE;
5464 }
5465 else crc = -1; /* Current name is a substring */
5466 }
5467
5468 /* Make space in the table and break the loop for an earlier
5469 name. For a duplicate or later name, carry on. We do this for
5470 duplicates so that in the simple case (when ?(| is not used) they
5471 are in order of their numbers. */
5472
5473 if (crc < 0)
5474 {
5475 memmove(slot + cd->name_entry_size, slot,
5476 (cd->names_found - i) * cd->name_entry_size);
5477 break;
5478 }
5479
5480 /* Continue the loop for a later or duplicate name */
5481
5482 slot += cd->name_entry_size;
5483 }
5484
5485 /* For non-duplicate names, check for a duplicate number before
5486 adding the new name. */
5487
5488 if (!dupname)
5489 {
5490 uschar *cslot = cd->name_table;
5491 for (i = 0; i < cd->names_found; i++)
5492 {
5493 if (cslot != slot)
5494 {
5495 if (GET2(cslot, 0) == cd->bracount + 1)
5496 {
5497 *errorcodeptr = ERR65;
5498 goto FAILED;
5499 }
5500 }
5501 else i--;
5502 cslot += cd->name_entry_size;
5503 }
5504 }
5505
5506 PUT2(slot, 0, cd->bracount + 1);
5507 memcpy(slot + 2, name, namelen);
5508 slot[2+namelen] = 0;
5509 }
5510 }
5511
5512 /* In both pre-compile and compile, count the number of names we've
5513 encountered. */
5514
5515 cd->names_found++;
5516 ptr++; /* Move past > or ' */
5517 goto NUMBERED_GROUP;
5518
5519
5520 /* ------------------------------------------------------------ */
5521 case CHAR_AMPERSAND: /* Perl recursion/subroutine syntax */
5522 terminator = CHAR_RIGHT_PARENTHESIS;
5523 is_recurse = TRUE;
5524 /* Fall through */
5525
5526 /* We come here from the Python syntax above that handles both
5527 references (?P=name) and recursion (?P>name), as well as falling
5528 through from the Perl recursion syntax (?&name). We also come here from
5529 the Perl \k<name> or \k'name' back reference syntax and the \k{name}
5530 .NET syntax, and the Oniguruma \g<...> and \g'...' subroutine syntax. */
5531
5532 NAMED_REF_OR_RECURSE:
5533 name = ++ptr;
5534 while ((cd->ctypes[*ptr] & ctype_word) != 0) ptr++;
5535 namelen = (int)(ptr - name);
5536
5537 /* In the pre-compile phase, do a syntax check. We used to just set
5538 a dummy reference number, because it was not used in the first pass.
5539 However, with the change of recursive back references to be atomic,
5540 we have to look for the number so that this state can be identified, as
5541 otherwise the incorrect length is computed. If it's not a backwards
5542 reference, the dummy number will do. */
5543
5544 if (lengthptr != NULL)
5545 {
5546 const uschar *temp;
5547
5548 if (namelen == 0)
5549 {
5550 *errorcodeptr = ERR62;
5551 goto FAILED;
5552 }
5553 if (*ptr != terminator)
5554 {
5555 *errorcodeptr = ERR42;
5556 goto FAILED;
5557 }
5558 if (namelen > MAX_NAME_SIZE)
5559 {
5560 *errorcodeptr = ERR48;
5561 goto FAILED;
5562 }
5563
5564 /* The name table does not exist in the first pass, so we cannot
5565 do a simple search as in the code below. Instead, we have to scan the
5566 pattern to find the number. It is important that we scan it only as
5567 far as we have got because the syntax of named subpatterns has not
5568 been checked for the rest of the pattern, and find_parens() assumes
5569 correct syntax. In any case, it's a waste of resources to scan
5570 further. We stop the scan at the current point by temporarily
5571 adjusting the value of cd->endpattern. */
5572
5573 temp = cd->end_pattern;
5574 cd->end_pattern = ptr;
5575 recno = find_parens(cd, name, namelen,
5576 (options & PCRE_EXTENDED) != 0, utf8);
5577 cd->end_pattern = temp;
5578 if (recno < 0) recno = 0; /* Forward ref; set dummy number */
5579 }
5580
5581 /* In the real compile, seek the name in the table. We check the name
5582 first, and then check that we have reached the end of the name in the
5583 table. That way, if the name that is longer than any in the table,
5584 the comparison will fail without reading beyond the table entry. */
5585
5586 else
5587 {
5588 slot = cd->name_table;
5589 for (i = 0; i < cd->names_found; i++)
5590 {
5591 if (strncmp((char *)name, (char *)slot+2, namelen) == 0 &&
5592 slot[2+namelen] == 0)
5593 break;
5594 slot += cd->name_entry_size;
5595 }
5596
5597 if (i < cd->names_found) /* Back reference */
5598 {
5599 recno = GET2(slot, 0);
5600 }
5601 else if ((recno = /* Forward back reference */
5602 find_parens(cd, name, namelen,
5603 (options & PCRE_EXTENDED) != 0, utf8)) <= 0)
5604 {
5605 *errorcodeptr = ERR15;
5606 goto FAILED;
5607 }
5608 }
5609
5610 /* In both phases, we can now go to the code than handles numerical
5611 recursion or backreferences. */
5612
5613 if (is_recurse) goto HANDLE_RECURSION;
5614 else goto HANDLE_REFERENCE;
5615
5616
5617 /* ------------------------------------------------------------ */
5618 case CHAR_R: /* Recursion */
5619 ptr++; /* Same as (?0) */
5620 /* Fall through */
5621
5622
5623 /* ------------------------------------------------------------ */
5624 case CHAR_MINUS: case CHAR_PLUS: /* Recursion or subroutine */
5625 case CHAR_0: case CHAR_1: case CHAR_2: case CHAR_3: case CHAR_4:
5626 case CHAR_5: case CHAR_6: case CHAR_7: case CHAR_8: case CHAR_9:
5627 {
5628 const uschar *called;
5629 terminator = CHAR_RIGHT_PARENTHESIS;
5630
5631 /* Come here from the \g<...> and \g'...' code (Oniguruma
5632 compatibility). However, the syntax has been checked to ensure that
5633 the ... are a (signed) number, so that neither ERR63 nor ERR29 will
5634 be called on this path, nor with the jump to OTHER_CHAR_AFTER_QUERY
5635 ever be taken. */
5636
5637 HANDLE_NUMERICAL_RECURSION:
5638
5639 if ((refsign = *ptr) == CHAR_PLUS)
5640 {
5641 ptr++;
5642 if ((digitab[*ptr] & ctype_digit) == 0)
5643 {
5644 *errorcodeptr = ERR63;
5645 goto FAILED;
5646 }
5647 }
5648 else if (refsign == CHAR_MINUS)
5649 {
5650 if ((digitab[ptr[1]] & ctype_digit) == 0)
5651 goto OTHER_CHAR_AFTER_QUERY;
5652 ptr++;
5653 }
5654
5655 recno = 0;
5656 while((digitab[*ptr] & ctype_digit) != 0)
5657 recno = recno * 10 + *ptr++ - CHAR_0;
5658
5659 if (*ptr != terminator)
5660 {
5661 *errorcodeptr = ERR29;
5662 goto FAILED;
5663 }
5664
5665 if (refsign == CHAR_MINUS)
5666 {
5667 if (recno == 0)
5668 {
5669 *errorcodeptr = ERR58;
5670 goto FAILED;
5671 }
5672 recno = cd->bracount - recno + 1;
5673 if (recno <= 0)
5674 {
5675 *errorcodeptr = ERR15;
5676 goto FAILED;
5677 }
5678 }
5679 else if (refsign == CHAR_PLUS)
5680 {
5681 if (recno == 0)
5682 {
5683 *errorcodeptr = ERR58;
5684 goto FAILED;
5685 }
5686 recno += cd->bracount;
5687 }
5688
5689 /* Come here from code above that handles a named recursion */
5690
5691 HANDLE_RECURSION:
5692
5693 previous = code;
5694 called = cd->start_code;
5695
5696 /* When we are actually compiling, find the bracket that is being
5697 referenced. Temporarily end the regex in case it doesn't exist before
5698 this point. If we end up with a forward reference, first check that
5699 the bracket does occur later so we can give the error (and position)
5700 now. Then remember this forward reference in the workspace so it can
5701 be filled in at the end. */
5702
5703 if (lengthptr == NULL)
5704 {
5705 *code = OP_END;
5706 if (recno != 0)
5707 called = _pcre_find_bracket(cd->start_code, utf8, recno);
5708
5709 /* Forward reference */
5710
5711 if (called == NULL)
5712 {
5713 if (find_parens(cd, NULL, recno,
5714 (options & PCRE_EXTENDED) != 0, utf8) < 0)
5715 {
5716 *errorcodeptr = ERR15;
5717 goto FAILED;
5718 }
5719
5720 /* Fudge the value of "called" so that when it is inserted as an
5721 offset below, what it actually inserted is the reference number
5722 of the group. Then remember the forward reference. */
5723
5724 called = cd->start_code + recno;
5725 PUTINC(cd->hwm, 0, (int)(code + 1 - cd->start_code));
5726 }
5727
5728 /* If not a forward reference, and the subpattern is still open,
5729 this is a recursive call. We check to see if this is a left
5730 recursion that could loop for ever, and diagnose that case. */
5731
5732 else if (GET(called, 1) == 0 &&
5733 could_be_empty(called, code, bcptr, utf8, cd))
5734 {
5735 *errorcodeptr = ERR40;
5736 goto FAILED;
5737 }
5738 }
5739
5740 /* Insert the recursion/subroutine item. */
5741
5742 *code = OP_RECURSE;
5743 PUT(code, 1, (int)(called - cd->start_code));
5744 code += 1 + LINK_SIZE;
5745 }
5746
5747 /* Can't determine a first byte now */
5748
5749 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
5750 continue;
5751
5752
5753 /* ------------------------------------------------------------ */
5754 default: /* Other characters: check option setting */
5755 OTHER_CHAR_AFTER_QUERY:
5756 set = unset = 0;
5757 optset = &set;
5758
5759 while (*ptr != CHAR_RIGHT_PARENTHESIS && *ptr != CHAR_COLON)
5760 {
5761 switch (*ptr++)
5762 {
5763 case CHAR_MINUS: optset = &unset; break;
5764
5765 case CHAR_J: /* Record that it changed in the external options */
5766 *optset |= PCRE_DUPNAMES;
5767 cd->external_flags |= PCRE_JCHANGED;
5768 break;
5769
5770 case CHAR_i: *optset |= PCRE_CASELESS; break;
5771 case CHAR_m: *optset |= PCRE_MULTILINE; break;
5772 case CHAR_s: *optset |= PCRE_DOTALL; break;
5773 case CHAR_x: *optset |= PCRE_EXTENDED; break;
5774 case CHAR_U: *optset |= PCRE_UNGREEDY; break;
5775 case CHAR_X: *optset |= PCRE_EXTRA; break;
5776
5777 default: *errorcodeptr = ERR12;
5778 ptr--; /* Correct the offset */
5779 goto FAILED;
5780 }
5781 }
5782
5783 /* Set up the changed option bits, but don't change anything yet. */
5784
5785 newoptions = (options | set) & (~unset);
5786
5787 /* If the options ended with ')' this is not the start of a nested
5788 group with option changes, so the options change at this level. If this
5789 item is right at the start of the pattern, the options can be
5790 abstracted and made external in the pre-compile phase, and ignored in
5791 the compile phase. This can be helpful when matching -- for instance in
5792 caseless checking of required bytes.
5793
5794 If the code pointer is not (cd->start_code + 1 + LINK_SIZE), we are
5795 definitely *not* at the start of the pattern because something has been
5796 compiled. In the pre-compile phase, however, the code pointer can have
5797 that value after the start, because it gets reset as code is discarded
5798 during the pre-compile. However, this can happen only at top level - if
5799 we are within parentheses, the starting BRA will still be present. At
5800 any parenthesis level, the length value can be used to test if anything
5801 has been compiled at that level. Thus, a test for both these conditions
5802 is necessary to ensure we correctly detect the start of the pattern in
5803 both phases.
5804
5805 If we are not at the pattern start, reset the greedy defaults and the
5806 case value for firstbyte and reqbyte. */
5807
5808 if (*ptr == CHAR_RIGHT_PARENTHESIS)
5809 {
5810 if (code == cd->start_code + 1 + LINK_SIZE &&
5811 (lengthptr == NULL || *lengthptr == 2 + 2*LINK_SIZE))
5812 {
5813 cd->external_options = newoptions;
5814 }
5815 else
5816 {
5817 greedy_default = ((newoptions & PCRE_UNGREEDY) != 0);
5818 greedy_non_default = greedy_default ^ 1;
5819 req_caseopt = ((newoptions & PCRE_CASELESS) != 0)? REQ_CASELESS : 0;
5820 }
5821
5822 /* Change options at this level, and pass them back for use
5823 in subsequent branches. */
5824
5825 *optionsptr = options = newoptions;
5826 previous = NULL; /* This item can't be repeated */
5827 continue; /* It is complete */
5828 }
5829
5830 /* If the options ended with ':' we are heading into a nested group
5831 with possible change of options. Such groups are non-capturing and are
5832 not assertions of any kind. All we need to do is skip over the ':';
5833 the newoptions value is handled below. */
5834
5835 bravalue = OP_BRA;
5836 ptr++;
5837 } /* End of switch for character following (? */
5838 } /* End of (? handling */
5839
5840 /* Opening parenthesis not followed by '*' or '?'. If PCRE_NO_AUTO_CAPTURE
5841 is set, all unadorned brackets become non-capturing and behave like (?:...)
5842 brackets. */
5843
5844 else if ((options & PCRE_NO_AUTO_CAPTURE) != 0)
5845 {
5846 bravalue = OP_BRA;
5847 }
5848
5849 /* Else we have a capturing group. */
5850
5851 else
5852 {
5853 NUMBERED_GROUP:
5854 cd->bracount += 1;
5855 PUT2(code, 1+LINK_SIZE, cd->bracount);
5856 skipbytes = 2;
5857 }
5858
5859 /* Process nested bracketed regex. Assertions may not be repeated, but
5860 other kinds can be. All their opcodes are >= OP_ONCE. We copy code into a
5861 non-register variable (tempcode) in order to be able to pass its address
5862 because some compilers complain otherwise. */
5863
5864 previous = (bravalue >= OP_ONCE)? code : NULL;
5865 *code = bravalue;
5866 tempcode = code;
5867 tempreqvary = cd->req_varyopt; /* Save value before bracket */
5868 length_prevgroup = 0; /* Initialize for pre-compile phase */
5869
5870 if (!compile_regex(
5871 newoptions, /* The complete new option state */
5872 &tempcode, /* Where to put code (updated) */
5873 &ptr, /* Input pointer (updated) */
5874 errorcodeptr, /* Where to put an error message */
5875 (bravalue == OP_ASSERTBACK ||
5876 bravalue == OP_ASSERTBACK_NOT), /* TRUE if back assert */
5877 reset_bracount, /* True if (?| group */
5878 skipbytes, /* Skip over bracket number */
5879 &subfirstbyte, /* For possible first char */
5880 &subreqbyte, /* For possible last char */
5881 bcptr, /* Current branch chain */
5882 cd, /* Tables block */
5883 (lengthptr == NULL)? NULL : /* Actual compile phase */
5884 &length_prevgroup /* Pre-compile phase */
5885 ))
5886 goto FAILED;
5887
5888 if (bravalue >= OP_ASSERT && bravalue <= OP_ASSERTBACK_NOT)
5889 cd->assert_depth -= 1;
5890
5891 /* At the end of compiling, code is still pointing to the start of the
5892 group, while tempcode has been updated to point past the end of the group
5893 and any option resetting that may follow it. The pattern pointer (ptr)
5894 is on the bracket. */
5895
5896 /* If this is a conditional bracket, check that there are no more than
5897 two branches in the group, or just one if it's a DEFINE group. We do this
5898 in the real compile phase, not in the pre-pass, where the whole group may
5899 not be available. */
5900
5901 if (bravalue == OP_COND && lengthptr == NULL)
5902 {
5903 uschar *tc = code;
5904 int condcount = 0;
5905
5906 do {
5907 condcount++;
5908 tc += GET(tc,1);
5909 }
5910 while (*tc != OP_KET);
5911
5912 /* A DEFINE group is never obeyed inline (the "condition" is always
5913 false). It must have only one branch. */
5914
5915 if (code[LINK_SIZE+1] == OP_DEF)
5916 {
5917 if (condcount > 1)
5918 {
5919 *errorcodeptr = ERR54;
5920 goto FAILED;
5921 }
5922 bravalue = OP_DEF; /* Just a flag to suppress char handling below */
5923 }
5924
5925 /* A "normal" conditional group. If there is just one branch, we must not
5926 make use of its firstbyte or reqbyte, because this is equivalent to an
5927 empty second branch. */
5928
5929 else
5930 {
5931 if (condcount > 2)
5932 {
5933 *errorcodeptr = ERR27;
5934 goto FAILED;
5935 }
5936 if (condcount == 1) subfirstbyte = subreqbyte = REQ_NONE;
5937 }
5938 }
5939
5940 /* Error if hit end of pattern */
5941
5942 if (*ptr != CHAR_RIGHT_PARENTHESIS)
5943 {
5944 *errorcodeptr = ERR14;
5945 goto FAILED;
5946 }
5947
5948 /* In the pre-compile phase, update the length by the length of the group,
5949 less the brackets at either end. Then reduce the compiled code to just a
5950 set of non-capturing brackets so that it doesn't use much memory if it is
5951 duplicated by a quantifier.*/
5952
5953 if (lengthptr != NULL)
5954 {
5955 if (OFLOW_MAX - *lengthptr < length_prevgroup - 2 - 2*LINK_SIZE)
5956 {
5957 *errorcodeptr = ERR20;
5958 goto FAILED;
5959 }
5960 *lengthptr += length_prevgroup - 2 - 2*LINK_SIZE;
5961 code++; /* This already contains bravalue */
5962 PUTINC(code, 0, 1 + LINK_SIZE);
5963 *code++ = OP_KET;
5964 PUTINC(code, 0, 1 + LINK_SIZE);
5965 break; /* No need to waste time with special character handling */
5966 }
5967
5968 /* Otherwise update the main code pointer to the end of the group. */
5969
5970 code = tempcode;
5971
5972 /* For a DEFINE group, required and first character settings are not
5973 relevant. */
5974
5975 if (bravalue == OP_DEF) break;
5976
5977 /* Handle updating of the required and first characters for other types of
5978 group. Update for normal brackets of all kinds, and conditions with two
5979 branches (see code above). If the bracket is followed by a quantifier with
5980 zero repeat, we have to back off. Hence the definition of zeroreqbyte and
5981 zerofirstbyte outside the main loop so that they can be accessed for the
5982 back off. */
5983
5984 zeroreqbyte = reqbyte;
5985 zerofirstbyte = firstbyte;
5986 groupsetfirstbyte = FALSE;
5987
5988 if (bravalue >= OP_ONCE)
5989 {
5990 /* If we have not yet set a firstbyte in this branch, take it from the
5991 subpattern, remembering that it was set here so that a repeat of more
5992 than one can replicate it as reqbyte if necessary. If the subpattern has
5993 no firstbyte, set "none" for the whole branch. In both cases, a zero
5994 repeat forces firstbyte to "none". */
5995
5996 if (firstbyte == REQ_UNSET)
5997 {
5998 if (subfirstbyte >= 0)
5999 {
6000 firstbyte = subfirstbyte;
6001 groupsetfirstbyte = TRUE;
6002 }
6003 else firstbyte = REQ_NONE;
6004 zerofirstbyte = REQ_NONE;
6005 }
6006
6007 /* If firstbyte was previously set, convert the subpattern's firstbyte
6008 into reqbyte if there wasn't one, using the vary flag that was in
6009 existence beforehand. */
6010
6011 else if (subfirstbyte >= 0 && subreqbyte < 0)
6012 subreqbyte = subfirstbyte | tempreqvary;
6013
6014 /* If the subpattern set a required byte (or set a first byte that isn't
6015 really the first byte - see above), set it. */
6016
6017 if (subreqbyte >= 0) reqbyte = subreqbyte;
6018 }
6019
6020 /* For a forward assertion, we take the reqbyte, if set. This can be
6021 helpful if the pattern that follows the assertion doesn't set a different
6022 char. For example, it's useful for /(?=abcde).+/. We can't set firstbyte
6023 for an assertion, however because it leads to incorrect effect for patterns
6024 such as /(?=a)a.+/ when the "real" "a" would then become a reqbyte instead
6025 of a firstbyte. This is overcome by a scan at the end if there's no
6026 firstbyte, looking for an asserted first char. */
6027
6028 else if (bravalue == OP_ASSERT && subreqbyte >= 0) reqbyte = subreqbyte;
6029 break; /* End of processing '(' */
6030
6031
6032 /* ===================================================================*/
6033 /* Handle metasequences introduced by \. For ones like \d, the ESC_ values
6034 are arranged to be the negation of the corresponding OP_values in the
6035 default case when PCRE_UCP is not set. For the back references, the values
6036 are ESC_REF plus the reference number. Only back references and those types
6037 that consume a character may be repeated. We can test for values between
6038 ESC_b and ESC_Z for the latter; this may have to change if any new ones are
6039 ever created. */
6040
6041 case CHAR_BACKSLASH:
6042 tempptr = ptr;
6043 c = check_escape(&ptr, errorcodeptr, cd->bracount, options, FALSE);
6044 if (*errorcodeptr != 0) goto FAILED;
6045
6046 if (c < 0)
6047 {
6048 if (-c == ESC_Q) /* Handle start of quoted string */
6049 {
6050 if (ptr[1] == CHAR_BACKSLASH && ptr[2] == CHAR_E)
6051 ptr += 2; /* avoid empty string */
6052 else inescq = TRUE;
6053 continue;
6054 }
6055
6056 if (-c == ESC_E) continue; /* Perl ignores an orphan \E */
6057
6058 /* For metasequences that actually match a character, we disable the
6059 setting of a first character if it hasn't already been set. */
6060
6061 if (firstbyte == REQ_UNSET && -c > ESC_b && -c < ESC_Z)
6062 firstbyte = REQ_NONE;
6063
6064 /* Set values to reset to if this is followed by a zero repeat. */
6065
6066 zerofirstbyte = firstbyte;
6067 zeroreqbyte = reqbyte;
6068
6069 /* \g<name> or \g'name' is a subroutine call by name and \g<n> or \g'n'
6070 is a subroutine call by number (Oniguruma syntax). In fact, the value
6071 -ESC_g is returned only for these cases. So we don't need to check for <
6072 or ' if the value is -ESC_g. For the Perl syntax \g{n} the value is
6073 -ESC_REF+n, and for the Perl syntax \g{name} the result is -ESC_k (as
6074 that is a synonym for a named back reference). */
6075
6076 if (-c == ESC_g)
6077 {
6078 const uschar *p;
6079 save_hwm = cd->hwm; /* Normally this is set when '(' is read */
6080 terminator = (*(++ptr) == CHAR_LESS_THAN_SIGN)?
6081 CHAR_GREATER_THAN_SIGN : CHAR_APOSTROPHE;
6082
6083 /* These two statements stop the compiler for warning about possibly
6084 unset variables caused by the jump to HANDLE_NUMERICAL_RECURSION. In
6085 fact, because we actually check for a number below, the paths that
6086 would actually be in error are never taken. */
6087
6088 skipbytes = 0;
6089 reset_bracount = FALSE;
6090
6091 /* Test for a name */
6092
6093 if (ptr[1] != CHAR_PLUS && ptr[1] != CHAR_MINUS)
6094 {
6095 BOOL isnumber = TRUE;
6096 for (p = ptr + 1; *p != 0 && *p != terminator; p++)
6097 {
6098 if ((cd->ctypes[*p] & ctype_digit) == 0) isnumber = FALSE;
6099 if ((cd->ctypes[*p] & ctype_word) == 0) break;
6100 }
6101 if (*p != terminator)
6102 {
6103 *errorcodeptr = ERR57;
6104 break;
6105 }
6106 if (isnumber)
6107 {
6108 ptr++;
6109 goto HANDLE_NUMERICAL_RECURSION;
6110 }
6111 is_recurse = TRUE;
6112 goto NAMED_REF_OR_RECURSE;
6113 }
6114
6115 /* Test a signed number in angle brackets or quotes. */
6116
6117 p = ptr + 2;
6118 while ((digitab[*p] & ctype_digit) != 0) p++;
6119 if (*p != terminator)
6120 {
6121 *errorcodeptr = ERR57;
6122 break;
6123 }
6124 ptr++;
6125 goto HANDLE_NUMERICAL_RECURSION;
6126 }
6127
6128 /* \k<name> or \k'name' is a back reference by name (Perl syntax).
6129 We also support \k{name} (.NET syntax). */
6130
6131 if (-c == ESC_k)
6132 {
6133 if ((ptr[1] != CHAR_LESS_THAN_SIGN &&
6134 ptr[1] != CHAR_APOSTROPHE && ptr[1] != CHAR_LEFT_CURLY_BRACKET))
6135 {
6136 *errorcodeptr = ERR69;
6137 break;
6138 }
6139 is_recurse = FALSE;
6140 terminator = (*(++ptr) == CHAR_LESS_THAN_SIGN)?
6141 CHAR_GREATER_THAN_SIGN : (*ptr == CHAR_APOSTROPHE)?
6142 CHAR_APOSTROPHE : CHAR_RIGHT_CURLY_BRACKET;
6143 goto NAMED_REF_OR_RECURSE;
6144 }
6145
6146 /* Back references are handled specially; must disable firstbyte if
6147 not set to cope with cases like (?=(\w+))\1: which would otherwise set
6148 ':' later. */
6149
6150 if (-c >= ESC_REF)
6151 {
6152 open_capitem *oc;
6153 recno = -c - ESC_REF;
6154
6155 HANDLE_REFERENCE: /* Come here from named backref handling */
6156 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
6157 previous = code;
6158 *code++ = ((options & PCRE_CASELESS) != 0)? OP_REFI : OP_REF;
6159 PUT2INC(code, 0, recno);
6160 cd->backref_map |= (recno < 32)? (1 << recno) : 1;
6161 if (recno > cd->top_backref) cd->top_backref = recno;
6162
6163 /* Check to see if this back reference is recursive, that it, it
6164 is inside the group that it references. A flag is set so that the
6165 group can be made atomic. */
6166
6167 for (oc = cd->open_caps; oc != NULL; oc = oc->next)
6168 {
6169 if (oc->number == recno)
6170 {
6171 oc->flag = TRUE;
6172 break;
6173 }
6174 }
6175 }
6176
6177 /* So are Unicode property matches, if supported. */
6178
6179 #ifdef SUPPORT_UCP
6180 else if (-c == ESC_P || -c == ESC_p)
6181 {
6182 BOOL negated;
6183 int pdata;
6184 int ptype = get_ucp(&ptr, &negated, &pdata, errorcodeptr);
6185 if (ptype < 0) goto FAILED;
6186 previous = code;
6187 *code++ = ((-c == ESC_p) != negated)? OP_PROP : OP_NOTPROP;
6188 *code++ = ptype;
6189 *code++ = pdata;
6190 }
6191 #else
6192
6193 /* If Unicode properties are not supported, \X, \P, and \p are not
6194 allowed. */
6195
6196 else if (-c == ESC_X || -c == ESC_P || -c == ESC_p)
6197 {
6198 *errorcodeptr = ERR45;
6199 goto FAILED;
6200 }
6201 #endif
6202
6203 /* For the rest (including \X when Unicode properties are supported), we
6204 can obtain the OP value by negating the escape value in the default
6205 situation when PCRE_UCP is not set. When it *is* set, we substitute
6206 Unicode property tests. */
6207
6208 else
6209 {
6210 #ifdef SUPPORT_UCP
6211 if (-c >= ESC_DU && -c <= ESC_wu)
6212 {
6213 nestptr = ptr + 1; /* Where to resume */
6214 ptr = substitutes[-c - ESC_DU] - 1; /* Just before substitute */
6215 }
6216 else
6217 #endif
6218 {
6219 previous = (-c > ESC_b && -c < ESC_Z)? code : NULL;
6220 *code++ = -c;
6221 }
6222 }
6223 continue;
6224 }
6225
6226 /* We have a data character whose value is in c. In UTF-8 mode it may have
6227 a value > 127. We set its representation in the length/buffer, and then
6228 handle it as a data character. */
6229
6230 #ifdef SUPPORT_UTF8
6231 if (utf8 && c > 127)
6232 mclength = _pcre_ord2utf8(c, mcbuffer);
6233 else
6234 #endif
6235
6236 {
6237 mcbuffer[0] = c;
6238 mclength = 1;
6239 }
6240 goto ONE_CHAR;
6241
6242
6243 /* ===================================================================*/
6244 /* Handle a literal character. It is guaranteed not to be whitespace or #
6245 when the extended flag is set. If we are in UTF-8 mode, it may be a
6246 multi-byte literal character. */
6247
6248 default:
6249 NORMAL_CHAR:
6250 mclength = 1;
6251 mcbuffer[0] = c;
6252
6253 #ifdef SUPPORT_UTF8
6254 if (utf8 && c >= 0xc0)
6255 {
6256 while ((ptr[1] & 0xc0) == 0x80)
6257 mcbuffer[mclength++] = *(++ptr);
6258 }
6259 #endif
6260
6261 /* At this point we have the character's bytes in mcbuffer, and the length
6262 in mclength. When not in UTF-8 mode, the length is always 1. */
6263
6264 ONE_CHAR:
6265 previous = code;
6266 *code++ = ((options & PCRE_CASELESS) != 0)? OP_CHARI : OP_CHAR;
6267 for (c = 0; c < mclength; c++) *code++ = mcbuffer[c];
6268
6269 /* Remember if \r or \n were seen */
6270
6271 if (mcbuffer[0] == CHAR_CR || mcbuffer[0] == CHAR_NL)
6272 cd->external_flags |= PCRE_HASCRORLF;
6273
6274 /* Set the first and required bytes appropriately. If no previous first
6275 byte, set it from this character, but revert to none on a zero repeat.
6276 Otherwise, leave the firstbyte value alone, and don't change it on a zero
6277 repeat. */
6278
6279 if (firstbyte == REQ_UNSET)
6280 {
6281 zerofirstbyte = REQ_NONE;
6282 zeroreqbyte = reqbyte;
6283
6284 /* If the character is more than one byte long, we can set firstbyte
6285 only if it is not to be matched caselessly. */
6286
6287 if (mclength == 1 || req_caseopt == 0)
6288 {
6289 firstbyte = mcbuffer[0] | req_caseopt;
6290 if (mclength != 1) reqbyte = code[-1] | cd->req_varyopt;
6291 }
6292 else firstbyte = reqbyte = REQ_NONE;
6293 }
6294
6295 /* firstbyte was previously set; we can set reqbyte only the length is
6296 1 or the matching is caseful. */
6297
6298 else
6299 {
6300 zerofirstbyte = firstbyte;
6301 zeroreqbyte = reqbyte;
6302 if (mclength == 1 || req_caseopt == 0)
6303 reqbyte = code[-1] | req_caseopt | cd->req_varyopt;
6304 }
6305
6306 break; /* End of literal character handling */
6307 }
6308 } /* end of big loop */
6309
6310
6311 /* Control never reaches here by falling through, only by a goto for all the
6312 error states. Pass back the position in the pattern so that it can be displayed
6313 to the user for diagnosing the error. */
6314
6315 FAILED:
6316 *ptrptr = ptr;
6317 return FALSE;
6318 }
6319
6320
6321
6322
6323 /*************************************************
6324 * Compile sequence of alternatives *
6325 *************************************************/
6326
6327 /* On entry, ptr is pointing past the bracket character, but on return it
6328 points to the closing bracket, or vertical bar, or end of string. The code
6329 variable is pointing at the byte into which the BRA operator has been stored.
6330 This function is used during the pre-compile phase when we are trying to find
6331 out the amount of memory needed, as well as during the real compile phase. The
6332 value of lengthptr distinguishes the two phases.
6333
6334 Arguments:
6335 options option bits, including any changes for this subpattern
6336 codeptr -> the address of the current code pointer
6337 ptrptr -> the address of the current pattern pointer
6338 errorcodeptr -> pointer to error code variable
6339 lookbehind TRUE if this is a lookbehind assertion
6340 reset_bracount TRUE to reset the count for each branch
6341 skipbytes skip this many bytes at start (for brackets and OP_COND)
6342 firstbyteptr place to put the first required character, or a negative number
6343 reqbyteptr place to put the last required character, or a negative number
6344 bcptr pointer to the chain of currently open branches
6345 cd points to the data block with tables pointers etc.
6346 lengthptr NULL during the real compile phase
6347 points to length accumulator during pre-compile phase
6348
6349 Returns: TRUE on success
6350 */
6351
6352 static BOOL
6353 compile_regex(int options, uschar **codeptr, const uschar **ptrptr,
6354 int *errorcodeptr, BOOL lookbehind, BOOL reset_bracount, int skipbytes,
6355 int *firstbyteptr, int *reqbyteptr, branch_chain *bcptr, compile_data *cd,
6356 int *lengthptr)
6357 {
6358 const uschar *ptr = *ptrptr;
6359 uschar *code = *codeptr;
6360 uschar *last_branch = code;
6361 uschar *start_bracket = code;
6362 uschar *reverse_count = NULL;
6363 open_capitem capitem;
6364 int capnumber = 0;
6365 int firstbyte, reqbyte;
6366 int branchfirstbyte, branchreqbyte;
6367 int length;
6368 int orig_bracount;
6369 int max_bracount;
6370 branch_chain bc;
6371
6372 bc.outer = bcptr;
6373 bc.current_branch = code;
6374
6375 firstbyte = reqbyte = REQ_UNSET;
6376
6377 /* Accumulate the length for use in the pre-compile phase. Start with the
6378 length of the BRA and KET and any extra bytes that are required at the
6379 beginning. We accumulate in a local variable to save frequent testing of
6380 lenthptr for NULL. We cannot do this by looking at the value of code at the
6381 start and end of each alternative, because compiled items are discarded during
6382 the pre-compile phase so that the work space is not exceeded. */
6383
6384 length = 2 + 2*LINK_SIZE + skipbytes;
6385
6386 /* WARNING: If the above line is changed for any reason, you must also change
6387 the code that abstracts option settings at the start of the pattern and makes
6388 them global. It tests the value of length for (2 + 2*LINK_SIZE) in the
6389 pre-compile phase to find out whether anything has yet been compiled or not. */
6390
6391 /* If this is a capturing subpattern, add to the chain of open capturing items
6392 so that we can detect them if (*ACCEPT) is encountered. This is also used to
6393 detect groups that contain recursive back references to themselves. Note that
6394 only OP_CBRA need be tested here; changing this opcode to one of its variants,
6395 e.g. OP_SCBRAPOS, happens later, after the group has been compiled. */
6396
6397 if (*code == OP_CBRA)
6398 {
6399 capnumber = GET2(code, 1 + LINK_SIZE);
6400 capitem.number = capnumber;
6401 capitem.next = cd->open_caps;
6402 capitem.flag = FALSE;
6403 cd->open_caps = &capitem;
6404 }
6405
6406 /* Offset is set zero to mark that this bracket is still open */
6407
6408 PUT(code, 1, 0);
6409 code += 1 + LINK_SIZE + skipbytes;
6410
6411 /* Loop for each alternative branch */
6412
6413 orig_bracount = max_bracount = cd->bracount;
6414 for (;;)
6415 {
6416 /* For a (?| group, reset the capturing bracket count so that each branch
6417 uses the same numbers. */
6418
6419 if (reset_bracount) cd->bracount = orig_bracount;
6420
6421 /* Set up dummy OP_REVERSE if lookbehind assertion */
6422
6423 if (lookbehind)
6424 {
6425 *code++ = OP_REVERSE;
6426 reverse_count = code;
6427 PUTINC(code, 0, 0);
6428 length += 1 + LINK_SIZE;
6429 }
6430
6431 /* Now compile the branch; in the pre-compile phase its length gets added
6432 into the length. */
6433
6434 if (!compile_branch(&options, &code, &ptr, errorcodeptr, &branchfirstbyte,
6435 &branchreqbyte, &bc, cd, (lengthptr == NULL)? NULL : &length))
6436 {
6437 *ptrptr = ptr;
6438 return FALSE;
6439 }
6440
6441 /* Keep the highest bracket count in case (?| was used and some branch
6442 has fewer than the rest. */
6443
6444 if (cd->bracount > max_bracount) max_bracount = cd->bracount;
6445
6446 /* In the real compile phase, there is some post-processing to be done. */
6447
6448 if (lengthptr == NULL)
6449 {
6450 /* If this is the first branch, the firstbyte and reqbyte values for the
6451 branch become the values for the regex. */
6452
6453 if (*last_branch != OP_ALT)
6454 {
6455 firstbyte = branchfirstbyte;
6456 reqbyte = branchreqbyte;
6457 }
6458
6459 /* If this is not the first branch, the first char and reqbyte have to
6460 match the values from all the previous branches, except that if the
6461 previous value for reqbyte didn't have REQ_VARY set, it can still match,
6462 and we set REQ_VARY for the regex. */
6463
6464 else
6465 {
6466 /* If we previously had a firstbyte, but it doesn't match the new branch,
6467 we have to abandon the firstbyte for the regex, but if there was
6468 previously no reqbyte, it takes on the value of the old firstbyte. */
6469
6470 if (firstbyte >= 0 && firstbyte != branchfirstbyte)
6471 {
6472 if (reqbyte < 0) reqbyte = firstbyte;
6473 firstbyte = REQ_NONE;
6474 }
6475
6476 /* If we (now or from before) have no firstbyte, a firstbyte from the
6477 branch becomes a reqbyte if there isn't a branch reqbyte. */
6478
6479 if (firstbyte < 0 && branchfirstbyte >= 0 && branchreqbyte < 0)
6480 branchreqbyte = branchfirstbyte;
6481
6482 /* Now ensure that the reqbytes match */
6483
6484 if ((reqbyte & ~REQ_VARY) != (branchreqbyte & ~REQ_VARY))
6485 reqbyte = REQ_NONE;
6486 else reqbyte |= branchreqbyte; /* To "or" REQ_VARY */
6487 }
6488
6489 /* If lookbehind, check that this branch matches a fixed-length string, and
6490 put the length into the OP_REVERSE item. Temporarily mark the end of the
6491 branch with OP_END. If the branch contains OP_RECURSE, the result is -3
6492 because there may be forward references that we can't check here. Set a
6493 flag to cause another lookbehind check at the end. Why not do it all at the
6494 end? Because common, erroneous checks are picked up here and the offset of
6495 the problem can be shown. */
6496
6497 if (lookbehind)
6498 {
6499 int fixed_length;
6500 *code = OP_END;
6501 fixed_length = find_fixedlength(last_branch, (options & PCRE_UTF8) != 0,
6502 FALSE, cd);
6503 DPRINTF(("fixed length = %d\n", fixed_length));
6504 if (fixed_length == -3)
6505 {
6506 cd->check_lookbehind = TRUE;
6507 }
6508 else if (fixed_length < 0)
6509 {
6510 *errorcodeptr = (fixed_length == -2)? ERR36 : ERR25;
6511 *ptrptr = ptr;
6512 return FALSE;
6513 }
6514 else { PUT(reverse_count, 0, fixed_length); }
6515 }
6516 }
6517
6518 /* Reached end of expression, either ')' or end of pattern. In the real
6519 compile phase, go back through the alternative branches and reverse the chain
6520 of offsets, with the field in the BRA item now becoming an offset to the
6521 first alternative. If there are no alternatives, it points to the end of the
6522 group. The length in the terminating ket is always the length of the whole
6523 bracketed item. Return leaving the pointer at the terminating char. */
6524
6525 if (*ptr != CHAR_VERTICAL_LINE)
6526 {
6527 if (lengthptr == NULL)
6528 {
6529 int branch_length = (int)(code - last_branch);
6530 do
6531 {
6532 int prev_length = GET(last_branch, 1);
6533 PUT(last_branch, 1, branch_length);
6534 branch_length = prev_length;
6535 last_branch -= branch_length;
6536 }
6537 while (branch_length > 0);
6538 }
6539
6540 /* Fill in the ket */
6541
6542 *code = OP_KET;
6543 PUT(code, 1, (int)(code - start_bracket));
6544 code += 1 + LINK_SIZE;
6545
6546 /* If it was a capturing subpattern, check to see if it contained any
6547 recursive back references. If so, we must wrap it in atomic brackets.
6548 In any event, remove the block from the chain. */
6549
6550 if (capnumber > 0)
6551 {
6552 if (cd->open_caps->flag)
6553 {
6554 memmove(start_bracket + 1 + LINK_SIZE, start_bracket,
6555 code - start_bracket);
6556 *start_bracket = OP_ONCE;
6557 code += 1 + LINK_SIZE;
6558 PUT(start_bracket, 1, (int)(code - start_bracket));
6559 *code = OP_KET;
6560 PUT(code, 1, (int)(code - start_bracket));
6561 code += 1 + LINK_SIZE;
6562 length += 2 + 2*LINK_SIZE;
6563 }
6564 cd->open_caps = cd->open_caps->next;
6565 }
6566
6567 /* Retain the highest bracket number, in case resetting was used. */
6568
6569 cd->bracount = max_bracount;
6570
6571 /* Set values to pass back */
6572
6573 *codeptr = code;
6574 *ptrptr = ptr;
6575 *firstbyteptr = firstbyte;
6576 *reqbyteptr = reqbyte;
6577 if (lengthptr != NULL)
6578 {
6579 if (OFLOW_MAX - *lengthptr < length)
6580 {
6581 *errorcodeptr = ERR20;
6582 return FALSE;
6583 }
6584 *lengthptr += length;
6585 }
6586 return TRUE;
6587 }
6588
6589 /* Another branch follows. In the pre-compile phase, we can move the code
6590 pointer back to where it was for the start of the first branch. (That is,
6591 pretend that each branch is the only one.)
6592
6593 In the real compile phase, insert an ALT node. Its length field points back
6594 to the previous branch while the bracket remains open. At the end the chain
6595 is reversed. It's done like this so that the start of the bracket has a
6596 zero offset until it is closed, making it possible to detect recursion. */
6597
6598 if (lengthptr != NULL)
6599 {
6600 code = *codeptr + 1 + LINK_SIZE + skipbytes;
6601 length += 1 + LINK_SIZE;
6602 }
6603 else
6604 {
6605 *code = OP_ALT;
6606 PUT(code, 1, (int)(code - last_branch));
6607 bc.current_branch = last_branch = code;
6608 code += 1 + LINK_SIZE;
6609 }
6610
6611 ptr++;
6612 }
6613 /* Control never reaches here */
6614 }
6615
6616
6617
6618
6619 /*************************************************
6620 * Check for anchored expression *
6621 *************************************************/
6622
6623 /* Try to find out if this is an anchored regular expression. Consider each
6624 alternative branch. If they all start with OP_SOD or OP_CIRC, or with a bracket
6625 all of whose alternatives start with OP_SOD or OP_CIRC (recurse ad lib), then
6626 it's anchored. However, if this is a multiline pattern, then only OP_SOD will
6627 be found, because ^ generates OP_CIRCM in that mode.
6628
6629 We can also consider a regex to be anchored if OP_SOM starts all its branches.
6630 This is the code for \G, which means "match at start of match position, taking
6631 into account the match offset".
6632
6633 A branch is also implicitly anchored if it starts with .* and DOTALL is set,
6634 because that will try the rest of the pattern at all possible matching points,
6635 so there is no point trying again.... er ....
6636
6637 .... except when the .* appears inside capturing parentheses, and there is a
6638 subsequent back reference to those parentheses. We haven't enough information
6639 to catch that case precisely.